Fractional Helly theorem for the diameter of convex sets

Silouanos Brazitikos

Abstract

We provide a new quantitative version of Helly's theorem: there exists an absolute constant $\alpha>1$ with the following property: if $\left\{P_{i}: i \in I\right\}$ is a finite family of convex bodies in \mathbb{R}^{n} with int $\left(\bigcap_{i \in I} P_{i}\right) \neq \emptyset$, then there exist $z \in \mathbb{R}^{n}, s \leqslant \alpha n$ and $i_{1}, \ldots i_{s} \in I$ such that $$
z+P_{i_{1}} \cap \cdots \cap P_{i_{s}} \subseteq c n^{3 / 2}\left(z+\bigcap_{i \in I} P_{i}\right)
$$ where $c>0$ is an absolute constant. This directly gives a version of the "quantitative" diameter theorem of Bárány, Katchalski and Pach, with a polynomial dependence on the dimension. In the symmetric case the bound $O\left(n^{3 / 2}\right)$ can be improved to $O(\sqrt{n})$.

1 Introduction

The purpose of this work is to present a new quantitative versions of Helly's theorem; recall that the classical result asserts that if $\mathcal{F}=\left\{F_{i}: i \in I\right\}$ is a finite family of at least $n+1$ convex sets in \mathbb{R}^{n} and if any $n+1$ members of \mathcal{F} have non-empty intersection then $\bigcap_{i \in I} F_{i} \neq \emptyset$. Variants of this statement have found important applications in discrete and computational geometry. Quantitative Helly-type results were first obtained by Bárány, Katchalski and Pach in [3] (see also [4). In particular, they proved the following volumetric result:

Let $\left\{P_{i}: i \in I\right\}$ be a family of closed convex sets in \mathbb{R}^{n} such that $\left|\bigcap_{i \in I} P_{i}\right|>0$. There exist $s \leqslant 2 n$ and $i_{1}, \ldots, i_{s} \in I$ such that

$$
\begin{equation*}
\left|P_{i_{1}} \cap \cdots \cap P_{i_{s}}\right| \leqslant C_{n}\left|\bigcap_{i \in I} P_{i}\right| \tag{1.1}
\end{equation*}
$$

where $C_{n}>0$ is a constant depending only on n.
The example of the cube $[-1,1]^{n}$ in \mathbb{R}^{n}, expressed as an intersection of exactly $2 n$ closed half-spaces, shows that one cannot replace $2 n$ by $2 n-1$ in the statement above. The optimal growth of the constant C_{n} as a function of n is not completely understood. The bound in [3] was $O\left(n^{2 n^{2}}\right)$ and it was conjectured that one might actually have $C_{n} \leqslant n^{c n}$ for an absolute constant $c>0$. Naszódi [12] has recently proved a volume version of Helly's theorem with $C_{n} \leqslant(c n)^{2 n}$, where $c>0$ is an absolute constant. In fact, a slight modification of Naszódi's argument leads to the exponent $\frac{3 n}{2}$ instead of $2 n$. In [7], relaxing the requirement that $s \leqslant 2 n$ to the weaker one that $s=O(n)$, we were able to improve the exponent to n :

Theorem 1.1 (Brazitikos). There exists an absolute constant $\alpha>1$ with the following property: for every family $\left\{P_{i}: i \in I\right\}$ of closed convex sets in \mathbb{R}^{n}, such that $P=\bigcap_{i \in I} P_{i}$ has positive volume, there exist $s \leqslant \alpha n$ and $i_{1}, \ldots, i_{s} \in I$ such that

$$
\begin{equation*}
\left|P_{i_{1}} \cap \cdots \cap P_{i_{s}}\right| \leqslant(c n)^{n}|P|, \tag{1.2}
\end{equation*}
$$

where $c>0$ is an absolute constant.

Following the terminology of [11], a Helly-type property is (loosely speaking) a property Π for which there exists $m \in \mathbb{N}$ such that if $\left\{P_{i}: i \in I\right\}$ is a finite family of objects such that every subfamily with m elements satisfies Π, then the whole family satisfies Π. Thus, the previous results (in particular, Theorem 1.1) express the fact that the property that "an intersection has large volume" is a Helly-type property for the class of convex sets.

Bárány, Katchalski and Pach studied the question if the property that "an intersection has large diameter" is also a Helly-type property for the class of convex sets. In [3] they gave a first quantitative answer to this question:

Let $\left\{P_{i}: i \in I\right\}$ be a family of closed convex sets in \mathbb{R}^{n} such that diam $\left(\bigcap_{i \in I} P_{i}\right)=1$. There exist $s \leqslant 2 n$ and $i_{1}, \ldots, i_{s} \in I$ such that

$$
\begin{equation*}
\operatorname{diam}\left(P_{i_{1}} \cap \cdots \cap P_{i_{s}}\right) \leqslant(c n)^{n / 2} \tag{1.3}
\end{equation*}
$$

where $c>0$ is an absolute constant.
In the same work the authors conjecture that the bound should be polynomial in n; in fact they ask if $(c n)^{n / 2}$ can be replaced by $c \sqrt{n}$. Relaxing the requirement that $s \leqslant 2 n$, exactly as in [7], we provide a positive answer, although we are not able to achieve a bound of the order of \sqrt{n}.

