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Abstract

Let {X;}2, be a sequence of independent copies of a random vector X in R™. We revisit the
question to determine the asymptotic shape of the random polytope Ky = conv{Xi,..., Xy} where
N > n. We show that for any 8 € (0,1) there exists a constant ¢(8) > 0 such that the following holds
true: If p is a Borel probability measure on R"™ then, for all N > ¢(8)n we have that Ky 2O TBIH(%)(M)
with probability greater than 1 — exp(—%leﬁn'B), where T, () is the convex set of all points z € R™
with half-space depth greater than or equal to e™”. Our approach does not require any additional
assumptions about the measure p and hence it generalizes and/or improves a sequence of previous
results. Moreover, for the class of strongly regular measures we compare the family {7, (u)}p>0 to other
natural families of convex bodies associated with u, such as the L,-centroid bodies of y or the level sets
of the Cramér transform of p, and use this information in order to estimate the size of a random Kx.

1 Introduction

Let u be a Borel probability measure on R™ and consider a sequence {X;}°; of independent random
vectors distributed according to u. The geometry of the random polytopes Ky = conv{Xy,..., Xy} and
Sy = conv{+X;,...,£Xxn} has been extensively studied in a series of works by several authors. The
following typical result of Gluskin [22] concerns the Gaussian case, where p = v, is the standard Gaussian
measure on R™ with density (27)~™/2 exp(—|z|?/2) (in what follows, | - | denotes the Euclidean norm): For
any $ € (0,1) and N > ¢;(8)n one has that

(1.1) Sn 2 c2(B)v/In(eN/n) By

with probability greater than 1 — 2exp(—c3N'~#n?), where ¢;() are constants that depend only on 3 and
c3 is an absolute positive constant.

This result has been extended in [36] to random polytopes generated by a random vector X = (&1,...,&,)
whose coordinates are independent copies of a random variable £ with expectation E(£) = 0 and variance
Var(§) = 1, that satisfies (E\§|p)1/p < L,/p for some constant L > 0 and every p > 1 (we then say that ¢ is
L-subgaussian). For any 5 € (0,1) and N > ¢1(8, L)n one has that

(1.2) S 2 (8, 1) (B2 1 /In(eN/n) By

with probability greater than 1 — 2exp(—c3N'~#nf). A version of this fact for the special case where the
&’s are symmetric £1 random variables had been previously obtained in [20] for N > n(lnn)? and with
probability greater than 1 —e™".

A general study of the asymptotic shape of random polytopes when their vertices are assumed to have

a log-concave distribution was initiated by Dafnis, Giannopoulos and Tsolomitis in [15] and [16]. Given a



centered log-concave probability measure p on R™, for every N > n we consider N independent random
vectors X1, ..., Xy distributed according to u and the random polytope Sy := conv{+Xy,...,+Xx}. The
main idea in these works was to compare Sy with the L,-centroid body of p for a suitable value of p; roughly
speaking, Sy is close to the body Zi,(en/n) () with high probability. Recall that the L,-centroid bodies
Zp(1), p = 1, are defined through their support function hz,(u) given by

1/p
(1) Pz )= 1l = ([ HenlPauta))

These bodies incorporate information about the distribution of linear functionals with respect to p. The
L,-centroid bodies were introduced, under a different normalization, by Lutwak and Zhang in [37], while in
[41] for the first time, and in [42] later on, Paouris used geometric properties of them to acquire detailed
information about the distribution of the Euclidean norm with respect to u. The starting observation in
[15] was that the deterministic body ,/p By that appears in is approximately equal to Z,(7,) and
the deterministic body Bl N ,/p By that appears in is approximately equal to Z,(v,), where v, is
the uniform measure on the cube. It was proved in [I5] that, given any centered log-concave probability
measure i on R” and any cn < N < €™, the random polytope Sy defined by N independent random vectors
X1,..., Xy which are distributed according to u satisfies the inclusion

(1.4) SN 2 1 Zin(en/n) (1)

with probability greater than
1—2exp (—esN'7Pnf) —P(|T: 65 — 6| = v/N) > 1 — exp(—coyVN),

where I : €3 — ¢5 is the random operator I'(y) = ((X1,%), ... (Xn,y)). The last inequality follows from the
estimate
P(IT: 63 = 6] > 7V/N) < exp(—eyVN)

for all N > yn, that has been obtained in [I].

This approach was further extended to random polytopes with vertices that have an arbitrary symmetric
distribution g on R™. Guédon, Krahmer, Kimmerle, Mendelson and Rauhut introduced in [26] (see also [39]
and the earlier work [25] which was the motivation for [39] and [26]) the family of sets {U,(u)}p>1 defined
by

(1.5) Up(p) ={y € R": p({z € R" : (z,y) > 1}) < exp(—p)}

o

and showed that, under some assumptions on u, the random polytopes Sy and Ky contain % (Up,(n))
with probability close to 1, where A° denotes the polar set of A. Their assumption on g is that there
exists a norm | - || on R™ and some positive constants v,d,r and L such that the small ball condition
pw({x € R™ : |{(z,y)| = vllyll}) = J and the L,.-condition (EM|(-,y>|T)1/T < L||y|| are satisfied for every y € R™.
The main result in [26] asserts that if u is a symmetric Borel probability measure on R™ that satisfies a small
ball condition and an L,-condition with constants -, d,r and L for some norm on R™ then, for any 0 < 5 < 1
there exists a positive constant ¢g := ¢(3, 0,7, L/7) such that if N > con and p = Sln(eN/n) we have

(1.6) Sx 2 3 (Uy(1)°

with probability greater than 1 —2exp(—c; N*~#nf), where ¢; > 0 is an absolute constant. It is explained in



[26] that the same inclusion holds for the random polytope K and that it implies , with the improved
and optimal probability estimate stated above, when p is a centered log-concave probability measure (we
shall discuss and further study the relation between Uy (1) and Z, (1) in Sections [3| and [4).

Let now u be an arbitrary Borel probability measure on R™. For any x € R™ we denote by H(z) the set
of all closed half-spaces H+ of R™ containing x. The function

pu(x) = b {u(HY) : HY € H(x))

(introduced by Tukey in [46]) is the Tukey half-space depth function of pu. Note that the infimum in the
definition of ¢, () is determined by those closed half-spaces H' for which z lies on the boundary bd(H™)
of H*. It is useful to note that the half-space depth function ¢,, attains its maximum and max(yp,) > n%rl
Every point = that satisfies ¢, (z) = max(p,) is called a center point for s.

Hayakawa, Lyons and Oberhauser showed in [29] that, in the case where p is assumed symmetric, an
inclusion which is essentially equivalent to continues to hold even if we do not assume the small ball
condition and the L,-condition for p. They considered the family {T,(u)}p>0 of the level sets of the Tukey

half-space depth ¢,, of x which are defined by
Tp(p) ={z e R" : pu(x) 2 77}
and proved the following.

Theorem 1.1 (Hayakawa-Lyons-Oberhauser). Let p be a symmetric Borel probability measure on R™. Let
1
0< B<1 and set p=BIn(eN/n). Then, if N > (12¢”)T5n we have that

(L.7) Ky 2 2T, (n)

N | =

with probability greater than 1 — 2exp(—ce P N'=8nf), where ¢ > 0 is an absolute constant.

It was also proved in [29] that if i is a symmetric Borel probability measure then T, () is “essentially”
the polar set of Up(u). Therefore, Theoremimplies the main result of [26]. Namely, for to hold, we
do not have to assume the small ball condition or the L,-condition for u. In Proposition [3.5 we show that
(Up(p))° C Tp(p) for any (not necessarily symmetric) probability measure which is “translated” in such a
way that the origin is a center point.

