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Abstract

Let {Xi}∞i=1 be a sequence of independent copies of a random vector X in Rn. We revisit the

question to determine the asymptotic shape of the random polytope KN = conv{X1, . . . , XN} where

N > n. We show that for any β ∈ (0, 1) there exists a constant c(β) > 0 such that the following holds

true: If µ is a Borel probability measure on Rn then, for all N > c(β)n we have that KN ⊇ Tβ ln(N
n

)(µ)

with probability greater than 1− exp(− 1
2
N1−βnβ), where Tp(µ) is the convex set of all points x ∈ Rn

with half-space depth greater than or equal to e−p. Our approach does not require any additional

assumptions about the measure µ and hence it generalizes and/or improves a sequence of previous

results. Moreover, for the class of strongly regular measures we compare the family {Tp(µ)}p>0 to other

natural families of convex bodies associated with µ, such as the Lp-centroid bodies of µ or the level sets

of the Cramér transform of µ, and use this information in order to estimate the size of a random KN .

1 Introduction

Let µ be a Borel probability measure on Rn and consider a sequence {Xi}∞i=1 of independent random

vectors distributed according to µ. The geometry of the random polytopes KN = conv{X1, . . . , XN} and

SN = conv{±X1, . . . ,±XN} has been extensively studied in a series of works by several authors. The

following typical result of Gluskin [22] concerns the Gaussian case, where µ = γn is the standard Gaussian

measure on Rn with density (2π)−n/2 exp(−|x|2/2) (in what follows, | · | denotes the Euclidean norm): For

any β ∈ (0, 1) and N > c1(β)n one has that

(1.1) SN ⊇ c2(β)
√

ln(eN/n)Bn2

with probability greater than 1− 2 exp(−c3N1−βnβ), where ci(β) are constants that depend only on β and

c3 is an absolute positive constant.

This result has been extended in [36] to random polytopes generated by a random vector X = (ξ1, . . . , ξn)

whose coordinates are independent copies of a random variable ξ with expectation E(ξ) = 0 and variance

Var(ξ) = 1, that satisfies (E|ξ|p)1/p 6 L
√
p for some constant L > 0 and every p > 1 (we then say that ξ is

L-subgaussian). For any β ∈ (0, 1) and N > c1(β, L)n one has that

(1.2) SN ⊇ c2(β, L)
(
Bn∞ ∩

√
ln(eN/n)Bn2

)
with probability greater than 1 − 2 exp(−c3N1−βnβ). A version of this fact for the special case where the

ξi’s are symmetric ±1 random variables had been previously obtained in [20] for N > n(lnn)2 and with

probability greater than 1− e−n.

A general study of the asymptotic shape of random polytopes when their vertices are assumed to have

a log-concave distribution was initiated by Dafnis, Giannopoulos and Tsolomitis in [15] and [16]. Given a
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centered log-concave probability measure µ on Rn, for every N > n we consider N independent random

vectors X1, . . . , XN distributed according to µ and the random polytope SN := conv{±X1, . . . ,±XN}. The

main idea in these works was to compare SN with the Lp-centroid body of µ for a suitable value of p; roughly

speaking, SN is close to the body Zln(eN/n)(µ) with high probability. Recall that the Lp-centroid bodies

Zp(µ), p > 1, are defined through their support function hZp(µ) given by

(1.3) hZp(µ)(y) := ‖〈·, y〉‖Lp(µ) =

(∫
Rn
|〈x, y〉|pdµ(x)

)1/p

.

These bodies incorporate information about the distribution of linear functionals with respect to µ. The

Lp-centroid bodies were introduced, under a different normalization, by Lutwak and Zhang in [37], while in

[41] for the first time, and in [42] later on, Paouris used geometric properties of them to acquire detailed

information about the distribution of the Euclidean norm with respect to µ. The starting observation in

[15] was that the deterministic body
√
pBn2 that appears in (1.1) is approximately equal to Zp(γn) and

the deterministic body Bn∞ ∩
√
pBn2 that appears in (1.2) is approximately equal to Zp(νn), where νn is

the uniform measure on the cube. It was proved in [15] that, given any centered log-concave probability

measure µ on Rn and any cn 6 N 6 en, the random polytope SN defined by N independent random vectors

X1, . . . , XN which are distributed according to µ satisfies the inclusion

(1.4) SN ⊇ c1Zln(eN/n)(µ)

with probability greater than

1− 2 exp
(
−c3N1−βnβ

)
− P(‖Γ : `n2 → `N2 ‖ > γ

√
N) > 1− exp(−c0γ

√
N),

where Γ : `n2 → `N2 is the random operator Γ(y) = (〈X1, y〉, . . . 〈XN , y〉). The last inequality follows from the

estimate

P(‖Γ : `n2 → `N2 ‖ > γ
√
N) 6 exp(−cγ

√
N)

for all N > γn, that has been obtained in [1].

This approach was further extended to random polytopes with vertices that have an arbitrary symmetric

distribution µ on Rn. Guédon, Krahmer, Kümmerle, Mendelson and Rauhut introduced in [26] (see also [39]

and the earlier work [25] which was the motivation for [39] and [26]) the family of sets {Up(µ)}p>1 defined

by

(1.5) Up(µ) = {y ∈ Rn : µ({x ∈ Rn : 〈x, y〉 > 1}) 6 exp(−p)}

and showed that, under some assumptions on µ, the random polytopes SN and KN contain 1
2 (Up(µ))◦

with probability close to 1, where A◦ denotes the polar set of A. Their assumption on µ is that there

exists a norm ‖ · ‖ on Rn and some positive constants γ, δ, r and L such that the small ball condition

µ({x ∈ Rn : |〈x, y〉| > γ‖y‖}) > δ and the Lr-condition
(
Eµ|〈·, y〉|r

)1/r
6 L‖y‖ are satisfied for every y ∈ Rn.

The main result in [26] asserts that if µ is a symmetric Borel probability measure on Rn that satisfies a small

ball condition and an Lr-condition with constants γ, δ, r and L for some norm on Rn then, for any 0 < β < 1

there exists a positive constant c0 := c(β, δ, r, L/γ) such that if N > c0n and p = β ln(eN/n) we have

(1.6) SN ⊇
1

2
(Up(µ))◦

with probability greater than 1−2 exp(−c1N1−βnβ), where c1 > 0 is an absolute constant. It is explained in
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[26] that the same inclusion holds for the random polytope KN and that it implies (1.4), with the improved

and optimal probability estimate stated above, when µ is a centered log-concave probability measure (we

shall discuss and further study the relation between Up(µ) and Zp(µ) in Sections 3 and 4).

Let now µ be an arbitrary Borel probability measure on Rn. For any x ∈ Rn we denote by H(x) the set

of all closed half-spaces H+ of Rn containing x. The function

ϕµ(x) = inf{µ(H+) : H+ ∈ H(x)}

(introduced by Tukey in [46]) is the Tukey half-space depth function of µ. Note that the infimum in the

definition of ϕµ(x) is determined by those closed half-spaces H+ for which x lies on the boundary bd(H+)

of H+. It is useful to note that the half-space depth function ϕµ attains its maximum and max(ϕµ) > 1
n+1 .

Every point x that satisfies ϕµ(x) = max(ϕµ) is called a center point for µ.

Hayakawa, Lyons and Oberhauser showed in [29] that, in the case where µ is assumed symmetric, an

inclusion which is essentially equivalent to (1.6) continues to hold even if we do not assume the small ball

condition and the Lr-condition for µ. They considered the family {Tp(µ)}p>0 of the level sets of the Tukey

half-space depth ϕµ of µ which are defined by

Tp(µ) = {x ∈ Rn : ϕµ(x) > e−p}

and proved the following.

Theorem 1.1 (Hayakawa-Lyons-Oberhauser). Let µ be a symmetric Borel probability measure on Rn. Let

0 < β < 1 and set p = β ln(eN/n). Then, if N > (12eβ)
1

1−β n we have that

(1.7) KN ⊇
1

2
Tp(µ)

with probability greater than 1− 2 exp(−ce−βN1−βnβ), where c > 0 is an absolute constant.

It was also proved in [29] that if µ is a symmetric Borel probability measure then Tp(µ) is “essentially”

the polar set of Up(µ). Therefore, Theorem 1.1 implies the main result of [26]. Namely, for (1.6) to hold, we

do not have to assume the small ball condition or the Lr-condition for µ. In Proposition 3.5 we show that

(Up(µ))◦ ⊆ Tp(µ) for any (not necessarily symmetric) probability measure which is “translated” in such a

way that the origin is a center point.

The proof of Theorem 1.1 involves some sharp estimates connecting the Tukey half-space depth function

ϕµ with the parameters pN,µ(x) = P(x ∈ KN ) and Nµ(x) = min
{
N ∈ N : pN,µ(x) > 1

2

}
. It is proved in [29,

Proposition 13] that

(1.8) 1− pN,µ(x) 6

(
Nϕµ(x)

n
exp

{(
1

ϕµ(x)
ln

1

1− ϕµ(x)

)(
1 + ϕµ(x)− Nϕµ(x)

n

)})n
for every N > n/ϕµ(x). Since 1

t ln 1
1−t > 1 for all t ∈ (0, 1), if we assume that N

n > 1
ϕµ(x)

+ 1 then we may

use the simpler bound

(1.9) 1− pN,µ(x) 6

(
Nϕµ(x)

n
exp

(
1 + ϕµ(x)− Nϕµ(x)

n

))n
This is the main estimate in [29], which is essential for the proof of Theorem 1.1. Another main consequence
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of (1.8) is the fact that one can relate Nµ(x) and ϕµ(x) as follows:

(1.10) Nµ(x) 6

⌈
3n

ϕµ(x)

⌉
,

an inequality that holds true for any n-dimensional probability measure µ and any x (see [29, Theorem 16]).