Starting with the symmetric case, our main result is the next theorem.
Theorem 1.2. Let $\left\{P_{i}: i \in I\right\}$ be a finite family of symmetric convex sets in \mathbb{R}^{n} with int $\left(\bigcap_{i \in I} P_{i}\right) \neq \emptyset$. For every $d>1$ there exist $s \leqslant d n$ and $i_{1}, \ldots i_{s} \in I$ such that

$$
\begin{equation*}
P_{i_{1}} \cap \cdots \cap P_{i_{s}} \subseteq \gamma_{d} \sqrt{n}\left(\bigcap_{i \in I} P_{i}\right) \tag{1.4}
\end{equation*}
$$

where $\gamma_{d}:=\frac{\sqrt{d}+1}{\sqrt{d}-1}$.
The proof of Theorem 1.2 is presented in Section 3; it is based on a lemma of Barvinok from [5] which, in turn, exploits a theorem of Batson, Spielman and Srivastava from [6. It is clear that the \sqrt{n}-dependence cannot be improved (we provide a simple example).

In the general (not necessarily symmetric) case, using a similar strategy and ideas that were developed in [7] and employ a more delicate theorem of Srivastava from [14], we obtain the next estimate.

Theorem 1.3. There exists an absolute constant $\alpha>1$ with the following property: if $\left\{P_{i}: i \in I\right\}$ is a finite family of convex bodies in \mathbb{R}^{n} with $\operatorname{int}\left(\bigcap_{i \in I} P_{i}\right) \neq \emptyset$, then there exist $z \in \mathbb{R}^{n}, s \leqslant \alpha n$ and $i_{1}, \ldots i_{s} \in I$ such that

$$
\begin{equation*}
z+P_{i_{1}} \cap \cdots \cap P_{i_{s}} \subseteq c n^{3 / 2}\left(z+\bigcap_{i \in I} P_{i}\right) \tag{1.5}
\end{equation*}
$$

where $c>0$ is an absolute constant.
It is clear that Theorem 1.2 and Theorem 1.3 imply polynomial estimates for the diameter:
Theorem 1.4. (a) Let $\left\{P_{i}: i \in I\right\}$ be a finite family of symmetric convex sets in \mathbb{R}^{n} with diam $\left(\bigcap_{i \in I} P_{i}\right)=1$. For every $d>1$ there exist $s \leqslant d n$ and $i_{1}, \ldots i_{s} \in I$ such that

$$
\begin{equation*}
\operatorname{diam}\left(P_{i_{1}} \cap \cdots \cap P_{i_{s}}\right) \leqslant \gamma_{d} \sqrt{n} \tag{1.6}
\end{equation*}
$$

where $\gamma_{d}:=\frac{\sqrt{d}+1}{\sqrt{d}-1}$.
(b) There exists an absolute constant $\alpha>1$ with the following property: if $\left\{P_{i}: i \in I\right\}$ is a finite family of convex bodies in \mathbb{R}^{n} with diam $\left(\bigcap_{i \in I} P_{i}\right)=1$, then there exist $s \leqslant \alpha n$ and $i_{1}, \ldots i_{s} \in I$ such that

$$
\begin{equation*}
\operatorname{diam}\left(P_{i_{1}} \cap \cdots \cap P_{i_{s}}\right) \leqslant c n^{3 / 2} \tag{1.7}
\end{equation*}
$$

where $c>0$ is an absolute constant.

2 Notation and background

We work in \mathbb{R}^{n}, which is equipped with a Euclidean structure $\langle\cdot, \cdot\rangle$. We denote by $\|\cdot\|_{2}$ the corresponding Euclidean norm, and write B_{2}^{n} for the Euclidean unit ball and S^{n-1} for the unit sphere. Volume is denoted by $|\cdot|$. We write ω_{n} for the volume of B_{2}^{n} and σ for the rotationally invariant probability measure on S^{n-1}. We will denote by P_{F} the orthogonal projection from \mathbb{R}^{n} onto F. We also define $B_{F}=B_{2}^{n} \cap F$ and $S_{F}=S^{n-1} \cap F$.