The proof of Theorem involves some sharp estimates connecting the Tukey half-space depth function
¢, with the parameters py,,(z) = P(z € Ky) and Ny(z) = min {N € N: py ,(x) > 5 }. It is proved in [29,
Proposition 13] that

(1.8) 1 —pyu(z) < (W exp { (SO:(CE) In— ;u(x)) (1 + pul@) — 1\7@5(33)) }>n

1
@u(z)

for every N > n/p,(z). Since $In 11 > 1 for all t € (0,1), if we assume that % > + 1 then we may

use the simpler bound

(19) =) < (28 e (14 4,0 - X))

n

This is the main estimate in [29], which is essential for the proof of Theorem Another main consequence



of (1.8) is the fact that one can relate N,(x) and ¢, (x) as follows:

<[ 2]

an inequality that holds true for any n-dimensional probability measure p and any x (see [29, Theorem 16]).

Our contribution. Our first main result states that one can have the assertion of Theorem [[.T] without
the assumption of symmetry for the measure pu.

Theorem 1.2. For any € (0,1) there exists a constant ¢(5) > 0 such that the following holds true. If u
is a Borel probability measure on R™ then, for every N > c¢(f8)n we have that

Kn 2 Ty (1)
with probability greater than 1 — exp(—%Nl_Bnﬂ).

Our proof of Theorem [1.2] which is valid in full generality, is based on the e-net theorem of Haussler
and Welzl [28] which we introduce and discuss in Section [3] We use a sharp version of the e-net theorem
that has been used by Naszddi for questions related to random polytopes. It is due to Komlds, Pach and
Woeginger, see [32, Theorem 3.2]. We will actually exploit a simplified form of this theorem that appears in
[40, Lemma 3.2].

It is interesting to note that Theorem is in a sense equivalent to the inequality . We present
a very simple argument, which is again based on the e-net theorem, showing that an inequality similar to
(L.10), but slightly weaker, holds true in full generality.

Theorem 1.3. Let p be a Borel probability measure on R™. For every x € R™ we have that

@u(x)

Nyu(z) < (1+1In(1/¢u(x)))

where ¢ > 0 is an absolute constant.

Theorem is the most general in the series of results that we have discussed and hence we may deduce
very general versions of all the consequences that have appeared in earlier works. Concrete applications
of the theorem require computing and estimating the size of the bodies T}, (p) for an individual probability
measure u, which is not a simple task. In Section [ we give equivalent and more convenient descriptions
of the bodies T}, (1) under additional assumptions on the measure p. A natural class of measures, that was
already considered in [26], is the class of a-regular or a-strongly regular measures, which is broader than
the class of centered log-concave probability measures. We say that p is a-regular if y — |[{-,y) 1 |[L1(y) is
bounded on S”~! and

19 llzor ) < 201G 9) 4l
for every y € R™ and any p > 1, and that u is a-strongly regular if it satisfies the stronger condition
aq

¢ )+ e < > IG5 y) Ml e

for every y € R and any ¢ > p > 1, where a; = max{a,0}. We introduce the family {ZF (u)}p>1 of
nonsymmetric L,-centroid bodies and the family {B,(x)}p>o of the level sets of the Cramér transform of an
a-strongly regular measure g on R”, and show that the three families are equivalent up to absolute constants.



Theorem 1.4. Let p be an a-regular Borel probability measure on R™. If 0 is a center point for u then for

every p = m In(n + 1) we have that

Z;r(.u’) - 2T2 ln(2eo¢)p(:u)'

Moreover, if p is a-strongly regular then T,(n) C By(u) C 22t (1) for every p > 1, where ¢; > 0 is an

ciap
absolute constant.

We close Section [] with a brief discussion of analogous, more precise, results when the measure p is
assumed log-concave or s-concave (see Section [2 for background information).

Computing the volume of the L,-centroid bodies of a probability measure p is possible if we assume that
w has a bounded density. We obtain a lower bound, using the family {K,(x)},>0 of K. Ball’s star bodies
associated with p in order to reduce ourselves to the same question for a star body from this family, and
then employing the L,-affine isoperimetric inequality of Lutwak, Yang and Zhang [38], and more precisely
its refined version by Haberl and Schuster from [27].

We say that a Borel probability measure u on R™ belongs to the class Py, if it has a bounded density f,,
the set Ky, = {f, > 0} is convex and has 0 in its interior, and the restriction of f, to Ky, is continuous.
For the next theorem we need to assume that p € P,.

Theorem 1.5. Let p be a probability measure on R™ which belongs to the class P,. Then,

volu(Z ()" > el full /" V/p/n

for every 1 < p < n, where Z;(u) is the nonsymmetric L,-centroid body of 1 and ¢ > 0 is an absolute
constant.

Theorem [T.4] and Theorem [I.5]allow us to state and prove a general theorem about the asymptotic shape
of random polytopes with independent vertices that have a-regular distribution.

Theorem 1.6. Let 5 € (0,1) and a > % Set r(a, B) := % and t(a, B) := % If 11 is an a-reqular
probability measure on R™ which has 0 as a center point then for any (n+ 1)1‘”(0"5) < N < e™ we have that

1
o gt
Ky 2 2Zt(aﬁ>1n(%)(“)

with probability greater than 1 — exp(—%Nl_ﬂnB). Moreover, if p also belongs to the class Py, then for any
(n+ D)H(@B) < N < e we have that

Vol (K )17 3 e/ B 2 Y

with the same probability, where ¢ > 0 s an absolute constant.

In particular, Theorem is valid for every centered log-concave probability measure p on R™. In this

1

—mﬂ , we obtain a more precise

case, or even in the case of a centered s-concave measures with s €

result: for any ¢;(8)n < N < e™ we have that

In(N/n)

vol, (Kn)'™ = ean/B full ™ NG



with probability greater than 1 — exp(—%NlﬁBnﬁ), where ¢1 () > 0 is a constant depending only on 8 and
co > 0 is an absolute constant.

Compared with previous results (from [I5] or [26]) this particular case of the theorem has the following
three advantages:

(i) In contrast to [26], the measure u is not assumed symmetric; it is just centered.

(ii) In contrast to [15] the statement is about the random polytope Ky and not about its absolute convex
hull Sy.

(iii) The probability estimate is optimal with respect to S, N and n, the one which is obtained in [26].

Under the log-concavity assumption, a reverse inequality is also possible for the expectation of vol,, (K N)l/ ",

Extending ideas from [I5] we obtain the following “asymptotic formula” in the range n? < N < e™.

Theorem 1.7. Let i be a centered log-concave probability measure on R™. Then, for every n? < N < e”

B(vola (x) 1) & E(voly(55)1/7) ~ Y.

NG

we have that

We refer to Schneider’s book [45] for classical facts from the Brunn-Minkowski theory and to the book
[2] for an exposition of the main results from asymptotic convex geometry. We also refer to [I3] for more
information on isotropic convex bodies and log-concave probability measures.

2 Notation and background information

First we recall some basic notation and definitions from convex geometry. We work in R™, which is equipped
with the standard inner product (-,-). We denote the corresponding Euclidean norm by | - |, and write B
for the Euclidean unit ball, and S™~! for the unit sphere. Volume in R” is denoted by vol,,. We write w,, for
the volume of B and o for the rotationally invariant probability measure on S™~!. For any u € R™ \ {0}
and a € R we define

H(a,u) ={y € R": (y,u) = a},
H+(a,u) ={y eR": (y,u) > a},
H™(0,u) = {y € R" : (y,u) < a}.

The letters ¢, c’, c1, co etc. denote absolute positive constants whose value may change from line to line.
Whenever we write a =~ b, we mean that there exist absolute constants cq,cy > 0 such that cia < b < coa.
Also if A, B C R™ we shall write A ~ B if there exist absolute constants ¢y, co > 0 such that c;A C B C ¢y A.