Our contribution. Our first main result states that one can have the assertion of Theorem 1.1 without

the assumption of symmetry for the measure µ.

Theorem 1.2. For any β ∈ (0, 1) there exists a constant c(β) > 0 such that the following holds true. If µ

is a Borel probability measure on Rn then, for every N > c(β)n we have that

KN ⊇ Tβ ln(Nn )(µ)

with probability greater than 1− exp(− 1
2N

1−βnβ).

Our proof of Theorem 1.2, which is valid in full generality, is based on the ε-net theorem of Haussler

and Welzl [28] which we introduce and discuss in Section 3. We use a sharp version of the ε-net theorem

that has been used by Naszódi for questions related to random polytopes. It is due to Komlós, Pach and

Woeginger, see [32, Theorem 3.2]. We will actually exploit a simplified form of this theorem that appears in

[40, Lemma 3.2].

It is interesting to note that Theorem 1.1 is in a sense equivalent to the inequality (1.10). We present

a very simple argument, which is again based on the ε-net theorem, showing that an inequality similar to

(1.10), but slightly weaker, holds true in full generality.

Theorem 1.3. Let µ be a Borel probability measure on Rn. For every x ∈ Rn we have that

Nµ(x) 6
cn

ϕµ(x)
(1 + ln (1/ϕµ(x)))

where c > 0 is an absolute constant.

Theorem 1.2 is the most general in the series of results that we have discussed and hence we may deduce

very general versions of all the consequences that have appeared in earlier works. Concrete applications

of the theorem require computing and estimating the size of the bodies Tp(µ) for an individual probability

measure µ, which is not a simple task. In Section 4 we give equivalent and more convenient descriptions

of the bodies Tp(µ) under additional assumptions on the measure µ. A natural class of measures, that was

already considered in [26], is the class of α-regular or α-strongly regular measures, which is broader than

the class of centered log-concave probability measures. We say that µ is α-regular if y 7→ ‖〈·, y〉+‖L1(µ) is

bounded on Sn−1 and

‖〈·, y〉+‖L2p(µ) 6 2α ‖〈·, y〉+‖Lp(µ)

for every y ∈ Rn and any p > 1, and that µ is α-strongly regular if it satisfies the stronger condition

‖〈·, y〉+‖Lq(µ) 6
αq

p
‖〈·, y〉+‖Lp(µ)

for every y ∈ Rn and any q > p > 1, where a+ = max{a, 0}. We introduce the family {Z+
p (µ)}p>1 of

nonsymmetric Lp-centroid bodies and the family {Bp(µ)}p>0 of the level sets of the Cramér transform of an

α-strongly regular measure µ on Rn, and show that the three families are equivalent up to absolute constants.
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Theorem 1.4. Let µ be an α-regular Borel probability measure on Rn. If 0 is a center point for µ then for

every p > 1
2 ln(2eα) ln(n+ 1) we have that

Z+
p (µ) ⊆ 2T2 ln(2eα)p(µ).

Moreover, if µ is α-strongly regular then Tp(µ) ⊆ Bp(µ) ⊆ 2Z+
c1αp(µ) for every p > 1, where c1 > 0 is an

absolute constant.

We close Section 4 with a brief discussion of analogous, more precise, results when the measure µ is

assumed log-concave or s-concave (see Section 2 for background information).

Computing the volume of the Lp-centroid bodies of a probability measure µ is possible if we assume that

µ has a bounded density. We obtain a lower bound, using the family {Kp(µ)}p>0 of K. Ball’s star bodies

associated with µ in order to reduce ourselves to the same question for a star body from this family, and

then employing the Lp-affine isoperimetric inequality of Lutwak, Yang and Zhang [38], and more precisely

its refined version by Haberl and Schuster from [27].

We say that a Borel probability measure µ on Rn belongs to the class Pn if it has a bounded density fµ,

the set Kfµ = {fµ > 0} is convex and has 0 in its interior, and the restriction of fµ to Kfµ is continuous.

For the next theorem we need to assume that µ ∈ Pn.

Theorem 1.5. Let µ be a probability measure on Rn which belongs to the class Pn. Then,

voln(Z+
p (µ))1/n > c‖fµ‖−1/n∞

√
p/n

for every 1 6 p 6 n, where Z+
p (µ) is the nonsymmetric Lp-centroid body of µ and c > 0 is an absolute

constant.

Theorem 1.4 and Theorem 1.5 allow us to state and prove a general theorem about the asymptotic shape

of random polytopes with independent vertices that have α-regular distribution.

Theorem 1.6. Let β ∈ (0, 1) and α > 1
2 . Set r(α, β) := 2 ln(2eα)

β and t(α, β) := β
2 ln(2eα) . If µ is an α-regular

probability measure on Rn which has 0 as a center point then for any (n+ 1)1+r(α,β) 6 N 6 en we have that

KN ⊇
1

2
Z+

t(α,β) ln(Nn )
(µ)

with probability greater than 1− exp(− 1
2N

1−βnβ). Moreover, if µ also belongs to the class Pn, then for any

(n+ 1)1+r(α,β) 6 N 6 en we have that

voln(KN )1/n > c
√
t(α, β)‖fµ‖−1/n∞

√
ln(N/n)√

n

with the same probability, where c > 0 is an absolute constant.

In particular, Theorem 1.6 is valid for every centered log-concave probability measure µ on Rn. In this

case, or even in the case of a centered s-concave measures with s ∈
[
− 1

2n+1 , 0
)

, we obtain a more precise

result: for any c1(β)n 6 N 6 en we have that

voln(KN )1/n > c2
√
β‖fµ‖−1/n∞

√
ln(N/n)√

n
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with probability greater than 1− exp(− 1
2N

1−βnβ), where c1(β) > 0 is a constant depending only on β and

c2 > 0 is an absolute constant.

Compared with previous results (from [15] or [26]) this particular case of the theorem has the following

three advantages:

(i) In contrast to [26], the measure µ is not assumed symmetric; it is just centered.

(ii) In contrast to [15] the statement is about the random polytope KN and not about its absolute convex

hull SN .

(iii) The probability estimate is optimal with respect to β, N and n, the one which is obtained in [26].

Under the log-concavity assumption, a reverse inequality is also possible for the expectation of voln(KN )1/n.

Extending ideas from [15] we obtain the following “asymptotic formula” in the range n2 6 N 6 en.

Theorem 1.7. Let µ be a centered log-concave probability measure on Rn. Then, for every n2 6 N 6 en

we have that

E
(
voln(KN )1/n

)
≈ E

(
voln(SN )1/n

)
≈
√

lnN√
n

.

We refer to Schneider’s book [45] for classical facts from the Brunn-Minkowski theory and to the book

[2] for an exposition of the main results from asymptotic convex geometry. We also refer to [13] for more

information on isotropic convex bodies and log-concave probability measures.

2 Notation and background information

First we recall some basic notation and definitions from convex geometry. We work in Rn, which is equipped

with the standard inner product 〈·, ·〉. We denote the corresponding Euclidean norm by | · |, and write Bn2
for the Euclidean unit ball, and Sn−1 for the unit sphere. Volume in Rn is denoted by voln. We write ωn for

the volume of Bn2 and σ for the rotationally invariant probability measure on Sn−1. For any u ∈ Rn \ {0}
and α ∈ R we define

H(α, u) = {y ∈ Rn : 〈y, u〉 = α},
H+(α, u) = {y ∈ Rn : 〈y, u〉 > α},
H−(α, u) = {y ∈ Rn : 〈y, u〉 6 α}.

The letters c, c′, c1, c2 etc. denote absolute positive constants whose value may change from line to line.

Whenever we write a ≈ b, we mean that there exist absolute constants c1, c2 > 0 such that c1a 6 b 6 c2a.

Also if A,B ⊆ Rn we shall write A ≈ B if there exist absolute constants c1, c2 > 0 such that c1A ⊆ B ⊆ c2A.

A non-empty set A ⊆ Rn is called star-shaped at the origin if for every x ∈ A and any 0 6 λ 6 1, we have

that λx ∈ A. The radial function ρA : Rn \ {0} → R+ of a star-shaped at the origin set A is the function

ρA(x) = sup{t > 0 : tx ∈ A}. If ρA is continuous and positive on Sn−1, then we say that A is a star body.

The polar set of a star-shaped at the origin set A is

(2.1) A◦ = {x ∈ Rn : 〈x, y〉 6 1 for all y ∈ A}.

A convex body in Rn is a compact convex subset K of Rn with non-empty interior. We say that K is

symmetric if K = −K, and that K is centered if its barycenter bar(K) is at the origin, i.e. if∫
K

〈x, ξ〉 dx = 0
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for every ξ ∈ Sn−1. The support function of K is defined for every y ∈ Rn by hK(y) = max{〈x, y〉 : x ∈ K}.
The volume radius of K is the quantity

vrad(K) =

(
voln(K)

voln(Bn2 )

)1/n

.

Note that ω
1/n
n ≈ 1/

√
n. Therefore, vrad(K) ≈

√
n voln(K)1/n. We also write K for the multiple of K ⊆ Rn

that has volume 1; in other words, K := voln(K)−1/nK.