The letters $c, c^{\prime}, c_{1}, c_{2}$ etc. denote absolute positive constants which may change from line to line. Whenever we write $a \simeq b$, we mean that there exist absolute constants $c_{1}, c_{2}>0$ such that $c_{1} a \leqslant b \leqslant c_{2} a$. Also, if $K, L \subseteq \mathbb{R}^{n}$ we will write $K \simeq L$ if there exist absolute constants $c_{1}, c_{2}>0$ such that $c_{1} K \subseteq L \subseteq c_{2} K$.

We refer to the book of Schneider [13] for basic facts from the Brunn-Minkowski theory and to the book of Artstein-Avidan, Giannopoulos and V. Milman [1] for basic facts from asymptotic convex geometry.

A convex body in \mathbb{R}^{n} is a compact convex subset K of \mathbb{R}^{n} with non-empty interior. We say that K is symmetric if $x \in K$ implies that $-x \in K$, and that K is centered if its barycenter

$$
\begin{equation*}
\operatorname{bar}(K)=\frac{1}{|K|} \int_{K} x d x \tag{2.1}
\end{equation*}
$$

is at the origin. The circumradius of K is the radius of the smallest ball which is centered at the origin and contains K :

$$
\begin{equation*}
R(K)=\max \left\{\|x\|_{2}: x \in K\right\} . \tag{2.2}
\end{equation*}
$$

If $0 \in \operatorname{int}(K)$ then the polar body K° of K is defined by

$$
\begin{equation*}
K^{\circ}:=\left\{y \in \mathbb{R}^{n}:\langle x, y\rangle \leqslant 1 \text { for all } x \in K\right\} \tag{2.3}
\end{equation*}
$$

and the Minkowski functional of K is defined by

$$
\begin{equation*}
p_{K}(x)=\min \{t \geqslant 0: x \in t K\} \tag{2.4}
\end{equation*}
$$

Recall that p_{K} is subadditive and positively homogeneous.
We say that a convex body K is in John's position if the ellipsoid of maximal volume inscribed in K is the Euclidean unit ball B_{2}^{n}. John's theorem [10] states that K is in John's position if and only if $B_{2}^{n} \subseteq K$ and there exist $v_{1}, \ldots, v_{m} \in \operatorname{bd}(K) \cap S^{n-1}$ (contact points of K and B_{2}^{n}) and positive real numbers a_{1}, \ldots, a_{m} such that

$$
\begin{equation*}
\sum_{j=1}^{m} a_{j} v_{j}=0 \tag{2.5}
\end{equation*}
$$

and the identity operator I_{n} is decomposed in the form

$$
\begin{equation*}
I_{n}=\sum_{j=1}^{m} a_{j} v_{j} \otimes v_{j} \tag{2.6}
\end{equation*}
$$

where $\left(v_{j} \otimes v_{j}\right)(y)=\left\langle v_{j}, y\right\rangle v_{j}$. In the case where K is symmetric, the second condition (2.6) is enough (for any contact point u we have that $-u$ is also a contact point, and hence, having 2.6 we may easily produce a decomposition for which 2.5 is also satisfied). In analogy to John's position, we say that a convex body K is in Löwner's position if the ellipsoid of minimal volume containing K is the Euclidean unit ball B_{2}^{n}. One can check that this holds true if and only if K° is in John position; in particular, we have a decomposition of the identity similar to 2.6 .

Assume that v_{1}, \ldots, v_{m} are unit vectors that satisfy John's decomposition (2.6) with some positive weights a_{j}. Then, one has the useful identities

$$
\begin{equation*}
\sum_{j=1}^{m} a_{j}=\operatorname{tr}\left(I_{n}\right)=n \quad \text { and } \quad \sum_{j=1}^{m} a_{j}\left\langle v_{j}, z\right\rangle^{2}=1 \tag{2.7}
\end{equation*}
$$

for all $z \in S^{n-1}$. Moreover,

$$
\begin{equation*}
\operatorname{conv}\left\{v_{1}, \ldots, v_{m}\right\} \supseteq \frac{1}{n} B_{2}^{n} \tag{2.8}
\end{equation*}
$$

In the symmetric case we actually have

$$
\begin{equation*}
\operatorname{conv}\left\{ \pm v_{1}, \ldots, \pm v_{m}\right\} \supseteq \frac{1}{\sqrt{n}} B_{2}^{n} \tag{2.9}
\end{equation*}
$$

3 Symmetric case

Our main tool for the symmetric case is a lemma of Barvinok from [5], which exploits the next theorem of Batson, Spielman and Srivastava [6] on extracting an approximate John's decomposition with few vectors from a John's decomposition of the identity.
Theorem 3.1 (Batson-Spielman-Srivastava). Let $v_{1}, \ldots, v_{m} \in S^{n-1}$ and $a_{1}, \ldots, a_{m}>0$ such that

$$
\begin{equation*}
I_{n}=\sum_{j=1}^{m} a_{j} v_{j} \otimes v_{j} \tag{3.1}
\end{equation*}
$$