A non-empty set A C R" is called star-shaped at the origin if for every € A and any 0 < A < 1, we have
that Az € A. The radial function p4 : R™\ {0} — RT of a star-shaped at the origin set A is the function
pa(z) = sup{t > 0: tz € A}. If p4 is continuous and positive on S"~1, then we say that A is a star body.
The polar set of a star-shaped at the origin set A is

(2.1) A°={z eR": (z,y) < lforally € A}.

A convex body in R™ is a compact convex subset K of R™ with non-empty interior. We say that K is
symmetric if K = —K, and that K is centered if its barycenter bar(K) is at the origin, i.e. if

/K(:c,de:O
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for every ¢ € S"~1. The support function of K is defined for every y € R™ by hg(y) = max{(z,y) : v € K}.
The volume radius of K is the quantity

yrad(K) = (%)”".

Note that wy/™ ~ 1/y/n. Therefore, vrad(K) ~ y/nvol, (K)/™. We also write K for the multiple of K C R™
that has volume 1; in other words, K := vol, (K)™ /" K.

We say that a Borel probability measure g on R™ is symmetric if u(—B) = p(B) for every Borel subset
B of R™ and that p is centered if the barycenter bar(u) = [, x du(x) of p is at the origin, i.e.

[ @ duta) =0

for all £ € S"~1. Moreover, we say that p is full-dimensional if u(H) < 1 for every hyperplane H in R™.
A Borel measure p on R™ is called log-concave if it is full-dimensional and

A+ (1= X)B) > u(A) u(B)'

for any pair of compact sets A, B in R™ and any A € (0,1). Borell [§] has proved that, under these
assumptions, p has a log-concave density f,. Recall that a function f: R™ — [0, 00) is called log-concave if
its support {f > 0} is a convex set in R™ and the restriction of In f to it is concave. The Brunn-Minkowski
inequality implies that if K is a convex body in R™ then the indicator function 1k of K is the density of
a log-concave measure, the Lebesgue measure on K. If y is symmetric then f,, is even and it follows that
| fulloo = f.(0). On the other hand, Fradelizi [I8] has shown that if ;s is a centered log-concave probability
measure then || f,|o < e fu(0).

A consequence of Borell’s lemma [I3, Lemma 2.4.5] is the fact that for any seminorm f : R” — R and
any q > p > 1, we have the Kahane-Khintchine inequalities

q
(2.2) 1 lzr o < WA lleogn < CT1A e o,

where C' > 0 is an absolute constant (see [I3, Theorem 2.4.6] for a proof).
For any log-concave measure p on R™ with density f,,, we define the isotropic constant of p by

(WP L@\
L (fRnfu(x)dCU) (dtc (M)) ’

where Cov(u) is the covariance matrix of p with entries

Cov(p)ij == f]Rn wixj fu(x) de 7 fR" z; fu(z) dz fRn zjfu(x) de
v Jon fu(z) dz Jn fu@)de  [o, fu(z)de

A log-concave probability measure p on R™ is called isotropic if it is centered and Cov(p) = I,,, where I, is
the identity n x n matrix. Note that if 4 is isotropic then L, = ||fu||é</)" It is not hard to check that for

every log-concave probability measure p on R™ there exists an invertible affine transformation G such that
the log-concave probability measure G, u defined by

G.pu(B) = n(G~1(B))



is isotropic, and Lg,, = L.
The hyperplane conjecture asks if there exists an absolute constant C' > 0 such that

L, :=max{L, : p is an isotropic log-concave probability measure on R"} < C

for all n > 2. The classical estimates L, < c¥/nlnn by Bourgain [I0] and, fifteen years later, L, < c¢¢/n
by Klartag [30] remained the best known until 2020. In a breakthrough work, Chen [I4] proved that for
any € > 0 one has L,, < n® for all large enough n. This development was the starting point for a series of
important works that culminated in the final affirmative answer to the problem by Klartag and Lehec [31]
after an important contribution of Guan [23]. Soon afterwards, one more proof of the hyperplane conjecture
was presented by Bizeul [5].

We will also consider s-concave measures. We say that a measure g on R™ is s-concave for some
—o0o<s< 1/nif

(2.3) p((1 = NA+AB) > (1= N (A) + Mt (B))

for any pair of compact sets A, B in R™ with u(A)u(B) > 0 and any A € (0,1). We can also consider
the limiting cases s = 0, where the right-hand side in should be interpreted as u(A)'~*u(B)*, and
5§ = —oo, where the right-hand side in becomes min{yu(A), u(B)}. Note that 0-concave measures are
the log-concave measures and that if p is s-concave and s’ < s then pu is also s’-concave. We shall extend
some of our results to s-concave measures with s € (—o00,0). These classes of measures are strictly larger
than the class of log-concave measures.

A function f: R"™ — [0, 00) is called y-concave for some v € [—o0, 0] if

FL =Nz +29) > (1= N (@) + Af7 ()

for all z,y € R™ with f(x)f(y) > 0 and all A € (0,1). One can also define the cases v = 0, 400 appropriately.
Borell [9] showed that if p is a measure on R™ and the affine subspace F' spanned by the support supp(u)
of p has dimension dim(F) = n then for every —oco < s < 1/n we have that p is s-concave if and only if
it has a non-negative density f € L _(R", dx) which is —X-concave, where fé 5

loc o
o="n— % >n.

or equivalently,

1—sn’

3 Deterministic interior body of random polytopes

Let u be a Borel probability measure on R™. Recall from the introduction that the Tukey half-space depth
with respect to y is the function defined for any = € R™ by ¢, (z) = inf{u(H") : H* € H(x)}, where H(z)
is the set of all closed half-spaces H' of R" containing z. It is known that ¢, attains its maximum (see
Lemma 3.1 below) and

1
n+1

(3.1) (1 + sup{u({z}) : z € R"}).

|~

< max(p,) <
The left-hand side inequality is a well-known fact (see Rado [43]): for every Borel probability measure p on
R™ there exists a point xg € supp(p) such that

1
n+1

pulo) =

For the right-hand side inequality of (3.1)) see [44, Lemma 1].



For every p > 0 we define the set
Tp(p) ={z e R": p,(x) > e P}

Note that the half-space depth is invariant under affine transformations G of full rank; one can easily see
that pq, . (G(x)) = pu(x) for every € R™. It follows that

Tp(Gap) = G(Tp(1))

for all p > 0.
In the next lemma we collect the basic properties of the family {T,(x)}p>0 and provide references for
their proofs.

Lemma 3.1. Let u be a Borel probability measure on R™. Define p(u) by the equation
(3.2) max(p,) = e P,
Then, T,(u) is a non-empty compact convex set for all p > p(u).

Proof. Let p > p(p). By the continuity of measure there exists R(p) > 0 such that u({z € R" : |z| <
R(p)}) > 1—e7P. Then, for any x € R” with |z| > R(p) we have that ¢, (z) < e”P. This shows that T),(u) is
bounded. To see that T},(x) is convex, note that if z,y € T),() then for any z € [z,y] and any H' € H(z) we
have that either z or y belongs to H, and hence p(H™) > min{p,(z), o, (y)} = e P, therefore ¢, (z) > e7?,
which implies that z € T,,(u). Finally, ¢, is upper-semicontinuous (see [I7, Lemma 6.1]), therefore T),(u) is
closed.

The fact that the value p(u) is attained is proved in [44l, Proposition 7]. It is also clear from the definition
that {T,(1)}p>0 is an increasing family of sets. Therefore, T), (1) is a non-empty compact convex set for all

p = p(p). O

Every point « that satisfies ¢, (x) = e P is called a center point for p. We note that if ; is symmetric,
then 0 is a center point.

Our first main goal in this section is to prove Theorem which extends Theorem to the case of
an arbitrary Borel probability measure p on R™. The proof makes use of the e-net theorem. In order to
formulate the latter, we need to introduce a number of notions. Let F be a family of subsets of a set Q.
The Vapnik-Chervonenkis dimension (VC-dimension) of F is the maximal cardinality of a finite set A C Q
which is shattered by F, i.e.