We say that a Borel probability measure µ on Rn is symmetric if µ(−B) = µ(B) for every Borel subset

B of Rn and that µ is centered if the barycenter bar(µ) =
∫
Rn x dµ(x) of µ is at the origin, i.e.∫

Rn
〈x, ξ〉dµ(x) = 0

for all ξ ∈ Sn−1. Moreover, we say that µ is full-dimensional if µ(H) < 1 for every hyperplane H in Rn.

A Borel measure µ on Rn is called log-concave if it is full-dimensional and

µ(λA+ (1− λ)B) > µ(A)λµ(B)1−λ

for any pair of compact sets A,B in Rn and any λ ∈ (0, 1). Borell [8] has proved that, under these

assumptions, µ has a log-concave density fµ. Recall that a function f : Rn → [0,∞) is called log-concave if

its support {f > 0} is a convex set in Rn and the restriction of ln f to it is concave. The Brunn-Minkowski

inequality implies that if K is a convex body in Rn then the indicator function 1K of K is the density of

a log-concave measure, the Lebesgue measure on K. If µ is symmetric then fµ is even and it follows that

‖fµ‖∞ = fµ(0). On the other hand, Fradelizi [18] has shown that if µ is a centered log-concave probability

measure then ‖fµ‖∞ 6 enfµ(0).

A consequence of Borell’s lemma [13, Lemma 2.4.5] is the fact that for any seminorm f : Rn → R and

any q > p > 1, we have the Kahane-Khintchine inequalities

(2.2) ‖f‖Lp(µ) 6 ‖f‖Lq(µ) 6 C
q

p
‖f‖Lp(µ),

where C > 0 is an absolute constant (see [13, Theorem 2.4.6] for a proof).

For any log-concave measure µ on Rn with density fµ, we define the isotropic constant of µ by

Lµ :=

(
supx∈Rn fµ(x)∫

Rn fµ(x)dx

) 1
n (

det Cov(µ)
) 1

2n ,

where Cov(µ) is the covariance matrix of µ with entries

Cov(µ)ij :=

∫
Rn xixjfµ(x) dx∫

Rn fµ(x) dx
−
∫
Rn xifµ(x) dx∫
Rn fµ(x) dx

∫
Rn xjfµ(x) dx∫
Rn fµ(x) dx

.

A log-concave probability measure µ on Rn is called isotropic if it is centered and Cov(µ) = In, where In is

the identity n × n matrix. Note that if µ is isotropic then Lµ = ‖fµ‖1/n∞ . It is not hard to check that for

every log-concave probability measure µ on Rn there exists an invertible affine transformation G such that

the log-concave probability measure G∗µ defined by

G∗µ(B) = µ(G−1(B))
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is isotropic, and LG∗µ = Lµ.

The hyperplane conjecture asks if there exists an absolute constant C > 0 such that

Ln := max{Lµ : µ is an isotropic log-concave probability measure on Rn} 6 C

for all n > 2. The classical estimates Ln 6 c 4
√
n lnn by Bourgain [10] and, fifteen years later, Ln 6 c 4

√
n

by Klartag [30] remained the best known until 2020. In a breakthrough work, Chen [14] proved that for

any ε > 0 one has Ln 6 nε for all large enough n. This development was the starting point for a series of

important works that culminated in the final affirmative answer to the problem by Klartag and Lehec [31]

after an important contribution of Guan [23]. Soon afterwards, one more proof of the hyperplane conjecture

was presented by Bizeul [5].

We will also consider s-concave measures. We say that a measure µ on Rn is s-concave for some

−∞ 6 s 6 1/n if

(2.3) µ((1− λ)A+ λB) > ((1− λ)µs(A) + λµs(B))1/s

for any pair of compact sets A,B in Rn with µ(A)µ(B) > 0 and any λ ∈ (0, 1). We can also consider

the limiting cases s = 0, where the right-hand side in (2.3) should be interpreted as µ(A)1−λµ(B)λ, and

s = −∞, where the right-hand side in (2.3) becomes min{µ(A), µ(B)}. Note that 0-concave measures are

the log-concave measures and that if µ is s-concave and s′ 6 s then µ is also s′-concave. We shall extend

some of our results to s-concave measures with s ∈ (−∞, 0). These classes of measures are strictly larger

than the class of log-concave measures.

A function f : Rn → [0,∞) is called γ-concave for some γ ∈ [−∞,∞] if

f((1− λ)x+ λy) > ((1− λ)fγ(x) + λfγ(y))1/γ

for all x, y ∈ Rn with f(x)f(y) > 0 and all λ ∈ (0, 1). One can also define the cases γ = 0,+∞ appropriately.

Borell [9] showed that if µ is a measure on Rn and the affine subspace F spanned by the support supp(µ)

of µ has dimension dim(F ) = n then for every −∞ 6 s < 1/n we have that µ is s-concave if and only if

it has a non-negative density f ∈ L1
loc(Rn, dx) which is − 1

α -concave, where − 1
α = s

1−sn , or equivalently,

α = n− 1
s > n.

3 Deterministic interior body of random polytopes

Let µ be a Borel probability measure on Rn. Recall from the introduction that the Tukey half-space depth

with respect to µ is the function defined for any x ∈ Rn by ϕµ(x) = inf{µ(H+) : H+ ∈ H(x)}, where H(x)

is the set of all closed half-spaces H+ of Rn containing x. It is known that ϕµ attains its maximum (see

Lemma 3.1 below) and

(3.1)
1

n+ 1
6 max(ϕµ) 6

1

2

(
1 + sup{µ({x}) : x ∈ Rn}

)
.

The left-hand side inequality is a well-known fact (see Rado [43]): for every Borel probability measure µ on

Rn there exists a point x0 ∈ supp(µ) such that

ϕµ(x0) >
1

n+ 1
.

For the right-hand side inequality of (3.1) see [44, Lemma 1].
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For every p > 0 we define the set

Tp(µ) = {x ∈ Rn : ϕµ(x) > e−p}.

Note that the half-space depth is invariant under affine transformations G of full rank; one can easily see

that ϕG∗µ(G(x)) = ϕµ(x) for every x ∈ Rn. It follows that

Tp(G∗µ) = G(Tp(µ))

for all p > 0.

In the next lemma we collect the basic properties of the family {Tp(µ)}p>0 and provide references for

their proofs.

Lemma 3.1. Let µ be a Borel probability measure on Rn. Define p(µ) by the equation

(3.2) max(ϕµ) = e−p(µ).

Then, Tp(µ) is a non-empty compact convex set for all p > p(µ).

Proof. Let p > p(µ). By the continuity of measure there exists R(p) > 0 such that µ({x ∈ Rn : |x| 6
R(p)}) > 1−e−p. Then, for any x ∈ Rn with |x| > R(p) we have that ϕµ(x) < e−p. This shows that Tp(µ) is

bounded. To see that Tp(µ) is convex, note that if x, y ∈ Tp(µ) then for any z ∈ [x, y] and any H+ ∈ H(z) we

have that either x or y belongs to H+, and hence µ(H+) > min{ϕµ(x), ϕµ(y)} > e−p, therefore ϕµ(z) > e−p,

which implies that z ∈ Tp(µ). Finally, ϕµ is upper-semicontinuous (see [17, Lemma 6.1]), therefore Tp(µ) is

closed.

The fact that the value p(µ) is attained is proved in [44, Proposition 7]. It is also clear from the definition

that {Tp(µ)}p>0 is an increasing family of sets. Therefore, Tp(µ) is a non-empty compact convex set for all

p > p(µ).

Every point x that satisfies ϕµ(x) = e−p(µ) is called a center point for µ. We note that if µ is symmetric,

then 0 is a center point.

Our first main goal in this section is to prove Theorem 1.2, which extends Theorem 1.1 to the case of

an arbitrary Borel probability measure µ on Rn. The proof makes use of the ε-net theorem. In order to

formulate the latter, we need to introduce a number of notions. Let F be a family of subsets of a set Ω.

The Vapnik-Chervonenkis dimension (VC-dimension) of F is the maximal cardinality of a finite set A ⊂ Ω

which is shattered by F , i.e.

{V ∩A : V ∈ F} = 2A.

We also say that a set B ⊂ Ω is a transversal of F if B ∩ V 6= ∅ for all V ∈ F .

We shall use a strong version of the ε-net theorem that was proved by Komlós, Pach and Woeginger

in [32, Theorem 3.2].

Theorem 3.2. Let ε > 0 and F be a family of subsets of a probability space (Ω, µ) such that F has VC-

dimension at most d and µ(V ) > ε for all V ∈ F . Then, for any positive integers M > N we have that N

independent random points X1, . . . , XN distributed according to µ form a transversal of F with probability

greater than

(3.3) 1− 2

(
d∑
i=0

(
M

i

))(
1− N

M

)(M−N)ε−1

.

9



Choosing M =

⌊
εN2

d

⌋
and using the fact that

d∑
i=0

(
M

i

)
6

(
eM

d

)d
, from (3.3) we get the following

corollary of Theorem 3.2, which appears in [40, Lemma 3.2].

Lemma 3.3. Let 0 < ε < 1/e, γ > 2 and d ∈ N. Consider a family F of subsets of a probability space

(Ω, µ) such that F has VC-dimension at most d and µ(V ) > ε for all V ∈ F . Then, for any N > γ d
ε ln 1

ε

we have that N independent random points X1, . . . , XN distributed according to µ form a transversal of F
with probability greater than 1− 4

(
11γ2εγ−2

)d
.