Then, for every $d>1$ there exists a subset $\sigma \subseteq\{1, \ldots, m\}$ with $|\sigma| \leqslant d n$ and $b_{j}>0, j \in \sigma$, such that

$$
\begin{equation*}
I_{n} \preceq \sum_{j \in \sigma} b_{j} a_{j} v_{j} \otimes v_{j} \preceq \gamma_{d}^{2} I_{n} \tag{3.2}
\end{equation*}
$$

where $\gamma_{d}:=\frac{\sqrt{d}+1}{\sqrt{d}-1}$.
Here, given two symmetric positive definite matrices A and B we write $A \preceq B$ if $\langle A x, x\rangle \leqslant\langle B x, x\rangle$ for all $x \in \mathbb{R}^{n}$. Barvinok's lemma is the next statement.

Lemma 3.2 (Barvinok). Let $C \subset \mathbb{R}^{n}$ be a compact set. Then, there exists a subset $X \subseteq C$ of cardinality $\operatorname{card}(X) \leqslant d n$ such that for any $z \in \mathbb{R}^{n}$ we have

$$
\begin{equation*}
\max _{x \in X}|\langle z, x\rangle| \leqslant \max _{x \in C}|\langle z, x\rangle| \leqslant \gamma_{d} \sqrt{n} \max _{x \in X}|\langle z, x\rangle| \tag{3.3}
\end{equation*}
$$

Proof. We sketch the proof for completeness. We may assume that C spans \mathbb{R}^{n} and, by the linear invariance of the statement, that B_{2}^{n} is the origin symmetric ellipsoid of minimal volume containing C. Then, there exist $v_{1}, \ldots, v_{m} \in C \cap S^{n-1}$ and $a_{1}, \ldots, a_{m}>0$ such that (3.1) is satisfied. Then, applying Theorem 3.1 we may find a subset $\sigma \subseteq\{1, \ldots, m\}$ with $\operatorname{card}(\sigma) \leqslant d n$ and $b_{j}>0, j \in \sigma$, such that 3.2 holds true. In particular,

$$
\begin{equation*}
n \leqslant \sum_{j \in \sigma} a_{j} b_{j}=\operatorname{tr}\left(\sum_{j \in \sigma} b_{j} a_{j} v_{j} \otimes v_{j}\right) \leqslant \gamma_{d}^{2} n \tag{3.4}
\end{equation*}
$$

Given $z \in \mathbb{R}^{n}$, from (3.2) and 3.4 we have

$$
\begin{equation*}
\|z\|_{2}^{2} \leqslant \sum_{j \in \sigma} b_{j} a_{j}\left\langle z, v_{j}\right\rangle^{2} \leqslant \gamma_{d}^{2} n \max _{j \in \sigma}\left|\left\langle z, v_{j}\right\rangle\right|^{2} \tag{3.5}
\end{equation*}
$$

and using the fact that $C \subseteq B_{2}^{n}$ we conclude that

$$
\begin{equation*}
\max _{x \in C}|\langle z, x\rangle| \leqslant\|z\| \leqslant \gamma_{d} \sqrt{n} \max _{j \in \sigma}\left|\left\langle z, v_{j}\right\rangle\right| . \tag{3.6}
\end{equation*}
$$

Setting $X=\left\{v_{j}: j \in \sigma\right\}$ we conclude the proof.

Using Barvinok's lemma we can prove Theorem 1.2 .
Proof of Theorem $\mathbf{1 . 2}$, Let $P=\bigcap_{i \in I} P_{i}$ and consider its polar body

$$
\begin{equation*}
P^{\circ}=\operatorname{conv}\left(\bigcup_{i \in I} P_{i}^{\circ}\right) \tag{3.7}
\end{equation*}
$$

Using Lemma 3.2 for $C=P^{\circ}$ we may find $X=\left\{v_{1}, \ldots, v_{s}\right\} \subset P^{\circ}$ with $\operatorname{card}(X)=s \leqslant d n$ such that

$$
\begin{equation*}
\max _{x \in P^{\circ}}|\langle z, x\rangle| \leqslant \gamma_{d} \sqrt{n} \max _{x \in X}|\langle z, x\rangle| \tag{3.8}
\end{equation*}
$$

for all $z \in \mathbb{R}^{n}$. It follows that

$$
\begin{equation*}
P^{\circ} \subseteq \gamma_{d} \sqrt{n} \operatorname{conv}\left(\left\{ \pm v_{1}, \ldots, \pm v_{s}\right\}\right) \tag{3.9}
\end{equation*}
$$