{(VNA:VeF} =24

We also say that a set B C ) is a transversal of F if BNV # @ for all V € F.
We shall use a strong version of the e-net theorem that was proved by Komlds, Pach and Woeginger
in [32, Theorem 3.2].

Theorem 3.2. Let € > 0 and F be a family of subsets of a probability space (Q, u) such that F has VC-
dimension at most d and (V') = e for all V € F. Then, for any positive integers M > N we have that N
independent random points Xy, ..., Xy distributed according to u form a transversal of F with probability
greater than

(3.3) 1-2 (é <J‘f>> (1 _ A]\;)(M_N)E_l.



eN2 M eM\*
Choosing M = \‘dJ and using the fact that Z ( ; ) < (d) , from (3.3)) we get the following
i=0

corollary of Theorem [3.2] which appears in [40, Lemma 3.2].

Lemma 3.3. Let 0 < ¢ < 1/e, v > 2 and d € N. Consider a family F of subsets of a probability space
(Q, 1) such that F has VC-dimension at most d and u(V) > € for allV € F. Then, for any N > v g lné
we have that N independent random points X1,..., XN distributed according to u form a transversal of F
with probability greater than 1 — 4(117257_2)d.

Besides Lemma we use the next lemma which provides the exact value of the VC-dimension of the
family of all closed half-spaces that support a compact convex set in R™.

Lemma 3.4. Let C be a non-empty compact convex set in R™. Consider the family H(C) of all half-spaces
HT for which H is a supporting hyperplane of C and C C H~. Then, the VC-dimension of H(C) is equal
ton.

Proof. First we show that VC(H(C')) > n. We may assume that 0 € C and set m = max{h¢c(u) : u € S"71}.
Note that m > 0. Then, we define r = (1 + m)y/n and consider the vectors y; = re;, 1 < i < n, where
{e1,...,en} is the standard orthonormal basis of R". For every o = (01,...,0,) € {—1,1}" we consider the

- L

vector u, = vaid € S?~ 1. Then, for every 1 <17 < n we have

ro; = (]. + m)oh

(Yiruo) = %

and this implies that
i, ug) > ho(uy) ifo; =1

while
<yi7ua> <0 < hC(UU) if g; = —1.

It follows that H(C) shatters the set {y1,...,yn}.

It remains to show that VC(H(C)) < n. We assume that there exist distinct z1,...,z,41 € R™ such
that H(C) shatters the set A = {x1,...,2p41}. Consider an arbitrary point € C. Then, z1,..., i1,
are affinely dependent, and hence there exist ¢1,...,t,4+1,t € R, not all of them equal to 0, such that

n+1 n+1

t—l—ZtZ—:0 and tx—l—Ztixi:O.
i=1 i=1

Without loss of generality we assume that ¢ > 0. By the definition, the elements of H(C) are the half-spaces
of the form
HY (he(u),u) = {y € R™ : (y,u) > he(u)}, uwe S

Forany 1 <i<n+1and u € S" ! we define
gi(u) = {z;,u) — ha(u).
Therefore, x; € H' (hc(u),u) if and only if g;(u) > 0. Note that, for any u € S*~1,

n+1 n+1 ( n+1

(3.4) t({z, u) — he(u)) + Z tigi(u) = <m n Z tixi,u> - Z ti) he(u) = 0.

10



Assume that there exists 1 < s < n+ 1 such that t5 > 0. We define I = {1 <i<n+1:¢t >0} and
J={1,...,n+1}\ I. Since H(C) shatters A, we may find u € S"~! such that g;(u) < 0 for all i € I and
gi(u) = 0 for all ¢ € J. Then, combining the fact that t({z,u) — hc(u)) < 0 (because t > 0 and = € C) with
the fact that ¢59s(u) < 0 and ¢;g;(u) < 0 for all other 1 <i < n+ 1, we see that

n+1

t((x,u) — he(u) + Z tigi(u) <0,

which is a contradiction by (3.4).
This means that t; <0 for all 1 <7< n+1, and hence t = — Z?jll t; > 0. Then,

n+1 ti
=2 (5)=

=1

is a convex combination of x1,...,2,41. Since x € C was arbitrary, we conclude that
C C conv(A).

This leads to a contradiction. Using again the fact that H(C') shatters A, we can find H* € H(C) such that
ANHT = @. But this implies that C N H* = @&, which cannot be true because the boundary of HT is a
supporting hyperplane of C. O

Proof of Theorem[1.2] Let p > p(p) and consider the convex body T,(u). Let F,(u) be the family of
all closed half-spaces H™(a,u) with the property that H(c,u) is a supporting hyperplane of T,(u1) and
T, (1) € H (o, u). From Lemma [3.4] we know that the VC-dimension of F,(p) is equal to n.

Note that u(H* (o, u)) > e7? for all H (o, u) € Fp(p). Let N > ¢1(8)n, where ¢1(8) is a positive
constant, depending only on 3, to be determined. We set p = Sln (%) and define v by the equation

py = (ﬂ)l_ﬂ. Note that with this choice of p and v we have that

1 AN AN
77711 ln—pfyepn—(> <> n=N.
e P eP n n

() ()

which is certainly true if N > ¢1(8)n for a large enough positive constant ¢1 (/) depending only on 3, because

lim y'=#/(BIny) = +oo. We first claim that
y—>—+o00

We need to guarantee that

(3.5) 4472 < e/,

By the definition of p and ~, (3.5]) is equivalent to the inequality

ulN 2-2p 1 N\% 1 /N\'"7"
<n) 521112 (%) (n) < exp 2<n) )

11



and setting y = (%)1_5 we see that the last inequality takes the form

(3.6)

which is clearly true if y > ¢(8), or equivalently, N > co(8)n for a suitable constant ¢o(8) > 0. Now, from

(3.5) we get

4(11726717("/*2))" < (4442e%Pe PN < e~ Pm/2
and

(37) e—p’yn/2 < e—clleﬂnﬁ

if ipy=1 (5)17ﬁ >c (%)175, which is certainly true if 0 < ¢; < 2.

n 2

Then, Lemma shows that if N > ¢;(8)n and X3, ..., Xy are independent random points distributed
according to p then the set B = {X1,..., X} forms a transversal of Fg 1n(ﬂ)(,u) with probability greater

than 1 — exp(—3N'~7n?).

Finally, note that if B = {Xy,..., Xy} is a transversal of F, 1n(,ﬁ)(“) then

Tﬁm(%)(ﬂ) g COHV(B) = KN.

To see this, assume that there exists z € bd(T n(X) (1)) \ conv(B). Then, we may find a hyperplane H (8, u)
such that conv(B) € H~(B,u) and (z,u) = a > B. We set ap = max{(u,z) : z € T, ln(ﬂ)(u)}, which is
attained at some point y € bd(TBln(ﬂ)(,u)). It is clear that H ' (ag,u) € ]-"Bln(ﬂ)(,u) and H' (ap,u)NB =0,

since ag > a > . This leads to a contradiction. O

Next, we describe the relation between U, (u) and T, (u). A similar result, when p is assumed symmetric,
appears in [29]. In what follows, for every p > 0 we also define

Vp(w) ={y e R": p({z € R": (z,y) > 1}) < exp(-p)}

and
Sp(p) ={z e R" : p,(x) > e P}

Note that U,(p) and V() are star-shaped at the origin for every p > 0.