Besides Lemma 3.3 we use the next lemma which provides the exact value of the VC-dimension of the

family of all closed half-spaces that support a compact convex set in Rn.

Lemma 3.4. Let C be a non-empty compact convex set in Rn. Consider the family H(C) of all half-spaces

H+ for which H is a supporting hyperplane of C and C ⊆ H−. Then, the VC-dimension of H(C) is equal

to n.

Proof. First we show that VC(H(C)) > n. We may assume that 0 ∈ C and set m = max{hC(u) : u ∈ Sn−1}.
Note that m > 0. Then, we define r = (1 + m)

√
n and consider the vectors yi = rei, 1 6 i 6 n, where

{e1, . . . , en} is the standard orthonormal basis of Rn. For every σ = (σ1, . . . , σn) ∈ {−1, 1}n we consider the

vector uσ = 1√
n
σ ∈ Sn−1. Then, for every 1 6 i 6 n we have

〈yi, uσ〉 =
1√
n
rσi = (1 +m)σi,

and this implies that

〈yi, uσ〉 > hC(uσ) if σi = 1

while

〈yi, uσ〉 < 0 6 hC(uσ) if σi = −1.

It follows that H(C) shatters the set {y1, . . . , yn}.
It remains to show that VC(H(C)) 6 n. We assume that there exist distinct x1, . . . , xn+1 ∈ Rn such

that H(C) shatters the set A = {x1, . . . , xn+1}. Consider an arbitrary point x ∈ C. Then, x1, . . . , xn+1, x

are affinely dependent, and hence there exist t1, . . . , tn+1, t ∈ R, not all of them equal to 0, such that

t+

n+1∑
i=1

ti = 0 and tx+

n+1∑
i=1

tixi = 0.

Without loss of generality we assume that t > 0. By the definition, the elements of H(C) are the half-spaces

of the form

H+(hC(u), u) = {y ∈ Rn : 〈y, u〉 > hC(u)}, u ∈ Sn−1.

For any 1 6 i 6 n+ 1 and u ∈ Sn−1 we define

gi(u) = 〈xi, u〉 − hC(u).

Therefore, xi ∈ H+(hC(u), u) if and only if gi(u) > 0. Note that, for any u ∈ Sn−1,

(3.4) t(〈x, u〉 − hC(u)) +

n+1∑
i=1

tigi(u) =
〈
tx+

n+1∑
i=1

tixi, u
〉
−

(
t+

n+1∑
i=1

ti

)
hC(u) = 0.
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Assume that there exists 1 6 s 6 n + 1 such that ts > 0. We define I = {1 6 i 6 n + 1 : ti > 0} and

J = {1, . . . , n + 1} \ I. Since H(C) shatters A, we may find u ∈ Sn−1 such that gi(u) < 0 for all i ∈ I and

gi(u) > 0 for all i ∈ J . Then, combining the fact that t(〈x, u〉 − hC(u)) 6 0 (because t > 0 and x ∈ C) with

the fact that tsgs(u) < 0 and tigi(u) 6 0 for all other 1 6 i 6 n+ 1, we see that

t(〈x, u〉 − hC(u)) +

n+1∑
i=1

tigi(u) < 0,

which is a contradiction by (3.4).

This means that ti 6 0 for all 1 6 i 6 n+ 1, and hence t = −
∑n+1
i=1 ti > 0. Then,

x =

n+1∑
i=1

(
− ti
t

)
xi

is a convex combination of x1, . . . , xn+1. Since x ∈ C was arbitrary, we conclude that

C ⊆ conv(A).

This leads to a contradiction. Using again the fact that H(C) shatters A, we can find H+ ∈ H(C) such that

A ∩H+ = ∅. But this implies that C ∩H+ = ∅, which cannot be true because the boundary of H+ is a

supporting hyperplane of C.

Proof of Theorem 1.2. Let p > p(µ) and consider the convex body Tp(µ). Let Fp(µ) be the family of

all closed half-spaces H+(α, u) with the property that H(α, u) is a supporting hyperplane of Tp(µ) and

Tp(µ) ⊆ H−(α, u). From Lemma 3.4 we know that the VC-dimension of Fp(µ) is equal to n.

Note that µ(H+(α, u)) > e−p for all H+(α, u) ∈ Fp(µ). Let N > c1(β)n, where c1(β) is a positive

constant, depending only on β, to be determined. We set p = β ln
(
N
n

)
and define γ by the equation

pγ =
(
N
n

)1−β
. Note that with this choice of p and γ we have that

γ
n

e−p
ln

1

e−p
= pγ epn =

(
N

n

)1−β (
N

n

)β
n = N.

We need to guarantee that

γ =

(
N

n

)1−β /
β ln

(
N

n

)
> 2,

which is certainly true if N > c1(β)n for a large enough positive constant c1(β) depending only on β, because

lim
y→+∞

y1−β/(β ln y) = +∞. We first claim that

(3.5) 44γ2e2p < epγ/2.

By the definition of p and γ, (3.5) is equivalent to the inequality

44

(
N

n

)2−2β
1

β2 ln2
(
N
n

) (N
n

)2β

< exp

(
1

2

(
N

n

)1−β
)
,
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and setting y =
(
N
n

)1−β
we see that the last inequality takes the form

(3.6)
44(1− β)2

β2

y
2

1−β

(ln y)2
< ey/2,

which is clearly true if y > c(β), or equivalently, N > c2(β)n for a suitable constant c2(β) > 0. Now, from

(3.5) we get

4
(
11γ2e−p(γ−2)

)n
6 (44γ2e2pe−pγ)n 6 e−pγn/2

and

(3.7) e−pγn/2 6 e−c1N
1−βnβ

if 1
2pγ = 1

2

(
N
n

)1−β
> c1

(
N
n

)1−β
, which is certainly true if 0 < c1 6 1

2 .

Then, Lemma 3.3 shows that if N > c1(β)n and X1, . . . , XN are independent random points distributed

according to µ then the set B = {X1, . . . , XN} forms a transversal of Fβ ln(Nn )(µ) with probability greater

than 1− exp(− 1
2N

1−βnβ).

Finally, note that if B = {X1, . . . , XN} is a transversal of Fβ ln(Nn )(µ) then

Tβ ln(Nn )(µ) ⊆ conv(B) = KN .

To see this, assume that there exists x ∈ bd(Tβ ln(Nn )(µ))\conv(B). Then, we may find a hyperplane H(β, u)

such that conv(B) ⊆ H−(β, u) and 〈x, u〉 = α > β. We set α0 = max{〈u, z〉 : z ∈ Tβ ln(Nn )(µ)}, which is

attained at some point y ∈ bd(Tβ ln(Nn )(µ)). It is clear that H+(α0, u) ∈ Fβ ln(Nn )(µ) and H+(α0, u)∩B = ∅,
since α0 > α > β. This leads to a contradiction.

Next, we describe the relation between Up(µ) and Tp(µ). A similar result, when µ is assumed symmetric,

appears in [29]. In what follows, for every p > 0 we also define

Vp(µ) = {y ∈ Rn : µ({x ∈ Rn : 〈x, y〉 > 1}) < exp(−p)}

and

Sp(µ) = {x ∈ Rn : ϕµ(x) > e−p}.

Note that Up(µ) and Vp(µ) are star-shaped at the origin for every p > 0.

Proposition 3.5. Let µ be a Borel probability measure on Rn. If 0 is a center point for µ then for every

p > p(µ) we have that

(3.8) Sp(µ) ⊆ (Up(µ))◦ ⊆ Tp(µ).

Proof. Let p > p(µ). It is clear that Vp(µ) ⊆ Up(µ), and hence (Up(µ))◦ ⊆ (Vp(µ))◦. We shall show that

(3.9) Tp(µ) = (Vp(µ))◦,

which proves the right-hand side inclusion of (3.8).

We start with the observation that x ∈ (Vp(µ))◦ if and only if for every y 6= 0 we have the implication

(3.10) µ({z : 〈z, y〉 > 1}) < e−p =⇒ 〈x, y〉 6 1.

12



If we write y = 1
r ξ where r > 0 and ξ ∈ Sn−1 then we see that (3.10) is equivalent to the following statement:

for every r > 0 and ξ ∈ Sn−1,

(3.11) µ({z : 〈z, ξ〉 > r}) < e−p =⇒ 〈x, ξ〉 6 r.

Since 0 is a center point for µ, we also know that, for every r < 0 and ξ ∈ Sn−1,

µ({z : 〈z, ξ〉 > r}) > µ({z : 〈z, ξ〉 > 0}) > ϕµ(0) = e−p(µ) > e−p,

therefore the implication (3.11) continues to hold. In other words, x ∈ (Vp(µ))◦ if and only if for every r ∈ R
and ξ ∈ Sn−1 we have that

(3.12) µ({z : 〈z, ξ〉 > r}) < e−p =⇒ 〈x, ξ〉 6 r.

This is in turn equivalent to the next statement: for any ξ ∈ Sn−1,

(3.13) µ({z : 〈z, ξ〉 > 〈x, ξ〉}) > e−p.

To see this, assume that there exists ξ ∈ Sn−1 such that µ({z : 〈z, ξ〉 > 〈x, ξ〉}) < e−p. Then, we may find

δ > 0 so that µ({z : 〈z, ξ〉 > 〈x, ξ〉 − δ}) < e−p, and applying (3.12) with r = 〈x, ξ〉 − δ we get 〈x, ξ〉 ≤ r,

which implies that δ 6 0, a contradiction. Now, we readily see that (3.13) is equivalent to

ϕµ(x) = inf
ξ∈Sn−1

µ({z : 〈z, ξ〉 > 〈x, ξ〉}) > e−p,

and hence to x ∈ Tp(µ). So, we have proved (3.9).