From the proof of Lemma 3.2 we see that v_{1}, \ldots, v_{s} may be chosen to be contact points of P° with its minimal volume ellipsoid, and hence it is simple to check that we actually have $v_{j} \in \bigcup_{i \in I} P_{i}^{\circ}$ for all $j=1, \ldots, s$. In other words, we may find $i_{1}, \ldots, i_{s} \in I$ such that $v_{j} \in P_{i_{j}}, j=1, \ldots, s$. Then, 3.9) implies that

$$
\begin{equation*}
P^{\circ} \subseteq \gamma_{d} \sqrt{n} \operatorname{conv}\left(P_{i_{1}}^{\circ} \cup \cdots \cup P_{i_{s}}^{\circ}\right) \tag{3.10}
\end{equation*}
$$

and passing to the polar bodies, we get

$$
\begin{equation*}
P_{i_{1}} \cap \cdots \cap P_{i_{s}} \subseteq \gamma_{d} \sqrt{n} P \tag{3.11}
\end{equation*}
$$

as claimed.
Remark 3.3. Theorem 1.2 is sharp in the following sense: we can find $w_{1}, \ldots, w_{N} \in S^{n-1}$ (assuming that N is exponential in the dimension n) such that

$$
\begin{equation*}
B_{2}^{n} \subseteq \bigcap_{j=1}^{N} P_{j} \subseteq 2 B_{2}^{n} \tag{3.12}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{j}=\left\{x \in \mathbb{R}^{n}:\left|\left\langle x, w_{j}\right\rangle\right| \leqslant 1\right\} \tag{3.13}
\end{equation*}
$$

For any $s \leqslant d n$ and any choice of $j_{1}, \ldots, j_{s} \in\{1, \ldots, N\}$, well-known lower bounds for the volume of intersections of strips, due to Carl-Pajor [8], Gluskin [9] and Ball-Pajor [2] show that

$$
\begin{equation*}
\left|P_{j_{1}} \cap \cdots \cap P_{j_{s}}\right|^{1 / n} \geqslant \frac{2}{\sqrt{e} \sqrt{\log (1+d)}} \tag{3.14}
\end{equation*}
$$

Therefore, if $P_{j_{1}} \cap \cdots \cap P_{j_{s}} \subseteq \alpha \bigcap_{j=1}^{N} P_{j}$ for some $\alpha>0$, comparing volumes we see that

$$
\begin{equation*}
\alpha \geqslant \frac{\left|P_{j_{1}} \cap \cdots \cap P_{j_{s}}\right|^{1 / n}}{\left|2 B_{2}^{n}\right|^{1 / n}} \geqslant \frac{c}{\sqrt{\log (1+d)}} \sqrt{n} \tag{3.15}
\end{equation*}
$$

where $c>0$ is an absolute constant.

4 General case

In order to deal with the not-necessarily symmetric case we use the next theorem of Srivastava from 14 .
Theorem 4.1 (Srivastava). Let $v_{1}, \ldots, v_{m} \in S^{n-1}$ and $a_{1}, \ldots, a_{m}>0$ such that

$$
\begin{equation*}
I_{n}=\sum_{j=1}^{m} a_{j} v_{j} \otimes v_{j} \quad \text { and } \quad \sum_{j=1}^{m} a_{j} v_{j}=0 \tag{4.1}
\end{equation*}
$$

Given $\varepsilon>0$ we can find a subset σ of $\{1, \ldots, m\}$ of cardinality $|\sigma|=O_{\varepsilon}(n)$, positive scalars $b_{i}, i \in \sigma$ and a vector v with

$$
\begin{equation*}
\|v\|_{2}^{2} \leqslant \frac{\varepsilon}{\sum_{i \in \sigma} b_{i}} \tag{4.2}
\end{equation*}
$$

such that

$$
\begin{equation*}
I_{n} \preceq \sum_{i \in \sigma} b_{i}\left(v_{i}+v\right) \otimes\left(v_{i}+v\right) \preceq(4+\varepsilon) I_{n} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i \in \sigma} b_{i}\left(v_{i}+v\right)=0 \tag{4.4}
\end{equation*}
$$

Proposition 4.2. There exists an absolute constant $\alpha>1$ with the following property: if K is a convex body whose minimal volume ellipsoid is the Euclidean unit ball, then there is a subset $X \subset K$ of cardinality $\operatorname{card}(X) \leqslant \alpha n$ such that

$$
\begin{equation*}
B_{2}^{n} \subseteq c n^{3 / 2} \operatorname{conv}(X) \tag{4.5}
\end{equation*}
$$

where $c>0$ is an absolute constant.
Proof. As in the proof of Lemma 3.2 we assume that B_{2}^{n} is the minimal volume ellipsoid of K, and we find $v_{j} \in K \cap S^{n-1}$ and $a_{j}>0, j \in J$, such that

$$
\begin{equation*}
I_{n}=\sum_{j \in J} a_{j} v_{j} \otimes v_{j} \quad \text { and } \quad \sum_{j \in J} a_{j} v_{j}=0 . \tag{4.6}
\end{equation*}
$$