Proposition 3.5. Let u be a Borel probability measure on R™. If 0 is a center point for u then for every
p = p(u) we have that

(3-8) Sp(p) € (Up(p)® € Tp(p)-
Proof. Let p > p(p). It is clear that V(1) € U,(u), and hence (Up())° C (Vp(1))°. We shall show that
(3.9) Tp(p) = (Vo(1))°,

which proves the right-hand side inclusion of (3.8).
We start with the observation that « € (V,(1))° if and only if for every y # 0 we have the implication

(3.10) p{z: (z,y) 2 1}) <e™ = (x,y) < 1.

12



If we write y = %{ where 7 > 0 and ¢ € S"~! then we see that (3.10)) is equivalent to the following statement:
for every » > 0 and £ € S"71,

(3.11) p({z:(z,8) 2r}) <e? = (z,§) <r
Since 0 is a center point for y, we also know that, for every » < 0 and £ € S7~ 1,

p({z (2,8 =rh) = p({z: (2,€) = 0}) > ¢u(0) = e P > 7P,

therefore the implication (3.11)) continues to hold. In other words, x € (V,(r))° if and only if for every r € R
and ¢ € S"~1 we have that

(3.12) p{z:(z8 =2r}) <e? = (8 <

This is in turn equivalent to the next statement: for any & € S,

(3.13) pfz: (2,6 2 (@, = e

To see this, assume that there exists £ € S"~1 such that u({z : (2,&) > (z,€)}) < e7P. Then, we may find

d > 0 so that u({z : (2,&) > (z,£) —0}) < e P, and applying (3.12) with r = (x,&) — ¢ we get (z,&) < r,
which implies that § < 0, a contradiction. Now, we readily see that (3.13) is equivalent to

pula) = inf nl{z: (26 > @) > e,

and hence to & € T,,(p). So, we have proved (3.9)).
For the left-hand side inclusion on (3.8) note that if p(u) < ¢ < p then U,(u) € Vy(u), and hence
(Up(1))° 2 (Va(1))° = Ty(). It follows that

Spw) = |J  Tu(w) € (Up(w))°
p(p)<g<p

and the proof of the lemma is now complete. O

Remark 3.6. If we assume that p has a density f, and D = {f, > 0} coincides with an open set up to a
Borel null set then we can check that the sets S,(p) and T,(u) in Proposition have the same measure.
This follows from the fact that for every ¢t > 0 the set A; := {z € D : ¢, (x) = t} has vol,,(4;) = 0 and thus
u(A) = 0. To see this, assume that vol,(A;) > 0. By Lebesgue’s differentiation theorem, there exists a
density point g of Ay, and we may find r > 0 such that vol,,(A; N B(zo, 7)) = Fvol,(B(wo,7)). It is proved
in [33] that ¢, (zo) is attained for some half-space, i.e. there exists & € S"~! such that

t= pulwo) = pl{z € D: (2,8) > (w0, )}).

We set B~ (z9,7) = {y € B(xo,7) : {y,&) < (x0,§)}. Then,

1
vol, (B~ (zg,r)) = §voln(B(x0,r)) < vol, (A N B(xo, 1)),
and hence we may find y € A; N B(xg, ) such that (y,&) > (xg,&). Then,

t=pu(o) = p{z € D: (2,8) = (20,6)}) > p({z € D : (2,€) = (y,)}) = puly) = ¢,
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which is a contradiction.
We close this section with a proof of Theorem

Proof of Theorem[I.3] Let z € R™ with ¢ := ¢,(z) > 0. We apply Theorem for the family F = H(x)
of all closed half-spaces H with z € H. Lemma shows that 7 (x) has VC-dimension equal to n, and
w(H) > ¢ for all H € H(z). Then, if we set M = N + NT2 > N we have that N independent random
points X7i,..., X distributed according to p form a transversal of H(z) with probability greater than
1 —2p(n, N, ¢), where

N2
nN + N2\" nN o\

Set y = 1/p and N = nay(lny), where a > 1 is a constant to be chosen. If y > e, then (3.14) takes the
simpler form

1 a2y(lny)2 "
p(n, N, ) = |eay(Iny)(1 + ay(Iny)) (1 - 1—|—ay1ny>

< [2a%ey®(Iny)? exp (—a(In y)/2)]n .
Now, it is clear that if we choose a = 6 and 1/ = y > ¢; where ¢; > 1 is an absolute constant, then
p(n, N,¢) < 27", and hence we get that with probability greater than 1/2 the random vectors Xi,..., Xy

form a transversal of H(z), which easily implies that « € conv{Xy,...,Xn}. Since our choice of N gives
N =6ny(lny) = %" In(1/¢), by the definition of N,(x) we see that

6n

In (1/¢u(x))

if ¢, (z) < c;'. The result follows with a simple computation for the case ¢, () > ¢ *. O

Note. Let us add here that a reverse inequality can be obtained in a simple way. If N is an integer that
satisfies 5% > ¢, (x) then there exists £ € S"~! such that p({y : (y — z,£) < 0}) < 7% It follows that

N
P(z € conv{X1,...,Xn}) <P (U{(Xi — 2,8 < o}) < NP((X —2,6) <0) < %

Therefore, N, (z) > Tl(m)'
I
Hayakawa, Lyons and Oberhauser give examples which show that both the upper and the lower bound
in the inequality 3 < N, (z)¢,.(z) < 3n are tight up to absolute constants, even for small values of ¢, (z)

(see [29, Remark 4] and [29, Example 35], respectively).

4 Regular and strongly regular measures

Let © be a Borel probability measure on R™. In order to apply Theorem in concrete situations we need
estimates for the size of the bodies T},(1). In this section we compare the body T}, (1) with the nonsymmetric
L,-centroid bodies Z; (1) of p, under some regularity assumptions on the measure pu. The centroid bodies
are easier to handle. For example, as we will see in the next section, we can provide general lower bounds
for their volume.
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For every p > 1 we consider the compact convex set Z +( ) with support function

1/p
B () = ( / <x,y>idu<x>) . yeRry,

where a; = max{a, 0}, provided that hz+ () is bounded on sn=t,
If A C R" is Borel measurable with vol,(A) = 1, then for p > 1 we denote Z,f (A) := Z, (1a), where p14
is the uniform measure on A.

Claim 4.1. Let p be a full-dimensional Borel probability measure on R™. If Z;{(,u) is well defined for some
p =1, then it is a convex body. Moreover, if v is centered, then 0 € int(Z;(M)).

Proof of Claim[£1] Since for every & € S"~1 u({z : (x,&) = 0}) < 1, it is easy to verify that
hzg (&) + g (=€) >0

holds true for every & € S"~! and thus Zz‘f (1) has non empty interior.

Assuming now that bar(u) = 0, by the continuity of hZ;r(H), it is enough to show that hZ;(M)(f) > 0 for
every £ € S~ 1. Considering otherwise, if hzs (€) = 0 for some & € S" 1 then p({z : (z,£) <0})=1. So
we must have that

/ (o dula) <0,

But the above inequality is an equality, since bar(y) = 0. This means that u({z : (x,&) = 0}) = 1, which is
a contradiction. O

Definition 4.2. Let u be a Borel probability measure on R™. We say that p is a-regular if Zf'(,u) is a
compact convex set and

1G9+ llzzr gy < 20 01€5 9) 4l r

for every y € R™ and any p > 1. Equivalently, if Z;;(,u) C 2a Z} () for every p > 1. We also say that u is
a-strongly regular if Z;(u) is a convex body and

aq
¢ o)+l naquy < s 19+ ze g

for every y € R™ and any ¢ > p > 1. Equivalently, if Z“‘( ) C % Z‘*‘( ) for every ¢ > p > 1. It is clear that
every a-strongly regular Borel probability measure is a-regular.

Every centered log-concave probability measure is C-strongly regular, and hence C-regular, where C > 0
is an absolute constant. Indeed, one can check that if 1 < p < g then

4\7 dle—1)\7 s
(41) (2) "zZwezwea (M)
For a proof see [24].

