A proportional Dvoretzky-Rogers factorization result

A. Giannopoulos

Abstract

If X is an n-dimensional normed space and $\varepsilon \in(0,1)$, there exists $m \geq$ $(1-\varepsilon) n$ such that the formal identity $i_{2, \infty}: \ell_{2}^{m} \rightarrow \ell_{\infty}^{m}$ can be written as $i_{2, \infty}=\alpha o \beta, \beta: \ell_{2}^{m} \rightarrow X, \alpha: X \rightarrow \ell_{\infty}^{m}$, with $\|\alpha\|\|\beta\| \leq c / \varepsilon$. This is proved as a consequence of a Sauer-Shelah type theorem for ellipsoids.

1 Introduction

A version of the classical Dvoretzky-Rogers lemma $[\mathrm{DR}]$ asserts that, if $(X,\|\|$.$) is$ an n-dimensional normed space, then there exist vectors $x_{1}, \ldots, x_{m} \in X, m=[\sqrt{n}]$, such that for any choice of real numbers t_{1}, \ldots, t_{m},

$$
\max _{j \leq m}\left|t_{j}\right| \leq\left\|\sum_{j \leq m} t_{j} x_{j}\right\|_{X} \leq c\left(\sum_{j \leq m} t_{j}^{2}\right)^{1 / 2},
$$

where $c>0$ is an absolute constant. Towards a strengthening of this result for m proportional to n, J. Bourgain-S.J. Szarek [BS] and later S.J. Szarek-M. Talagrand [ST] proved the following:

Theorem 1. If $(X,\|\cdot\|)$ is an n-dimensional normed space and $\varepsilon \in(0,1)$, there exist vectors $x_{1}, \ldots, x_{m} \in X, m \geq(1-\varepsilon) n$, such that for any reals t_{1}, \ldots, t_{m},

$$
\max _{j \leq m}\left|t_{j}\right| \leq\left\|\sum_{j \leq m} t_{j} x_{j}\right\|_{X} \leq c \varepsilon^{-d}\left(\sum_{j \leq m} t_{j}^{2}\right)^{1 / 2},
$$

where $c, d>0$ are absolute constants. Equivalently, the formal identity $i_{2, \infty}$: $\ell_{2}^{m} \rightarrow \ell_{\infty}^{m}$ can be written as $i_{2, \infty}=\alpha \mathrm{o} \beta$, where $\beta: \ell_{2}^{m} \rightarrow X, \alpha: X \rightarrow \ell_{\infty}^{m}$, and $\|\alpha\|\|\beta\| \leq c \varepsilon^{-d}$. The same holds true for $i_{1,2}: \ell_{1}^{m} \rightarrow \ell_{2}^{m}$.

The best possible dependence on ε is not known. As shown by S.J. Szarek [Sz.1], there exists an n-dimensional normed space X such that $\|\alpha\|\|\beta\| \geq c(n / \log n)^{1 / 10}$ whenever $i_{2, \infty}: \ell_{2}^{n} \rightarrow \ell_{\infty}^{n}$ is written as $i_{2, \infty}=\alpha 0 \beta$ (α, β as above), and this implies
that d in Theorem 1 has to be at least $1 / 10$. On the other hand, in [ST] it is proved that Theorem 1 holds with $d=2$, and in [G] we obtain a similar result with $d=3 / 2$. Here we shall show that the same holds true with $d=1$.

Let us note that the method establishing this "proportional Dvoretzky-Rogers factorization" is closely related to the problem of the Banach-Mazur distance to the cube. A detailed exposition of the techniques used so far for both problems is given in [Sz.2].

The source of the improvement on the estimates in Theorem 1 is a Sauer-Shelah type theorem for ellipsoids, which we feel is of independent interest: The well-known combinatorial Sauer-Shelah lemma [Sa], [Sh], states that if $0 \leq l<s$ and if M is a subset of $\{-1,1\}^{s}$ of cardinality $|M|>\binom{s}{0}+\binom{s}{1}+\ldots+\binom{s}{l}$, then there exists $\sigma \subseteq\{1, \ldots, s\},|\sigma|>l$, such that $P_{\sigma}(M)=\{-1,1\}^{\sigma}$, where P_{σ} is the restriction map: $\left(\delta_{j}\right)_{j \leq s} \rightarrow\left(\delta_{j}\right)_{j \in \sigma}$. A special case of this lemma is of particular interest: If $M \subseteq\{-1,1\}^{s}$ and $|M| \geq 2^{s-1}$, then we can find $\sigma \subseteq\{1, \ldots, s\},|\sigma| \geq \frac{s}{2}$, with $P_{\sigma}(M)=\{-1,1\}^{\sigma}$.