For the left-hand side inclusion on (3.8) note that if p(µ) 6 q < p then Up(µ) ⊆ Vq(µ), and hence

(Up(µ))◦ ⊇ (Vq(µ))◦ = Tq(µ). It follows that

Sp(µ) =
⋃

p(µ)6q<p

Tq(µ) ⊆ (Up(µ))◦

and the proof of the lemma is now complete.

Remark 3.6. If we assume that µ has a density fµ and D = {fµ > 0} coincides with an open set up to a

Borel null set then we can check that the sets Sp(µ) and Tp(µ) in Proposition 3.5 have the same measure.

This follows from the fact that for every t > 0 the set At := {x ∈ D : ϕµ(x) = t} has voln(At) = 0 and thus

µ(At) = 0. To see this, assume that voln(At) > 0. By Lebesgue’s differentiation theorem, there exists a

density point x0 of At, and we may find r > 0 such that voln(At ∩B(x0, r)) > 2
3voln(B(x0, r)). It is proved

in [33] that ϕµ(x0) is attained for some half-space, i.e. there exists ξ ∈ Sn−1 such that

t = ϕµ(x0) = µ({x ∈ D : 〈x, ξ〉 > 〈x0, ξ〉}).

We set B−(x0, r) = {y ∈ B(x0, r) : 〈y, ξ〉 6 〈x0, ξ〉}. Then,

voln(B−(x0, r)) =
1

2
voln(B(x0, r)) < voln(At ∩B(x0, r)),

and hence we may find y ∈ At ∩B(x0, r) such that 〈y, ξ〉 > 〈x0, ξ〉. Then,

t = ϕµ(x0) = µ({x ∈ D : 〈x, ξ〉 > 〈x0, ξ〉}) > µ({x ∈ D : 〈x, ξ〉 > 〈y, ξ〉}) > ϕµ(y) = t,
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which is a contradiction.

We close this section with a proof of Theorem 1.3.

Proof of Theorem 1.3. Let x ∈ Rn with ϕ := ϕµ(x) > 0. We apply Theorem 3.2 for the family F = H(x)

of all closed half-spaces H with x ∈ H. Lemma 3.4 shows that H(x) has VC-dimension equal to n, and

µ(H) > ϕ for all H ∈ H(x). Then, if we set M = N + N2

n > N we have that N independent random

points X1, . . . , XN distributed according to µ form a transversal of H(x) with probability greater than

1− 2p(n,N, ϕ), where

(3.14) p(n,N, ϕ) =

(
e
nN +N2

n2

)n(
1− nN

nN +N2

)ϕN2

n

.

Set y = 1/ϕ and N = nay(ln y), where a > 1 is a constant to be chosen. If y > e, then (3.14) takes the

simpler form

p(n,N, ϕ) =

[
eay(ln y)(1 + ay(ln y))

(
1− 1

1 + ay ln y

)a2y(ln y)2]n
6
[
2a2ey2(ln y)2 exp (−a(ln y)/2)

]n
.

Now, it is clear that if we choose a = 6 and 1/ϕ = y > c1 where c1 > 1 is an absolute constant, then

p(n,N, ϕ) 6 2−n, and hence we get that with probability greater than 1/2 the random vectors X1, . . . , XN

form a transversal of H(x), which easily implies that x ∈ conv{X1, . . . , XN}. Since our choice of N gives

N = 6ny(ln y) = 6n
ϕ ln(1/ϕ), by the definition of Nµ(x) we see that

Nµ(x) 6
6n

ϕµ(x)
ln (1/ϕµ(x))

if ϕµ(x) 6 c−11 . The result follows with a simple computation for the case ϕµ(x) > c−11 .

Note. Let us add here that a reverse inequality can be obtained in a simple way. If N is an integer that

satisfies 1
2N > ϕµ(x) then there exists ξ ∈ Sn−1 such that µ({y : 〈y − x, ξ〉 6 0}) < 1

2N . It follows that

P(x ∈ conv{X1, . . . , XN}) 6 P

(
N⋃
i=1

{〈Xi − x, ξ〉 6 0}

)
6 NP(〈X − x, ξ〉 6 0) <

1

2
.

Therefore, Nµ(x) > 1
2ϕµ(x)

.

Hayakawa, Lyons and Oberhauser give examples which show that both the upper and the lower bound

in the inequality 1
2 6 Nµ(x)ϕµ(x) 6 3n are tight up to absolute constants, even for small values of ϕµ(x)

(see [29, Remark 4] and [29, Example 35], respectively).

4 Regular and strongly regular measures

Let µ be a Borel probability measure on Rn. In order to apply Theorem 1.2 in concrete situations we need

estimates for the size of the bodies Tp(µ). In this section we compare the body Tp(µ) with the nonsymmetric

Lp-centroid bodies Z+
p (µ) of µ, under some regularity assumptions on the measure µ. The centroid bodies

are easier to handle. For example, as we will see in the next section, we can provide general lower bounds

for their volume.
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For every p > 1 we consider the compact convex set Z+
p (µ) with support function

hZ+
p (µ)(y) =

(∫
Rn
〈x, y〉p+dµ(x)

)1/p

, y ∈ Rn,

where a+ = max{a, 0}, provided that hZ+
p (µ) is bounded on Sn−1.

If A ⊆ Rn is Borel measurable with voln(A) = 1, then for p > 1 we denote Z+
p (A) := Z+

p (µA), where µA
is the uniform measure on A.

Claim 4.1. Let µ be a full-dimensional Borel probability measure on Rn. If Z+
p (µ) is well defined for some

p > 1, then it is a convex body. Moreover, if µ is centered, then 0 ∈ int(Z+
p (µ)).

Proof of Claim 4.1. Since for every ξ ∈ Sn−1, µ({x : 〈x, ξ〉 = 0}) < 1, it is easy to verify that

hZ+
p (µ)(ξ) + hZ+

p (µ)(−ξ) > 0

holds true for every ξ ∈ Sn−1 and thus Z+
p (µ) has non empty interior.

Assuming now that bar(µ) = 0, by the continuity of hZ+
p (µ), it is enough to show that hZ+

p (µ)(ξ) > 0 for

every ξ ∈ Sn−1. Considering otherwise, if hZ+
p (µ)(ξ) = 0 for some ξ ∈ Sn−1, then µ({x : 〈x, ξ〉 6 0}) = 1. So

we must have that ∫
Rn
〈x, ξ〉dµ(x) 6 0.

But the above inequality is an equality, since bar(µ) = 0. This means that µ({x : 〈x, ξ〉 = 0}) = 1, which is

a contradiction.

Definition 4.2. Let µ be a Borel probability measure on Rn. We say that µ is α-regular if Z+
1 (µ) is a

compact convex set and

‖〈·, y〉+‖L2p(µ) 6 2α ‖〈·, y〉+‖Lp(µ)

for every y ∈ Rn and any p > 1. Equivalently, if Z+
2p(µ) ⊆ 2αZ+

p (µ) for every p > 1. We also say that µ is

α-strongly regular if Z+
1 (µ) is a convex body and

‖〈·, y〉+‖Lq(µ) 6
αq

p
‖〈·, y〉+‖Lp(µ)

for every y ∈ Rn and any q > p > 1. Equivalently, if Z+
q (µ) ⊆ αq

p Z+
p (µ) for every q > p > 1. It is clear that

every α-strongly regular Borel probability measure is α-regular.

Every centered log-concave probability measure is C-strongly regular, and hence C-regular, where C > 0

is an absolute constant. Indeed, one can check that if 1 6 p < q then

(4.1)

(
4

e

) 1
p−

1
q

Z+
p (µ) ⊆ Z+

q (µ) ⊆ c1
(

4(e− 1)

e

) 1
p−

1
q q

p
Z+
p (µ).

For a proof see [24].

Proposition 4.3. Let µ be an α-regular Borel probability measure on Rn. Then, for every p > 1 we have

that

Z+
p (µ) ⊆ 2Tg(p)(µ)

where g(p) = max{2 ln(2eα)p, ln(1/ϕµ(0))}.
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Proof. Let x ∈ 1
2Z

+
p (µ). For any ξ ∈ Sn−1 with 〈x, ξ〉 > 0 we have 〈x, ξ〉 6 1

2hZ+
p (µ)(ξ) and hence

µ({z ∈ Rn : 〈z, ξ〉 > 〈x, ξ}) > µ({z ∈ Rn : 〈z, ξ〉 > 1
2hZ+

p (µ)(ξ)}).

We apply the Paley-Zygmund inequality

µ({z : h(z) > 2−pEµ(h)}) > (1− 2−p)2
(
Eµ(h)

)2
Eµ(h2)

>
1

4

(
Eµ(h)

)2
Eµ(h2)

for the function h(z) = 〈z, ξ〉p+. Since µ is α-regular, we see that

Eµ(h2) 6 (2α)2p
(
Eµ(h)

)2
.

Therefore,

µ({z ∈ Rn : 〈z, ξ〉 > 〈x, ξ}) > 1

4
e−2 ln(2α)p > e−2 ln(2α)p−2 > e−2 ln(2eα)p.

On the other hand, if 〈x, ξ〉 < 0 then it is clear that

µ({z ∈ Rn : 〈z, ξ〉 > 〈x, ξ}) > ϕµ(0) = e− ln(1/ϕµ(0)).