Proposition 4.3. Let u be an a-regular Borel probability measure on R™. Then, for every p > 1 we have
that
ZJ () S 2T (1)

where g(p) = max{21In(2ea)p,In(1/¢,(0))}.
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Proof. Let x € %Zp*(,u). For any ¢ € S"~1 with (z,&) > 0 we have (z,£) < %hz;r(u)(f) and hence
W({z € R (2,6) > (2,6)) > ({2 € R : (2,€) > Ly ) ().

We apply the Paley-Zygmund inequality

u({z: h(z) > 27PE,(R)}) > (1 —277)° (Ezgm)

for the function h(z) = (z,£)%.. Since p is a-regular, we see that

E,(h?) < (22)% (E,.(h))".

Therefore,
M({z cR": <Z,§> > <$7£}) > ie—2ln(2a)p > e—21n(2a)p—2 > e—21n(25a)p.

On the other hand, if (z,£) < 0 then it is clear that
iz €R™ < (2,€) > (2.6}) > 9, (0) = e~ 1/2u(0),

This shows that

pula) = _inf p({z €R": (2,8) > (2.€)) > exp ( — max{2In(2ea)p, In(1/£,(0))})

and the proposition follows. O

For an a-strongly regular measure p we can also establish the equivalence of the family {7} (1) }p>p(u)
with the family {B,(u)}p>0 of the level sets of the Cramér transform of u. Recall that if p is a Borel
probability measure on R™ then the log-Laplace transform of y is defined by

M =t [ eauto))

and the Cramér transform A}, of y is the Legendre transform of A, defined by

Ay () = sup {(z,8) = Au(§)}

£ER™
Note that A}, is a non-negative convex function. For any p > 0 we define
By(n) = {z € R : Al(x) < p}.

From the inequality ¢, () < exp(—Aj,(z)) which is a direct consequence of the definitions (see e.g. [12
Lemma 3.1]) we immediately get the next lemma.

Lemma 4.4. Let u be a Borel probability measure on R™. For every p > 0 we have that T,(u) C By(u).

If p is a-strongly regular then the next proposition establishes a reverse inclusion between the bodies
By(p) and Z (p) (a variant of this result appears in [34, Proposition 3.5]).
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Proposition 4.5. Let p be an a-strongly regular probability measure on R™. Then, for every p > 1 and any
§ € (0,1] we have that

By(p) € (1+9) clap/g(ﬂ)

where ¢; > 0 is an absolute constant.

Proof. Let § € (0,1], p > 1 and ¢ > 1 that will be suitably chosen (depending on p). For the proof it is
convenient to define the set

Wi = {vers [ atau <1f

for every p > 1. Note that
Zy (n) = (W, ()"

p

If y € W, (1) then Holder’s inequality shows that [[(y, )4 [lx < [[(y,)+]l¢ < 1 for all & < g, and the strong
a-regularity of p implies that

ak ak
s Y+ lle < — 11Ky, ) +llg < —
q q
for all k > ¢. Since (k,)il/k — e, we may choose a constant v ~ 1/a so that (ko!‘)vlkjk < 4forallk>1. It

follows that

/n e+ qy(z) Zkz'/ vay, x)¥ dp(r) < Z k:' Jrz k( >k

k<q k>q

<6W+22—k <el+1< e
k>q

Therefore, for any y € W' (1) we get A, (vqy) < vq+ 1.
Now, let ¢ (1+0)Z (p). We can find y € W, (u) such that (z,y) > 1+ 0 and then

A () = (2, vqy) — Au(yqy) > (1 +0)yg —vqg—1=6dyq—1=p

if we assume that ¢ > 2p Therefore, x ¢ By(pt). This shows that By(u) C (140)Z O4)/5( u), where ¢; > 0
is an absolute conbtant 0

Combining Proposition and Proposition we see that if p is a-strongly regular then the bodies

Z5 (), Tp(p) and By(p) are equivalent up to constants that do not depend on p.

Theorem 4. 6 Let p be an a-regular Borel probability measure on R™. If 0 is a center point for u then for
every p = W In(n + 1) we have that

(4.2) Z5 (1) € 2T 1n(2ea)p (1)

Moreover, if p is a-strongly regular then Ty(n) C By(u) C 22}, (1) for every p > 1, where ¢; > 0 is an

ciap
absolute constant.

Pmof The inclusion of . follows by the assumption that 0 is a center point for x, and hence ¢, (0) >
n+1, which implies that In(1/¢,(0)) < In(n + 1). Therefore, if p > m In(n 4+ 1) then we have that
g(p) = 21In(2ea)p in Proposition O
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Next, we restrict our attention to the class of log-concave probability measures. If u is a centered log-
concave probability measure on R™ then Griinbaum’s lemma (see [I3, Lemma 2.2.6]) shows that p({z :
(z,€) > 0}) > 1/e for every £ € S"!, and hence In(1/¢,(0)) < 1. We also know that p is C-regular, by
(4.1). Therefore, Proposition implies the following: For every p > 1 we have that

(4.3) Z; (1) € 2Ty ()

where ¢ > 0 is an absolute constant.

We can also use an alternative approach that gives a more precise version of Theorem [4.6] The next
result, which is essentially due to Latala and Wojtaszczyk (see [34, Proposition 3.2]), provides a direct
inclusion relation between the bodies Z (1) and By (u): If p is a centered probability measure on R™ then,
for every q > p = po, where pg is an absolute constant, we have that

2Ing

(4.4) Ziw C (1 ¥ ) By(p).

A proof of this particular statement appears in [21, Proposition 2.5]. Note that the symmetry assumption
on p (which appears in the work of Latala and Wojtaszczyk) is not required. If we make the additional
assumption that u is log-concave, then we can also compare B, (1) with T),(1). The next result appears in
[21, Proposition 2.7]: There exists pg > 1 such that, for every centered log-concave probability measure p
on R™ and any p > po,

(4.5) Tp(p1) € Bp(p) € Tpramp(p),

where pg > 1 is an absolute constant. The proof of this fact is based on a theorem of Brazitikos and Chasapis
from [IT]: If u is log-concave then, for every = € supp(u) and any ¢ € (0,1) we have that

(4.6) Af@) > (1—¢)ln (%1(3@)) +ln (215_5) —In (W) .

Combining these estimates, we get the next proposition.

Proposition 4.7. Let p be a centered log-concave probability measure on R™. For every p > pg we have that

Z5(u) € (1 + 21;17) Tpt3np(p) where pg > 0 is an absolute constant.

Analogous results may be obtained for s-concave measures. Since the class of s-concave measures on R"
is decreasing in s, we are interested in the case s < 0 (if s > 0 then every s-concave measure p is log-concave
and Proposition compares Z, (p) with Tp,(p2)). It is known (see Bobkov [6]) that if u is (—1/k)-concave
for some k > 0 then the density f,, of u satisfies f,(x) < C/(1+ |z|™™") for all z € R™. Bobkov also showed
(see [7, Theorem 5.2]) that if p is centered and (—1/k)-concave for some k > 1, then

(47) (1—1)K’<u<{x:<x,u>>0}><1—(1—1>K'

K K

1/x

for every u € S"1. A consequence of [19, Corollary 8] along with the estimate (xB(x,y)) 71y for

every x,y > 1, is that if u is centered and (—1/k)-concave for some £ > 2 then forall 1 < p<g< k-1 we
have that

(4.8) 2 (1) € Zf () ©
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where C7 > 0 is an absolute constant. In particular, if K > 3 then
(4.9) Z3, (1) € 201 Zf (1)

for every 1 < p < (k—1)/2.