We fix $\varepsilon>0$, which will be chosen small enough, and we apply Theorem 4.1 to find a subset $\sigma \subseteq J$ with $|\sigma| \leqslant \alpha_{1}(\varepsilon) n$, positive scalars $b_{j}, j \in \sigma$ and a vector v such that

$$
\begin{equation*}
I_{n} \preceq \sum_{j \in \sigma} b_{j}\left(v_{j}+v\right) \otimes\left(v_{j}+v\right) \preceq(4+\varepsilon) I_{n} \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j \in \sigma} b_{j}\left(v_{j}+v\right)=0 \text { and }\|v\|_{2}^{2} \leqslant \frac{\varepsilon}{\sum_{j \in \sigma} b_{j}} \tag{4.8}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\operatorname{tr}\left(\sum_{j \in \sigma} b_{j}\left(v_{j}+v\right) \otimes\left(v_{j}+v\right)\right)=\sum_{j \in \sigma} b_{j}-\left(\sum_{j \in \sigma} b_{j}\right)\|v\|_{2}^{2} \tag{4.9}
\end{equation*}
$$

and hence from 4.7 we get that

$$
n \leqslant \sum_{j \in \sigma} b_{j}-\left(\sum_{j \in \sigma} b_{j}\right)\|v\|_{2}^{2} \leqslant(4+\varepsilon) n
$$

Now, using 4.8 we get

$$
\begin{equation*}
n \leqslant \sum_{j \in \sigma} b_{j} \leqslant(4+2 \varepsilon) n \tag{4.10}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\|v\|_{2}^{2} \leqslant \frac{\varepsilon}{\sum_{j \in \sigma} b_{j}} \leqslant \frac{\varepsilon}{n} \tag{4.11}
\end{equation*}
$$

From John's theorem we know that conv $\left\{v_{j}, j \in J\right\} \supseteq \frac{1}{n} B_{2}^{n}$. Then, for the vector $w=\frac{v}{\sqrt{\varepsilon n}}$ we have $\|w\|_{2} \leqslant \frac{1}{n}$ and hence $w \in \operatorname{conv}\left\{v_{j}, j \in J\right\}$. Carathéodory's theorem shows that there exist $\tau \subseteq J$ with $|\tau| \leqslant n+1$ and $\rho_{i}>0, i \in \tau$ such that

$$
\begin{equation*}
w=\sum_{i \in \tau} \rho_{i} v_{i} \text { and } \sum_{i \in \tau} \rho_{i}=1 \tag{4.12}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left(\sum_{j \in \sigma} b_{j}\right)(-v)=\sum_{j \in \sigma} b_{j} v_{j} \tag{4.13}
\end{equation*}
$$

and this shows that $-v \in \operatorname{conv}\left\{v_{j}: j \in \sigma\right\}$.
We write

$$
\begin{equation*}
I_{n}-T \preceq \sum_{j \in \sigma} b_{j} v_{j} \otimes v_{j} \preceq(4+2 \varepsilon) I_{n}-T, \tag{4.14}
\end{equation*}
$$

where

$$
\begin{equation*}
T:=\sum_{j \in \sigma} b_{j} v_{j} \otimes v+\sum_{j \in \sigma} v \otimes b_{j} v_{j}+\left(\sum_{j \in \sigma} b_{j}\right) v \otimes v \tag{4.15}
\end{equation*}
$$

Taking into account 4.13) we check that, for every $x \in S^{n-1}$,

$$
\begin{equation*}
|\langle T x, x\rangle|=\left(\sum_{j \in \sigma} b_{j}\right)\langle x, v\rangle^{2} \leqslant\left(\sum_{j \in \sigma} b_{j}\right)\|v\|_{2}^{2} \leqslant \varepsilon \tag{4.16}
\end{equation*}
$$

Choosing $\varepsilon=1 / 2$ we see that $\|T\| \leqslant \frac{1}{2}$, and this finally gives

$$
\begin{equation*}
\frac{1}{2} I_{n} \preceq A:=\sum_{j \in \sigma} b_{j} v_{j} \otimes v_{j} \preceq \frac{11}{2} I_{n} \tag{4.17}
\end{equation*}
$$

We are now able to show that

$$
\begin{equation*}
K:=\operatorname{conv}\left(\left\{v_{j}: j \in \sigma \cup \tau\right\}\right) \supseteq \frac{c}{n^{3 / 2}} B_{2}^{n} \tag{4.18}
\end{equation*}
$$