In connection with their work on the Banach-Mazur distance to the cube, S.J. Szarek-M. Talagrand [ST] proved an isomorphic variant of the Sauer-Shelah lemma: If $M \subseteq\{-1,1\}^{s}$, viewed now as a set of points in \mathbb{R}^{s}, and if $|M| \geq 2^{s-1}, \varepsilon \in(0,1)$, then there exists $\sigma \subseteq\{1, \ldots, s\},|\sigma| \geq(1-\varepsilon) s$, such that

$$
\operatorname{absconv}\left(P_{\sigma}(M)\right) \supseteq c \varepsilon[-1,1]^{\sigma}
$$

where $c>0$ is an absolute constant (and the absolute convex hull is taken in \mathbb{R}^{σ}).
For our purposes we need to consider the following situation: Let u_{1}, \ldots, u_{s} be vectors in \mathbb{R}^{n}, of Euclidean norm $\left|u_{j}\right|_{n} \leq 1, j=1, \ldots, s$. Define the symmetric convex set

$$
E=\left\{\left(\delta_{j}\right)_{j \leq s} \in \mathbb{R}^{s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|_{n} \leq 1\right\}
$$

(Note that if $s \leq n$ and the vectors u_{j} are linearly independent in \mathbb{R}^{n}, then E is an ellipsoid in \mathbb{R}^{s}. This will be the context in the proof of Theorem 1). Again, we are interested in the "size" of the image $P_{\sigma}(E)$ of E for "large" subsets σ of $\{1, \ldots, s\}$. Our main result is then the following:

Theorem 2. If $u_{j} \in \mathbb{R}^{n},\left|u_{j}\right|_{n} \leq 1, j=1, \ldots, s$, and

$$
E=\left\{\left(\delta_{j}\right)_{j \leq s} \in \mathbb{R}^{s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|_{n} \leq 1\right\}
$$

then for every $\varepsilon \in(0,1)$ we can find $\sigma \subseteq\{1, \ldots, s\},|\sigma| \geq(1-\varepsilon) s$, such that

$$
P_{\sigma}(E) \supseteq c \sqrt{\varepsilon} D_{\sigma}
$$

where D_{σ} is the Euclidean unit ball in \mathbb{R}^{σ}, and $c>0$ is an absolute constant.

We shall use the standard notation from [MS] or [TJ]. By |.| we denote the cardinality of a finite set. The letter c will always denote an absolute positive constant, not necessarily the same in all its occurrences. For basic facts about p absolutely summing operators, used in the proof of Theorem 2, we refer the reader to $[\mathrm{LT}],[\mathrm{Pi}]$, and $[\mathrm{TJ}]$.

2 Proof of Theorem 2

First, we introduce some additional notation: The set $S=\{1, \ldots, s\}$, as well as \mathbb{R}^{s}, will be fixed throughout the proof. If $\varphi \subseteq S$, then $\mathbb{R}^{\varphi}=\left\{\left(\delta_{j}\right)_{j \leq s} \in \mathbb{R}^{s}: \delta_{j}=\right.$ 0 if $j \notin \varphi\}$. A point in \mathbb{R}^{s} denoted by $\left(\delta_{j}\right)_{j \in \varphi}$ is assumed to satisfy $\bar{\delta}_{j}=0$ if $j \notin \varphi$. If $A \subseteq \mathbb{R}^{\varphi}$ and τ, φ are disjoint subsets of S, we sometimes write $\mathbf{0}_{\tau} \times A$, to indicate that A is to be understood as a subset of $\mathbb{R}^{\varphi \cup \tau}$. In particular, if $\varphi \subseteq S_{1} \subseteq S$ and $L>0$, then
$I_{L, \varphi, S_{1}}=\mathbf{0}_{\varphi} \times\{-L, L\}^{S_{1} \backslash \varphi}=\left\{\left(\delta_{j}\right)_{j \in S_{1}} \in \mathbb{R}^{S_{1}}: \delta_{j}=0\right.$ if $j \in \phi, \delta_{j}= \pm L$ if $\left.j \in S_{1} \backslash \phi\right\}$.
Note that $\left|I_{L, \varphi, S_{1}}\right|=2^{\left|S_{1} \backslash \varphi\right|}$. If $a \in \mathbb{R}^{\varphi}, b \in \mathbb{R}^{\tau}$, and τ, φ are disjoint subsets of S, then $(a, b) \in \mathbb{R}^{\varphi \cup \tau}$ is the sum $a+b$. Finally, if S_{1} is a non-empty subset of S, we define

$$
E_{S_{1}}=\left\{\left(\delta_{j}\right)_{j \in S_{1}} \in \mathbb{R}^{S_{1}}:\left|\sum_{j \in S_{1}} \delta_{j} u_{j}\right|_{n} \leq 1\right\}
$$