Other interesting cases where one can apply the results of Section [3|appear in [26]. If K is the random
polytope generated by a random vector X = (&1,...,&,) whose coordinates are independent copies of a
g-stable random variable &, where 1 < ¢ < 2, then for any 8 € (0,1) and any N > ¢1(5, ¢)n we have that

B/a
N
Kn 2 ca(q) <n> By,

with probability greater than 1 — 2exp(—c3N 1=Bpp ), where ¢ is the conjugate exponent of ¢. In the case
q = 1, which corresponds to a Cauchy random variable £, we have that

B
N
Ky 23 () BE,
n

with the same probability, where BY = [—1,1]" is the unit cube. These assertions follow by a direct
computation of the “size” of T}, (1) where y is the distribution of X, which is performed in [26]. Note that if
q < 2 then & is heavy tailed; in particular, it does not have a finite second moment. This explains the fact
that K is a much larger set than a “log-concave random polytope”.

5 Centroid bodies of absolutely continuous measures

The starting point of this section is an estimate, essentially due to Lutwak, Yang and Zhang [38], about the
volume of the L,-centroid bodies of a centered log-concave probability measure ; on R™. One has

VOl (Zp()" > ex LT > ex/T

for every 1 < p < n, where c¢;,c2 > 0 are absolute constants. Here, L, is the isotropic constant of 1, and the
second inequality is a consequence of the recent affirmative answer to the hyperplane conjecture.

We discuss similar estimates for the volume of the L,-centroid bodies of a-regular measures. To this
end, we make use of the family of star-shaped at the origin sets {K,(u)}p>0 associated with a probability
measure p, introduced by K. Ball in [3]. Let f : R™ — [0, 00) be a measurable function such that f(0) > 0.
For any p > 0 we define the set K,(f) as follows:

K,(f) = {x €ER": /Ooof(m)rpl dr > f(o)}

p

From the definition it follows that the radial function of K,(f) is given by

(5.1) PK, () (T) = (f(l()) /Oooprplf(m) dr>

for x # 0. If p is a probability measure on R™ which is absolutely continuous with respect to the Lebesgue
measure, with bounded density f,, and such that f,(0) > 0, then we define

1/p

Kp(ﬂ) = Kp(fu)-
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We recall a number of known facts about the bodies K, (1), checking that no other assumption on the density
fu is needed. First of all,

PEy (w)(8)
vol, (K, (u)) = / ldx = nwn/ / r"tdrdo(€)
K, (n) Sn=1.J0

NnWn, 1 1

= Ocr”_l r&)drdo (&) = r)dr = ——
=5y o [y P00 = 5 [ ol =

using (5.1) and integration in spherical coordinates. It is also easily checked, by direct computation, that
for any ¢ € S"~! and any p > 0 we have

p _ ! x, &V ) dx
(5.2) /K et / () fulw) da

Finally, we need the next inclusion relation between the bodies K, ().

Lemma 5.1. Let pu be a probability measure on R™ with bounded density f,, such that f,(0) > 0. If
0 <p<gq, then

(53) K00 € (L) w

Proof. The proof is based on the next well-known fact: If f : [0,00) — [0,00) is a bounded integrable

function, then
D 0 1/p
F(p) := (/ 2P f(x) da?)
1flloe Jo

is an increasing function of p on (0, 00). Let us briefly recall the proof of this claim: Without loss of generality
we may assume that ||f||oc = 1. Then, for any 0 < p < ¢ and v > 0, we may write

F(gq)*
q

:/Oooxq1f(x)dx:/0qu1f(x)dx+waq1f(x)dx

> /Oﬁ/a:q_lf(m)dx—i-wq_p[;o 2P~ f () da

P 1
=B oo [ @t — et pw) do
p 0
O (11,
p p 4q

The choice v = F(p) minimizes the right hand side and shows that F(p) < F(q).
Using this claim with f = f, we see that, for any ¢ > p > 0,

=g | i0e) " =) (g [ )
()" ()" ()™ () "o

1/q-1/p
() e
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and the lemma follows. O

Note that since vol,, (K, (x)) = 1/f.(0) > 0, then the above lemma provides that vol, (K,(u)) > 0 for
every q = n.

The next lemma establishes a close relation between the family of nonsymmetric L,-centroid bodies of
a probability measure p and the family of Ball’s sets K,(1t). Recall that for every star-shaped at the origin
set A C R™ with vol,,(A) > 0 we denote by A the set vol, (4)~/"A.

Lemma 5.2. Let pu be a probability measure on R"™ with bounded density f, such that f,,(0) > 0. For every
p=1,
Zf (B (1)vola (Ko (1)) 7 £ (0117 = Z5 (1),

Proof. Let p > 1. From (5.2) we know that

/[(n+p(ﬂ) (x,§)F dr = 7.00) /Rn (2,68 fu(x)dx

for all £ € S™~1. Since
/ (2,€)0 da = volo(Knsp(u)* % / ()" d,
K7L+p(l’«) Kn+p(/»’«)

the result follows. O

The above discussion reduces the question to obtain a lower bound for the volume of Zf(u) to the
corresponding question for the volume of Z;{ (K) where K is a star-shaped at the origin. When K is a star
body, the latter question has been addressed by Lutwak, Yang and Zhang in [38] for the L,-centroid bodies
Z,(K), and later in the form that we need by Haberl and Schuster in [27]. If K is a star body in R"™ then,
for every 1 < p < 0o, the body M (K) is defined through its support function

1/p
hovet o) () = (Cn,p(ﬂ+p)/ <w,y>idw> :
K

where

_ 2
Cn,p - 71_7];11_‘ (Ll) .

The normalization of M,/ (K) is chosen so that M} (BY) = By for every p. Haberl and Schuster [27,
Theorem 6.4] proved that if K is a star body in R™ then, for every p > 1,

vol, (K) ™% ~tvol, (M

S (K)) = vol,(Bg) ¥

with equality if and only if K is a centered ellipsoid in R". Since M.} (K) = (cpp(n + p))/?PZf (K), we
conclude that if vol,, (K) = 1 then

1 1/p
VOln(Z;_(K))l/n _ (cn,p(n +p))—1/pvoln(M;_(K))l/n = (Cnp(n"'p)wn) :

Taking into account the value of the constant ¢, ;, we can formulate this result in the language that we use:
If K is a star body of volume 1 in R™ then

(5.4) vol, (ZS (K)Y™ = ey/p/n
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for every 1 < p < n, where ¢ > 0 is an absolute constant.

However, in order to implement the above, we need to ensure that Ball’s sets K,(u) are star bodies for
our given measure p. At this point we shall assume that u belongs to the class P, of Borel probability
measures ¢ on R™ with bounded density f, such that Ky, = {f, > 0} is convex with 0 in its interior and
the restriction of f, to Ky, is continuous.

Proposition 5.3. Let p be a probability measure on R™ that belongs to the class P,. Then,
volu(Z ()" = el full /" V/p/n

for every 1 < p < n, where ¢ > 0 is an absolute constant.

Proof. Let us assume first that p is compactly supported. Then, one can easily check that K (u) is a star
body for every ¢ > 0. We know that vol,, (K, (1)) = 1/f.(0). Let 1 < p < n. Lemma shows that

K, (n) C (H;jf(u)o)o) ”("”) Kn—&-p(/‘)a

and hence
fu(0)
[ fiulloo

3=

vl (Kt (1)) >voln<Kn<m>5”< )n=fu<o>;fu||;i.

Then, Lemma [5.2] shows that

1

Vol (Z:F (i)™ = vol(Z; (R (1)) V0L (Ko 1 (1)) 5T £ (0)177
> || full Vol (Zf (Kowpp (1))

Using (5.4) we obtain the result.

Now, in the general case of a measure p € P, for every k € N we define v, to be the probability
measure with density g = é fu- 1By, where ¢, > 0 is a normalization constant. Note that each vy is
compactly supported and belongs to the class P,. Notice that ¢, — 1, as Kk — oo. Then, by the dominated
convergence theorem we have that hZ:(uk)(g) = hgron (€), as k — oo, for every ¢ € S"~L. Tt follows
that vol,(Z, (vk)) — voln(Z,f (1)), as k — oo. Using the lower bound for vol, (Z,f (1)), we conclude the
proof. O

Based on the inclusion of Theorem [I.2] we can now deduce a lower bound for the volume of the random
polytope Kn.