This shows that

ϕµ(x) = inf
ξ∈Sn−1

µ({z ∈ Rn : 〈z, ξ〉 > 〈x, ξ}) > exp
(
−max{2 ln(2eα)p, ln(1/ϕµ(0))}

)
and the proposition follows.

For an α-strongly regular measure µ we can also establish the equivalence of the family {Tp(µ)}p>p(µ)
with the family {Bp(µ)}p>0 of the level sets of the Cramér transform of µ. Recall that if µ is a Borel

probability measure on Rn then the log-Laplace transform of µ is defined by

Λµ(ξ) = ln

(∫
Rn
e〈ξ,z〉dµ(z)

)
and the Cramér transform Λ∗µ of µ is the Legendre transform of Λµ, defined by

Λ∗µ(x) = sup
ξ∈Rn

{〈x, ξ〉 − Λµ(ξ)} .

Note that Λ∗µ is a non-negative convex function. For any p > 0 we define

Bp(µ) = {x ∈ Rn : Λ∗µ(x) 6 p}.

From the inequality ϕµ(x) 6 exp(−Λ∗µ(x)) which is a direct consequence of the definitions (see e.g. [12,

Lemma 3.1]) we immediately get the next lemma.

Lemma 4.4. Let µ be a Borel probability measure on Rn. For every p > 0 we have that Tp(µ) ⊆ Bp(µ).

If µ is α-strongly regular then the next proposition establishes a reverse inclusion between the bodies

Bp(µ) and Z+
p (µ) (a variant of this result appears in [34, Proposition 3.5]).
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Proposition 4.5. Let µ be an α-strongly regular probability measure on Rn. Then, for every p > 1 and any

δ ∈ (0, 1] we have that

Bp(µ) ⊆ (1 + δ)Z+
c1αp/δ

(µ)

where c1 > 0 is an absolute constant.

Proof. Let δ ∈ (0, 1], p > 1 and q > 1 that will be suitably chosen (depending on p). For the proof it is

convenient to define the set

W+
p (µ) :=

{
y ∈ Rn :

∫
Rn
〈y, x〉p+dµ(x) 6 1

}
for every p > 1. Note that

Z+
p (µ) = (W+

p (µ))◦.

If y ∈ W+
q (µ) then Hölder’s inequality shows that ‖〈y, ·〉+‖k 6 ‖〈y, ·〉+‖q 6 1 for all k 6 q, and the strong

α-regularity of µ implies that

‖〈y, ·〉+‖k 6
αk

q
‖〈y, ·〉+‖q 6

αk

q

for all k > q. Since k
(k!)1/k

→ e, we may choose a constant γ ≈ 1/α so that αγk
(k!)1/k

6 1
2 for all k > 1. It

follows that ∫
Rn
e〈γqy,x〉+dµ(x) =

∞∑
k=0

1

k!

∫
Rn
〈γqy, x〉k+dµ(x) 6

∑
k6q

(γq)k

k!
+
∑
k>q

(γq)k

k!

(
αk

q

)k
6 eγq +

∑
k>q

1

2k
6 eγq + 1 6 eγq+1.

Therefore, for any y ∈W+
q (µ) we get Λµ(γqy) 6 γq + 1.

Now, let x /∈ (1 + δ)Z+
q (µ). We can find y ∈W+

q (µ) such that 〈x, y〉 > 1 + δ and then

Λ∗µ(x) > 〈x, γqy〉 − Λµ(γqy) > (1 + δ)γq − γq − 1 = δγq − 1 > p

if we assume that q > 2p
γδ . Therefore, x /∈ Bp(µ). This shows that Bp(µ) ⊆ (1 + δ)Z+

c1αp/δ
(µ), where c1 > 0

is an absolute constant.

Combining Proposition 4.3 and Proposition 4.5 we see that if µ is α-strongly regular then the bodies

Z+
p (µ), Tp(µ) and Bp(µ) are equivalent up to constants that do not depend on p.

Theorem 4.6. Let µ be an α-regular Borel probability measure on Rn. If 0 is a center point for µ then for

every p > 1
2 ln(2eα) ln(n+ 1) we have that

(4.2) Z+
p (µ) ⊆ 2T2 ln(2eα)p(µ).

Moreover, if µ is α-strongly regular then Tp(µ) ⊆ Bp(µ) ⊆ 2Z+
c1αp(µ) for every p > 1, where c1 > 0 is an

absolute constant.

Proof. The inclusion of (4.2) follows by the assumption that 0 is a center point for µ, and hence ϕµ(0) >
1

n+1 , which implies that ln(1/ϕµ(0)) 6 ln(n + 1). Therefore, if p > 1
2 ln(2eα) ln(n + 1) then we have that

g(p) = 2 ln(2eα)p in Proposition 4.3.
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Next, we restrict our attention to the class of log-concave probability measures. If µ is a centered log-

concave probability measure on Rn then Grünbaum’s lemma (see [13, Lemma 2.2.6]) shows that µ({z :

〈z, ξ〉 > 0}) > 1/e for every ξ ∈ Sn−1, and hence ln(1/ϕµ(0)) 6 1. We also know that µ is C-regular, by

(4.1). Therefore, Proposition 4.3 implies the following: For every p > 1 we have that

(4.3) Z+
p (µ) ⊆ 2Tcp(µ)

where c > 0 is an absolute constant.

We can also use an alternative approach that gives a more precise version of Theorem 4.6. The next

result, which is essentially due to  Lata la and Wojtaszczyk (see [34, Proposition 3.2]), provides a direct

inclusion relation between the bodies Z+
p (µ) and Bp(µ): If µ is a centered probability measure on Rn then,

for every q > p > p0, where p0 is an absolute constant, we have that

(4.4) Z+
p (µ) ⊆

(
1 +

2 ln q

q

)
Bq(µ).

A proof of this particular statement appears in [21, Proposition 2.5]. Note that the symmetry assumption

on µ (which appears in the work of  Lata la and Wojtaszczyk) is not required. If we make the additional

assumption that µ is log-concave, then we can also compare Bp(µ) with Tp(µ). The next result appears in

[21, Proposition 2.7]: There exists p0 > 1 such that, for every centered log-concave probability measure µ

on Rn and any p > p0,

(4.5) Tp(µ) ⊆ Bp(µ) ⊆ Tp+3 ln p(µ),

where p0 > 1 is an absolute constant. The proof of this fact is based on a theorem of Brazitikos and Chasapis

from [11]: If µ is log-concave then, for every x ∈ supp(µ) and any ε ∈ (0, 1) we have that

(4.6) Λ∗µ(x) > (1− ε) ln

(
1

ϕµ(x)

)
+ ln

( ε

21−ε

)
= ln

(
ε

(2ϕµ(x))1−ε

)
.

Combining these estimates, we get the next proposition.

Proposition 4.7. Let µ be a centered log-concave probability measure on Rn. For every p > p0 we have that

Z+
p (µ) ⊆

(
1 + 2 ln p

p

)
Tp+3 ln p(µ) where p0 > 0 is an absolute constant.

Analogous results may be obtained for s-concave measures. Since the class of s-concave measures on Rn

is decreasing in s, we are interested in the case s < 0 (if s > 0 then every s-concave measure µ is log-concave

and Proposition 4.7 compares Z+
p (µ) with Tp(µ)). It is known (see Bobkov [6]) that if µ is (−1/κ)-concave

for some κ > 0 then the density fµ of µ satisfies fµ(x) 6 C/(1 + |x|n+κ) for all x ∈ Rn. Bobkov also showed

(see [7, Theorem 5.2]) that if µ is centered and (−1/κ)-concave for some κ > 1, then

(4.7)

(
1− 1

κ

)κ
6 µ({x : 〈x, u〉 > 0}) 6 1−

(
1− 1

κ

)κ
for every u ∈ Sn−1. A consequence of [19, Corollary 8] along with the estimate (xB(x, y))

1/x ≈ x
x+y for

every x, y > 1, is that if µ is centered and (−1/κ)-concave for some κ > 2 then for all 1 6 p < q 6 κ− 1 we

have that

(4.8) Z+
p (µ) ⊆ Z+

q (µ) ⊆ C1q

p
Z+
p (µ)
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where C1 > 0 is an absolute constant. In particular, if κ > 3 then

(4.9) Z+
2p(µ) ⊆ 2C1Z

+
p (µ)

for every 1 6 p 6 (κ− 1)/2.

Other interesting cases where one can apply the results of Section 3 appear in [26]. If KN is the random

polytope generated by a random vector X = (ξ1, . . . , ξn) whose coordinates are independent copies of a

q-stable random variable ξ, where 1 6 q < 2, then for any β ∈ (0, 1) and any N > c1(β, q)n we have that

KN ⊇ c2(q)

(
N

n

)β/q
Bnq′

with probability greater than 1 − 2 exp(−c3N1−βnβ), where q′ is the conjugate exponent of q. In the case

q = 1, which corresponds to a Cauchy random variable ξ, we have that

KN ⊇ c3
(
N

n

)β
Bn∞

with the same probability, where Bn∞ = [−1, 1]n is the unit cube. These assertions follow by a direct

computation of the “size” of Tp(µ) where µ is the distribution of X, which is performed in [26]. Note that if

q < 2 then ξ is heavy tailed; in particular, it does not have a finite second moment. This explains the fact

that KN is a much larger set than a “log-concave random polytope”.