Let $x \in S^{n-1}$. We set $\delta=\min \left\{\left\langle x, v_{j}\right\rangle: j \in \sigma\right\}$; note that $|\delta| \leqslant 1$ and $\left\langle x, v_{j}\right\rangle-\delta \leqslant 2$ for all $j \in \sigma$. If $\delta<0$, we write

$$
\begin{aligned}
p_{K}(A x) & \leqslant p_{K}\left(A x-\delta \sum_{j \in \sigma} b_{j} v_{j}\right)+p_{K}\left(\delta \sum_{j \in \sigma} b_{j} v_{j}\right) \\
& =p_{K}\left(\sum_{j \in \sigma} b_{j}\left(\left\langle x, v_{j}\right\rangle-\delta\right) v_{j}\right)+p_{K}\left(\delta\left(\sum_{j \in \sigma} b_{j}\right)(-v)\right) \\
& \leqslant \sum_{j \in \sigma} b_{j}\left(\left\langle x, v_{j}\right\rangle-\delta\right) p_{K}\left(v_{j}\right)-\delta\left(\sum_{j \in \sigma} b_{j}\right) p_{K}(v) \\
& \leqslant\left(\sum_{j \in \sigma} b_{j}\right)\left[2+\sqrt{n / 2} p_{K}(w)\right] \\
& \leqslant c_{1} n^{3 / 2},
\end{aligned}
$$

using the fact that $w \in K$, and hence $p_{K}(w) \leqslant 1$. If $\delta \geqslant 0$ then $\left\langle x, v_{j}\right\rangle \geqslant 0$ for all $j \in \sigma$, therefore

$$
\begin{equation*}
p_{K}(A x)=p_{K}\left(\sum_{j \in \sigma} b_{j}\left\langle x, v_{j}\right\rangle v_{j}\right) \leqslant \sum_{j \in \sigma} b_{j}\left\langle x, v_{j}\right\rangle p_{K}\left(v_{j}\right) \leqslant \sum_{j \in \sigma} b_{j} \leqslant 5 n \tag{4.19}
\end{equation*}
$$

In any case,

$$
\begin{equation*}
p_{A^{-1}(K)}(x) \leqslant c_{2} n^{3 / 2} \tag{4.20}
\end{equation*}
$$

for all $x \in S^{n-1}$, where $c_{2}>0$ is an absolute constant. Together with 4.17 this shows that

$$
\begin{equation*}
\frac{1}{2} B_{2}^{n} \subseteq A\left(B_{2}^{n}\right) \subseteq c_{2} n^{3 / 2} K \tag{4.21}
\end{equation*}
$$

Since $\operatorname{card}(\sigma \cup \tau) \leqslant \alpha_{1}(1 / 2) n+n+1 \leqslant\left(\alpha_{1}(1 / 2)+2\right) n$, the proof is complete.
Proof of Theorem 1.3. Let $P=\bigcap_{i \in I} P_{i}$. We may assume that $0 \in \operatorname{int}(P)$ and that the polar body

$$
\begin{equation*}
P^{\circ}=\operatorname{conv}\left(\bigcup_{i \in I} P_{i}^{\circ}\right) \tag{4.22}
\end{equation*}
$$

is in Löwner's position. Using Proposition 4.2 for $C=P^{\circ}$ we may find $X=\left\{v_{1}, \ldots, v_{s}\right\} \subset P^{\circ}$ with $\operatorname{card}(X)=s \leqslant \alpha n$ such that

$$
\begin{equation*}
P^{\circ} \subseteq c n^{3 / 2} \operatorname{conv}\left(\left\{v_{1}, \ldots, v_{s}\right\}\right) \tag{4.23}
\end{equation*}
$$

where $c>0$ is an absolute constant. From the proof of Proposition 4.2 we see that v_{1}, \ldots, v_{s} may be chosen to be contact points of P° with its minimal volume ellipsoid, and hence it is simple to check that we actually have $v_{j} \in \bigcup_{i \in I} P_{i}^{\circ}$ for all $j=1, \ldots, s$. In other words, we may find $i_{1}, \ldots, i_{s} \in I$ such that $v_{j} \in P_{i_{j}}$, $j=1, \ldots, s$. Then, 4.23 implies that

$$
\begin{equation*}
P^{\circ} \subseteq c n^{3 / 2} \operatorname{conv}\left(P_{i_{1}}^{\circ} \cup \cdots \cup P_{i_{s}}^{\circ}\right) \tag{4.24}
\end{equation*}
$$

and passing to the polar bodies, we get

$$
\begin{equation*}
P_{i_{1}} \cap \cdots \cap P_{i_{s}} \subseteq c n^{3 / 2} P \tag{4.25}
\end{equation*}
$$

as claimed.