Theorem 5.4. Let § € (0,1) and a > % Set r(a, B) = % and t(a, fB) = W If pis an

a-reqular probability measure on R™, which belongs to the class P, and has 0 as a center point, then for any
(n+ 1)H(@B) < N < e we have that

Voln(KN)l/n = C\/7ml|f“||g°1/n\/ln\(/]?\lfW

with probability greater than 1 — eXp(f%leﬁnﬁ), where ¢ > 0 is an absolute constant.

Proof. From Theorem we know that if N > ¢;(8)n then the random polytope Ky satisfies

Ky 2 Tﬁln(%)(u)
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with probability greater than 1—exp(—4 N'~#n?). Moreover, since 4 is a-regular and In(1/¢,(0)) < In(n+1),
Proposition shows that for every p > 21In(2ea) In(n + 1) we have that

Z7 () C2TH(w).

2Tn(2ea)

Define 7(a, 3) = % If N > (n+ 1)1+ and p = BIn (£) then

L = b T
2 ln(Qea)p ~ 2In(2ea)

(o, B)In(n + 1) = In(n + 1),

and hence 1
Kn2=-Z" , ln(ﬂ)(ll)

21n(2ea)

with probability greater than 1 — exp(—3N'~#n?). Note that if (n + 1)!7(®#) < N < e", then

D B

1<1 1) < _
n(n+1) 2In(2ea)  2In(2eq)

In(N/n) < In(N/n) < n,

and hence we may apply Proposition [5.3] to get

In(N/n
Vol ()17 > ex/ia B)| |/ AR
Vn
with the same probability, where ¢(«, 5) = m and ¢ > 0 is an absolute constant. O

In the case of log-concave or s-concave measures with s € [—ﬁ, 0), Theorem takes the following

form.

Proposition 5.5. Let § € (0,1). If p is a centered Borel probability measure on R™ which is either log-

concave or s-concave, where s € —ﬁ,O), then for any c1(B)n < N < e™ we have that
In(N
vol, (R > ea/Bl 0 S

with probability greater than 1 — eXp(—%Nl_ﬁnB), where ¢1(B) > 0 is a constant depending only on B and
co > 0 is an absolute constant.

Proof. 1t suffices to assume that p is
Then, by (4.7) we conlcude that

(—ﬁ)—concave. At first, it is clear that u belongs to the class P,,.

1 2n+1 1
0)>(1- > 2.
#n(0) ( 2n+1) 5

Now, taking into account (4.9)), an inspection of the proof of Proposition shows that

Zy (1) C 2Tep ()

where ¢ > 1 is an absolute constant, for every 1 < p < n, since 21In(2eCip) > In(5) > In(1/¢,(0)). So, if we
set p = ﬂln(%), then
1

VAN
o3

<n

for any ¢1(8)n < N < e™, if ¢1 () is chosen large enough. Then, we follow the proof of Theorem 5.4 O
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Assume now that p is a centered log-concave probability measure on R™. It was proved in [I5] that for
every n < N < e” one has vol, (Sy)'/" < ¢v/In N/y/n with probability greater than 1/N. We present a
variant of the argument which shows a similar upper bound for the expectation of the volume of Sy.

Theorem 5.6. Let 1 be a centered log-concave probability measure on R™. Then, for every n> < N < e,

one has

vVIn N
Vn

where c1,co > 0 are absolute constants.

vVIin N
Vn

(5.5) ¢ < E(vol, (Kn)'™) < E(vol,(Sn)Y™) < 2

The starting point is the next general lemma.

Lemma 5.7. Let ;1 be a probability measure on R™ such that Z,(u) is a convex body for some p > 1. Then,
for every § > 1 one has

E (0({€ : hsy (€)= 0hz, 0 (©)}) < No.

Proof. Let X be a random vector distributed according to p. For any ¢ € S™~!, Markov’s inequality shows
that P (|(X, &)| = 6][(-,§)llp) < 7P. Then,

P (s (6) > Shz,0(€)) = B (max, (X, > 61,1l

<SNP((X,6)] 2 6l(,)ll,) < N6~

Then,
B (0({6 s haew (€) > Shz,0(OD) = [ Plhaca (€) > Shz, () do(e) < N& ™7

Sn—l
by Fubini’s theorem. O

Now, we make the additional assumption that p is centered and log-concave. In what follows, for every
symmetric convex body K in R™ and for any ¢ # 0 we define

1/q
wlk) = ([ nteras©)
Note that wq(K) = w(K) is the mean width of K. The parameters w,(K), ¢ > 1 were introduced and

studied by Litvak, Milman and Schechtman in [35].

Proof of Theorem[5.6] We may assume that u is isotropic. Set p =In N < n. We start with the observation
that

(5.6) vol, (Kx)Y™ < vol, (Sy)/™ < %w,p(s]v)

for some absolute constant ¢; > 0. Indeed, using Holder’s inequality we write

vrad(S3) = ( /S hgj(g)da@))l/n > ( /S hgj(g)da@))l/p = w_,jsN)

Then, the Blaschke-Santal$ inequality (see [2, Theorem 1.5.10]) implies that

1 1 (S
vol,, (Sn)Y™ ~ — vrad(Sy) < T LP(N).

NG

vrad(S3) ™! <

B

24



Next, we write

1
wpa(Zp (1)) P = — - do(€)
o Jo N (©)
1 hEL ()
< d0(£)> ———do(§) |,
</s By () /s By (€
which can be rewritten as
—2/p /2 2/p
1 hgy ()
5.7 _»2(SN) = ——d Sw_,4(Z —N =" d
(57 wp(Sw) ( | e a<s>> ez | [ TR
Now, we estimate the integral
he2(€) o
6.9 Lo 5 @O = [ 5 (€ ka3 tha, (@)

Zp (1)

Taking expectations in [5.8 and using Lemma we see that

hg’/Q(f) ° D,r
E / —ON 2 do(€) | < eP/? + / itfletfp dt = eP/? + NeP/2 = 2¢P/2,
S e

R (€)

Going back to (5.7) we get

hp/2 2/p
5.9) E(w_p/2<sN>><w_p/4<zp<u>>E<< / n_l,ﬁ%d“@) )
Zp (1)

nE2(©) o
Sw_p/a(Zp(p)) <E</Sn_1 m dff(f))) < cQw_p/a(Zp (1))

where ¢y > 0 is an absolute constant. Next, recall that if p is a log-concave probability measure on R™ then,
forany 1 <g¢g<n-—1,

w-oZ40) = YR 1)

where Io(n) = ([fgn 2] d,u(x))l/q for 0 # ¢ > —n. This is a result of Paouris from [42]; see also [13]
Theorem 5.3.16]. Note that 1 < p/4 < n — 1 because we have assumed that n?2 < N < e™. Since Zp(p) C
c3Z,/4(p) for an absolute constant c3 > 0, we can write

o Z10) < caro_yynZa) < S ya(0).

Since we have assumed that  is isotropic, we have I_, /4 (1) < I2(p) = v/n, and it follows that

w—p/4(Zp(M)) < ¢6/D-
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Combining the last inequality with (5.6)) and (5.9) we have

vin N
N

p
:C7
n

E (vol,, (K n)/™) < E(vol, (Sn)'/") < Cz\ff

The lower bound in ([5.5) is an immediate consequence of Propositionfor B = 1/2 and Markov’s inequality,
taking also into account that || f,[|'/™ ~ 1, as u is isotropic, and In(¥) > 1In N, since n? < N < e™. O
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