5 Centroid bodies of absolutely continuous measures

The starting point of this section is an estimate, essentially due to Lutwak, Yang and Zhang [38], about the

volume of the Lp-centroid bodies of a centered log-concave probability measure µ on Rn. One has

voln(Zp(µ))1/n > c1L
−1
µ

√
p/n > c2

√
p/n

for every 1 6 p 6 n, where c1, c2 > 0 are absolute constants. Here, Lµ is the isotropic constant of µ, and the

second inequality is a consequence of the recent affirmative answer to the hyperplane conjecture.

We discuss similar estimates for the volume of the Lp-centroid bodies of α-regular measures. To this

end, we make use of the family of star-shaped at the origin sets {Kp(µ)}p>0 associated with a probability

measure µ, introduced by K. Ball in [3]. Let f : Rn → [0,∞) be a measurable function such that f(0) > 0.

For any p > 0 we define the set Kp(f) as follows:

Kp(f) =

{
x ∈ Rn :

∫ ∞
0

f(rx)rp−1 dr >
f(0)

p

}
.

From the definition it follows that the radial function of Kp(f) is given by

(5.1) ρKp(f)(x) =

(
1

f(0)

∫ ∞
0

prp−1f(rx) dr

)1/p

for x 6= 0. If µ is a probability measure on Rn which is absolutely continuous with respect to the Lebesgue

measure, with bounded density fµ and such that fµ(0) > 0, then we define

Kp(µ) = Kp(fµ).
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We recall a number of known facts about the bodies Kp(µ), checking that no other assumption on the density

fµ is needed. First of all,

voln(Kn(µ)) =

∫
Kn(µ)

1 dx = nωn

∫
Sn−1

∫ ρKn(µ)(ξ)

0

rn−1drdσ(ξ)

=
nωn
fµ(0)

∫
Sn−1

∫ ∞
0

rn−1fµ(rξ)drdσ(ξ) =
1

fµ(0)

∫
Rn
fµ(x)dx =

1

fµ(0)
,

using (5.1) and integration in spherical coordinates. It is also easily checked, by direct computation, that

for any ξ ∈ Sn−1 and any p > 0 we have

(5.2)

∫
Kn+p(µ)

〈x, ξ〉p+ dx =
1

fµ(0)

∫
Rn
〈x, ξ〉p+ fµ(x) dx.

Finally, we need the next inclusion relation between the bodies Kp(µ).

Lemma 5.1. Let µ be a probability measure on Rn with bounded density fµ such that fµ(0) > 0. If

0 < p 6 q, then

(5.3) Kp(µ) ⊆
(
‖fµ‖∞
fµ(0)

) 1
p−

1
q

Kq(µ).

Proof. The proof is based on the next well-known fact: If f : [0,∞) → [0,∞) is a bounded integrable

function, then

F (p) :=

(
p

‖f‖∞

∫ ∞
0

xp−1f(x) dx

)1/p

is an increasing function of p on (0,∞). Let us briefly recall the proof of this claim: Without loss of generality

we may assume that ‖f‖∞ = 1. Then, for any 0 < p < q and γ > 0, we may write

F (q)q

q
=

∫ ∞
0

xq−1f(x) dx =

∫ γ

0

xq−1f(x) dx+

∫ ∞
γ

xq−1f(x) dx

>
∫ γ

0

xq−1f(x) dx+ γq−p
∫ ∞
γ

xp−1f(x) dx

= γq−p
F (p)p

p
− γq

∫ 1

0

(xp−1 − xq−1)f(γx) dx

> γq−p
F (p)p

p
− γq

(
1

p
− 1

q

)
.

The choice γ = F (p) minimizes the right hand side and shows that F (p) 6 F (q).

Using this claim with f = fµ we see that, for any q > p > 0,

ρKq(µ)(x) =

(
q

fµ(0)

∫ ∞
0

rq−1fµ(rx) dr

)1/q

=

(
‖fµ‖∞
fµ(0)

)1/q (
q

‖fµ‖∞

∫ ∞
0

rq−1fµ(rx) dr

)1/q

=

(
‖fµ‖∞
fµ(0)

)1/q

F (q) >

(
‖fµ‖∞
fµ(0)

)1/q

F (p) =

(
‖fµ‖∞
fµ(0)

)1/q−1/p(‖fµ‖∞
fµ(0)

)1/p

F (p)

=

(
‖fµ‖∞
fµ(0)

)1/q−1/p

ρKp(µ)(x)

20



and the lemma follows.

Note that since voln(Kn(µ)) = 1/fµ(0) > 0, then the above lemma provides that voln(Kq(µ)) > 0 for

every q > n.

The next lemma establishes a close relation between the family of nonsymmetric Lp-centroid bodies of

a probability measure µ and the family of Ball’s sets Kp(µ). Recall that for every star-shaped at the origin

set A ⊂ Rn with voln(A) > 0 we denote by A the set voln(A)−1/nA.

Lemma 5.2. Let µ be a probability measure on Rn with bounded density fµ such that fµ(0) > 0. For every

p > 1,

Z+
p (Kn+p(µ))voln(Kn+p(µ))

1
p+

1
n fµ(0)1/p = Z+

p (µ).

Proof. Let p > 1. From (5.2) we know that∫
Kn+p(µ)

〈x, ξ〉p+ dx =
1

fµ(0)

∫
Rn
〈x, ξ〉p+ fµ(x) dx

for all ξ ∈ Sn−1. Since ∫
Kn+p(µ)

〈x, ξ〉p+ dx = voln(Kn+p(µ))1+
p
n

∫
Kn+p(µ)

〈x, ξ〉p+ dx,

the result follows.

The above discussion reduces the question to obtain a lower bound for the volume of Z+
p (µ) to the

corresponding question for the volume of Z+
p (K) where K is a star-shaped at the origin. When K is a star

body, the latter question has been addressed by Lutwak, Yang and Zhang in [38] for the Lp-centroid bodies

Zp(K), and later in the form that we need by Haberl and Schuster in [27]. If K is a star body in Rn then,

for every 1 6 p <∞, the body M+
p (K) is defined through its support function

hM+
p (K)(y) =

(
cn,p(n+ p)

∫
K

〈x, y〉p+dx
)1/p

,

where

cn,p =
Γ
(
n+p
2

)
π
n−1
2 Γ

(
p+1
2

) .
The normalization of M+

p (K) is chosen so that M+
p (Bn2 ) = Bn2 for every p. Haberl and Schuster [27,

Theorem 6.4] proved that if K is a star body in Rn then, for every p > 1,

voln(K)−
n
p−1voln(M+

p (K)) > voln(Bn2 )−
n
p

with equality if and only if K is a centered ellipsoid in Rn. Since M+
p (K) = (cn,p(n + p))1/pZ+

p (K), we

conclude that if voln(K) = 1 then

voln(Z+
p (K))1/n = (cn,p(n+ p))−1/pvoln(M+

p (K))1/n >

(
1

cn,p(n+ p)ωn

)1/p

.

Taking into account the value of the constant cn,p we can formulate this result in the language that we use:

If K is a star body of volume 1 in Rn then

(5.4) voln(Z+
p (K))1/n > c

√
p/n
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for every 1 6 p 6 n, where c > 0 is an absolute constant.

However, in order to implement the above, we need to ensure that Ball’s sets Kq(µ) are star bodies for

our given measure µ. At this point we shall assume that µ belongs to the class Pn of Borel probability

measures µ on Rn with bounded density fµ such that Kfµ = {fµ > 0} is convex with 0 in its interior and

the restriction of fµ to Kfµ is continuous.

Proposition 5.3. Let µ be a probability measure on Rn that belongs to the class Pn. Then,

voln(Z+
p (µ))1/n > c‖fµ‖−1/n∞

√
p/n

for every 1 6 p 6 n, where c > 0 is an absolute constant.

Proof. Let us assume first that µ is compactly supported. Then, one can easily check that Kq(µ) is a star

body for every q > 0. We know that voln(Kn(µ)) = 1/fµ(0). Let 1 6 p 6 n. Lemma 5.1 shows that

Kn(µ) ⊆
(
‖fµ‖∞
fµ(0)

) p
n(n+p)

Kn+p(µ),

and hence

voln(Kn+p(µ))
1
p+

1
n > voln(Kn(µ))

1
p+

1
n

(
fµ(0)

‖fµ‖∞

) 1
n

= fµ(0)−
1
p ‖fµ‖

− 1
n∞ .

Then, Lemma 5.2 shows that

voln(Z+
p (µ))1/n = voln(Z+

p (Kn+p(µ)))1/nvoln(Kn+p(µ))
1
p+

1
n fµ(0)1/p

> ‖fµ‖
− 1
n∞ voln(Z+

p (Kn+p(µ)))1/n.

Using (5.4) we obtain the result.

Now, in the general case of a measure µ ∈ Pn, for every k ∈ N we define νk to be the probability

measure with density gk = 1
ck
fµ · 1kBn2 , where ck > 0 is a normalization constant. Note that each νk is

compactly supported and belongs to the class Pn. Notice that ck → 1, as k →∞. Then, by the dominated

convergence theorem we have that hZ+
p (νk)

(ξ) → hZ+
p (µ)(ξ), as k → ∞, for every ξ ∈ Sn−1. It follows

that voln(Z+
p (νk)) → voln(Z+

p (µ)), as k → ∞. Using the lower bound for voln(Z+
p (νk)), we conclude the

proof.

Based on the inclusion of Theorem 1.2 we can now deduce a lower bound for the volume of the random

polytope KN .