Remark 4.3. In [3] it is proved that if $\left\{P_{i}: i \in I\right\}$ is a finite family of convex bodies in \mathbb{R}^{n} with $\operatorname{diam}\left(\bigcap_{i \in I} P_{i}\right)=1$, then there exist $s \leqslant n(n+1)$ and $i_{1}, \ldots i_{s} \in I$ such that

$$
\begin{equation*}
\operatorname{diam}\left(P_{i_{1}} \cap \cdots \cap P_{i_{s}}\right) \leqslant \sqrt{2 n(n+1)} \tag{4.26}
\end{equation*}
$$

Then, a scheme is described which allows one to further reduce the number of the bodies $P_{i_{j}}$ and keep some control on the diameter. The lemma which allows this reduction states the following: Let $m>2 n$ and P_{1}, \ldots, P_{m} be convex bodies in \mathbb{R}^{n} such that $0 \in P_{1} \cap \cdots \cap P_{m}$. If the circumradius of $P_{1} \cap \cdots \cap P_{m}$ is equal to 1 then we can find $1 \leqslant j \leqslant m$ such that the circumradius of $\bigcap_{i=1, i \neq j}^{m} P_{i}$ is at most $\frac{m}{m-2 d}$. Starting with Theorem 1.3 and using the same lemma, for any finite family $\left\{P_{i}: i \in I\right\}$ of convex bodies in \mathbb{R}^{n} with $\operatorname{diam}\left(\bigcap_{i \in I} P_{i}\right)=1$ we first find $s \leqslant \alpha n$ and $i_{1}, \ldots i_{s} \in I$ such that

$$
\begin{equation*}
\operatorname{diam}\left(P_{i_{1}} \cap \cdots \cap P_{i_{s}}\right) \leqslant c_{1} n^{3 / 2} \tag{4.27}
\end{equation*}
$$

where $c_{1}>0$ is an absolute constant, and then we can keep $2 n$ of the $P_{i_{j}}$'s so that the diameter of their intersection is bounded by

$$
\begin{equation*}
c_{1} n^{3 / 2} \prod_{m=2 n+1}^{s} \frac{m}{m-2 n}=c n^{3 / 2}\binom{s}{2 n} \leqslant c n^{3 / 2}\left(\frac{e \alpha}{2}\right)^{2 n} \leqslant c_{2}^{n} \tag{4.28}
\end{equation*}
$$

where $c_{2}>0$ is an absolute constant. This improves the estimate from [3] (for the original question studied there) but it is still exponential in the dimension.

Acknowledgement. We would like to thank Apostolos Giannopoulos for useful discussions.

References

[1] S. Artstein-Avidan, A. Giannopoulos and V. D. Milman, Asymptotic Geometric Analysis, Part I, Mathematical Surveys and Monographs 202, Amer. Math. Soc. (2015).
[2] K. M. Ball and A. Pajor, Convex bodies with few faces, Proc. Amer. Math. Soc. 110 (1990), no. 1, 225-231.
[3] I. Bárány, M. Katchalski and J. Pach, Quantitative Helly-type theorems, Proc. Amer. Math. Soc. 86 (1982), 109-114.
[4] I. Bárány, M. Katchalski and J. Pach, Helly's theorem with volumes, Amer. Math. Monthly 91 (1984), 362-365.
[5] A. Barvinok, Thrifty approximations of convex bodies by polytopes, Int. Math. Res. Not. IMRN 2014, no. 16, 4341-4356.
[6] J. Batson, D. Spielman and N. Srivastava, Twice-Ramanujan Sparsifiers, STOC' 2009: Proceedings of the 41st annual ACM Symposium on Theory of Computing (ACM, New York, 2009), pp. 255-262.
[7] S. Brazitikos, Brascamp-Lieb inequality and quantitative versions of Helly's theorem, Preprint.
[8] B. Carl and A. Pajor, Gelfand numbers of operators with values in a Hilbert space, Invent. Math. 94 (1988), 479-504.
[9] E. D. Gluskin, Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces, Mat. Sb. (N.S.) 136 (1988), 85-96.
[10] F. John, Extremum problems with inequalities as subsidiary conditions, Courant Anniversary Volume, Interscience, New York (1948), 187-204.
[11] J. A. De Loera, R. N. La Haye, D. Rolnick and P. Soberón, Quantitative Tverberg, Helly and Carathéodory theorems, Preprint.
[12] M. Naszódi, Proof of a conjecture of Bárány, Katchalski and Pach, Preprint.
[13] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Second expanded edition. Encyclopedia of Mathematics and Its Applications 151, Cambridge University Press, Cambridge, 2014.
[14] N. Srivastava, On contact points of convex bodies, in Geom. Aspects of Funct. Analysis, Lecture Notes in Mathematics 2050 (2012), 393-412.

Keywords: Convex bodies, Helly's theorem, approximate John's decomposition, polytopal approximation.
2010 MSC: Primary 52A23; Secondary 52A35, 46B06.

Silouanos Brazitikos: Department of Mathematics, University of Athens, Panepistimioupolis 157-84, Athens, Greece.
E-mail: silouanb@math.uoa.gr