Theorem 5.4. Let β ∈ (0, 1) and α > 1
2 . Set r(α, β) := 2 ln(2eα)

β and t(α, β) := β
2 ln(2eα) . If µ is an

α-regular probability measure on Rn, which belongs to the class Pn and has 0 as a center point, then for any

(n+ 1)1+r(α,β) 6 N 6 en we have that

voln(KN )1/n > c
√
t(α, β)‖fµ‖−1/n∞

√
ln(N/n)√

n

with probability greater than 1− exp(− 1
2N

1−βnβ), where c > 0 is an absolute constant.

Proof. From Theorem 1.2 we know that if N > c1(β)n then the random polytope KN satisfies

KN ⊇ Tβ ln(Nn )(µ)
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with probability greater than 1−exp(− 1
2N

1−βnβ). Moreover, since µ is α-regular and ln(1/ϕµ(0)) 6 ln(n+1),

Proposition 4.3 shows that for every p > 2 ln(2eα) ln(n+ 1) we have that

Z+
p

2 ln(2eα)
(µ) ⊆ 2Tp(µ).

Define r(α, β) = 2 ln(2eα)
β . If N > (n+ 1)1+r(α,β) and p = β ln

(
N
n

)
then

1

2 ln(2eα)
p >

β

2 ln(2eα)
r(α, β) ln(n+ 1) = ln(n+ 1),

and hence

KN ⊇
1

2
Z+

β
2 ln(2eα)

ln(Nn )
(µ)

with probability greater than 1− exp(− 1
2N

1−βnβ). Note that if (n+ 1)1+r(α,β) 6 N 6 en, then

1 6 ln(n+ 1) 6
p

2 ln(2eα)
=

β

2 ln(2eα)
ln(N/n) 6 ln(N/n) 6 n,

and hence we may apply Proposition 5.3 to get

voln(KN )1/n > c
√
t(α, β)‖fµ‖−1/n∞

√
ln(N/n)√

n

with the same probability, where t(α, β) = β
2 ln(2eα) and c > 0 is an absolute constant.

In the case of log-concave or s-concave measures with s ∈
[
− 1

2n+1 , 0
)

, Theorem 5.4 takes the following

form.

Proposition 5.5. Let β ∈ (0, 1). If µ is a centered Borel probability measure on Rn which is either log-

concave or s-concave, where s ∈
[
− 1

2n+1 , 0
)

, then for any c1(β)n 6 N 6 en we have that

voln(KN )1/n > c2
√
β‖fµ‖−1/n∞

√
ln(N/n)√

n

with probability greater than 1 − exp(− 1
2N

1−βnβ), where c1(β) > 0 is a constant depending only on β and

c2 > 0 is an absolute constant.

Proof. It suffices to assume that µ is (− 1
2n+1 )-concave. At first, it is clear that µ belongs to the class Pn.

Then, by (4.7) we conlcude that

ϕµ(0) >

(
1− 1

2n+ 1

)2n+1

>
1

5
.

Now, taking into account (4.9), an inspection of the proof of Proposition 4.3 shows that

Z+
p (µ) ⊆ 2Tcp(µ)

where c > 1 is an absolute constant, for every 1 6 p 6 n, since 2 ln(2eC1p) > ln(5) > ln(1/ϕµ(0)). So, if we

set p = β ln(Nn ), then

1 6
p

c
6 n

for any c1(β)n 6 N 6 en, if c1(β) is chosen large enough. Then, we follow the proof of Theorem 5.4.
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Assume now that µ is a centered log-concave probability measure on Rn. It was proved in [15] that for

every n 6 N 6 en one has voln(SN )1/n 6 c
√

lnN/
√
n with probability greater than 1/N . We present a

variant of the argument which shows a similar upper bound for the expectation of the volume of SN .

Theorem 5.6. Let µ be a centered log-concave probability measure on Rn. Then, for every n2 6 N 6 en,

one has

(5.5) c1

√
lnN√
n

6 E
(
voln(KN )1/n

)
6 E

(
voln(SN )1/n

)
6 c2

√
lnN√
n

where c1, c2 > 0 are absolute constants.

The starting point is the next general lemma.

Lemma 5.7. Let µ be a probability measure on Rn such that Zp(µ) is a convex body for some p > 1. Then,

for every δ > 1 one has

E
(
σ({ξ : hSN (ξ) > δhZp(µ)(ξ)})

)
6 Nδ−p.

Proof. Let X be a random vector distributed according to µ. For any ξ ∈ Sn−1, Markov’s inequality shows

that P (|〈X, ξ〉| > δ‖〈·, ξ〉‖p) 6 δ−p. Then,

P (hSN (ξ) > δhZp(µ)(ξ)) = P ( max
16j6N

|〈Xj , ξ〉| > δ‖〈·, ξ〉‖p)

6 N P (|〈X, ξ〉| > δ‖〈·, ξ〉‖p) 6 Nδ−p.

Then,

E
(
σ({ξ : hKN (ξ) > δhZp(µ)(ξ)})

)
=

∫
Sn−1

P (hKN (ξ) > δhZp(µ)(ξ)) dσ(ξ) 6 Nδ−p

by Fubini’s theorem.

Now, we make the additional assumption that µ is centered and log-concave. In what follows, for every

symmetric convex body K in Rn and for any q 6= 0 we define

wq(K) =

(∫
Sn−1

hK(ξ)qdσ(ξ)

)1/q

.

Note that w1(K) = w(K) is the mean width of K. The parameters wq(K), q > 1 were introduced and

studied by Litvak, Milman and Schechtman in [35].

Proof of Theorem 5.6. We may assume that µ is isotropic. Set p = lnN 6 n. We start with the observation

that

(5.6) voln(KN )1/n 6 voln(SN )1/n 6
c1√
n
w−p(SN )

for some absolute constant c1 > 0. Indeed, using Hölder’s inequality we write

vrad(S◦N ) =

(∫
Sn−1

1

hnSN (ξ)
dσ(ξ)

)1/n

>

(∫
Sn−1

1

hpSN (ξ)
dσ(ξ)

)1/p

=
1

w−p(SN )
.

Then, the Blaschke-Santaló inequality (see [2, Theorem 1.5.10]) implies that

voln(SN )1/n ≈ 1√
n

vrad(SN ) 6
1√
n

vrad(S◦N )−1 6
c1w−p(SN )√

n
.
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Next, we write

w−p/4(Zp(µ))−p/2 =

∫
Sn−1

1

h
p/4
Zp(µ)

(ξ)
dσ(ξ)

2

6

(∫
Sn−1

1

h
p/2
SN

(ξ)
dσ(ξ)

)∫
Sn−1

h
p/2
SN

(ξ)

h
p/2
Zp(µ)

(ξ)
dσ(ξ)

 ,

which can be rewritten as

(5.7) w−p/2(SN ) =

(∫
Sn−1

1

h
p/2
SN

(ξ)
dσ(ξ)

)−2/p
6 w−p/4(Zp(µ))

∫
Sn−1

h
p/2
SN

(ξ)

h
p/2
Zp(µ)

(ξ)
dσ(ξ)

2/p

.

Now, we estimate the integral

(5.8)

∫
Sn−1

h
p/2
SN

(ξ)

h
p/2
Zp(µ)

(ξ)
dσ(ξ) =

∫ ∞
0

p

2
t
p
2−1
(
σ
(
ξ : hSN (ξ) > thZp(µ)(ξ)

))
dt.

Taking expectations in 5.8 and using Lemma 5.7, we see that

E

∫
Sn−1

h
p/2
SN

(ξ)

h
p/2
Zp(K)(ξ)

dσ(ξ)

 6 ep/2 +

∫ ∞
e

p

2
t
p
2−1Nt−p dt = ep/2 +Ne−p/2 = 2ep/2.

Going back to (5.7) we get

E(w−p/2(SN )) 6 w−p/4(Zp(µ))E

((∫
Sn−1

h
p/2
SN

(ξ)

h
p/2
Zp(µ)

(ξ)
dσ(ξ)

)2/p)
(5.9)

6 w−p/4(Zp(µ))

(
E

(∫
Sn−1

h
p/2
SN

(ξ)

h
p/2
Zp(µ)

(ξ)
dσ(ξ)

))2/p

6 c2w−p/4(Zp(µ))

where c2 > 0 is an absolute constant. Next, recall that if µ is a log-concave probability measure on Rn then,

for any 1 6 q 6 n− 1,

w−q(Zq(µ)) ≈
√
q
√
n
I−q(µ)

where Iq(µ) =
(∫

Rn |x|
q dµ(x)

)1/q
for 0 6= q > −n. This is a result of Paouris from [42]; see also [13,

Theorem 5.3.16]. Note that 1 6 p/4 6 n − 1 because we have assumed that n2 6 N 6 en. Since Zp(µ) ⊆
c3Zp/4(µ) for an absolute constant c3 > 0, we can write

w−p/4(Zp(µ)) 6 c4w−p/4(Zp/4(µ)) 6
c5
√
p

√
n
I−p/4(µ).

Since we have assumed that µ is isotropic, we have I−p/4(µ) 6 I2(µ) =
√
n, and it follows that

w−p/4(Zp(µ)) 6 c6
√
p.
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Combining the last inequality with (5.6) and (5.9) we have

E
(
voln(KN )1/n

)
6 E

(
voln(SN )1/n

)
6
c7
√
p

√
n

= c7

√
lnN√
n

.

The lower bound in (5.5) is an immediate consequence of Proposition 5.5 for β = 1/2 and Markov’s inequality,

taking also into account that ‖fµ‖1/n ≈ 1, as µ is isotropic, and ln(Nn ) > 1
2 lnN , since n2 6 N 6 en.
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