Our starting point is then an immediate consequence of the Sauer-Shelah lemma:
Lemma 1. If $L>0, \varphi \subseteq S_{1} \subseteq S$, and $M \subseteq \mathbf{0}_{\varphi} \times\{-L, L\}^{S_{1} \backslash \varphi}$, with $|M| \geq$ $2^{\left|S_{1} \backslash \varphi\right|-1}$, then there exists $\sigma \subseteq S_{1} \backslash \varphi,|\sigma| \geq \frac{\left|S_{1} \backslash \varphi\right|}{2}$, such that

$$
P_{\varphi \cup \sigma}(M)=\mathbf{0}_{\varphi} \times\{-L, L\}^{\sigma}
$$

Using an inductive argument based on Lemma 1, we obtain a first result on the size of the projections of $E_{S_{1}}$, for an arbitrary $S_{1} \subseteq S$. This step is crucial for our proof of Theorem 2, so we state it as our next lemma and give its proof, although it can essentially be found in [G]:
Lemma 2. If $\emptyset \neq S_{1} \subseteq S$ and $\varepsilon \in(0,1)$ are given, then there exists $\sigma \subseteq S_{1}$, with $|\sigma| \geq(1-\varepsilon)\left|S_{1}\right|$, such that

$$
P_{\sigma}\left(E_{S_{1}}\right) \supseteq \frac{c \sqrt{\varepsilon}}{\sqrt{\left|S_{1}\right|}}[-1,1]^{\sigma},
$$

where $c>0$ is an absolute constant.
Proof: Set $\alpha_{k}=\sum_{r=0}^{k-1} 2^{r / 2}, \beta_{k}=\sum_{r=0}^{k-1} 2^{r}=2^{k-1}$, and $Q_{\tau}=[-1,1]^{\tau}$ for every non-empty $\tau \subseteq S_{1}$.

We shall prove by induction that:
$(*)$ For $k=1,2, \ldots$, one can find $\sigma_{k} \subseteq S_{1}$, with $\left|\sigma_{k}\right| \geq\left(1-\frac{1}{2^{k}}\right)\left|S_{1}\right|$, such that

$$
Q_{\sigma_{k}} \subseteq P_{\sigma_{k}}\left(\alpha_{k} \sqrt{2\left|S_{1}\right|} E_{S_{1}} \cap \beta_{k} Q_{S_{1}}\right)
$$

Since $\alpha_{k} \leq \frac{2^{k / 2}}{\sqrt{2}-1}$, condition $(*)$ clearly implies that, for $k=1,2, \ldots$,

$$
P_{\sigma_{k}}\left(E_{S_{1}}\right) \supseteq \frac{c}{\sqrt{\left|S_{1}\right|}} \sqrt{\frac{1}{2^{k}}}[-1,1]^{\sigma_{k}}
$$

with $c=1-\frac{1}{\sqrt{2}}$, which is the assertion of the lemma for $\varepsilon=1 / 2^{k}$. The continuous version will easily follow with a worse constant c.
Inductive step: Consider the set $J_{k}=\mathbf{0}_{\sigma_{k}} \times\left\{-2^{k / 2}, 2^{k / 2}\right\}^{S_{1} \backslash \sigma_{k}}$, where σ_{k} is the subset of S_{1} given by $(*)$. Note that $\left|J_{k}\right|=2^{\left|S_{1} \backslash \sigma_{k}\right|}$. By the parallelogram law and the fact that $\left|S_{1} \backslash \sigma_{k}\right| \leq\left|S_{1}\right| / 2^{k}$, we have

$$
\operatorname{Ave}_{\left(\delta_{j}\right) \in J_{k}}\left|\sum_{j \in S_{1}} \delta_{j} u_{j}\right|_{n}^{2}=2^{k} \sum_{j \in S_{1} \backslash \sigma_{k}}\left|u_{j}\right|_{n}^{2} \leq\left|S_{1}\right|
$$

and Markov's inequality implies that there exists $M^{k+1} \subseteq J_{k} \cap \sqrt{2\left|S_{1}\right|} E_{S_{1}}$ with $\left|M^{k+1}\right| \geq 2^{\left|S_{1} \backslash \sigma_{k}\right|-1}$. Then, by Lemma 1 we can find $\sigma_{k+1}^{*} \subseteq S_{1} \backslash \sigma_{k}$ of cardinality $\left|\sigma_{k+1}^{*}\right| \geq \frac{\left|S_{1} \backslash \sigma_{k}\right|}{2}$ for which

$$
P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(M^{k+1}\right)=\mathbf{0}_{\sigma_{k}} \times\left\{-2^{k / 2}, 2^{k / 2}\right\}^{\sigma_{k+1}^{*}}
$$

Since $M^{k+1} \subseteq \sqrt{2\left|S_{1}\right|} E_{S_{1}} \cap 2^{k / 2} Q_{S_{1}}$, it follows that

$$
\begin{equation*}
\mathbf{0}_{\sigma_{k}} \times 2^{k} Q_{\sigma_{k+1}^{*}} \subseteq P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(2^{k / 2} \sqrt{2\left|S_{1}\right|} E_{S_{1}} \cap 2^{k} Q_{S_{1}}\right) \tag{**}
\end{equation*}
$$

Suppose now that $a \in Q_{\sigma_{k}}, b \in Q_{\sigma_{k+1}^{*}}$. From the inductive hypothesis (*), we can find $w_{a} \in \beta_{k} Q_{\sigma_{k+1}^{*}}$ such that

$$
\left(a, w_{a}\right) \in P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(\alpha_{k} \sqrt{2\left|S_{1}\right|} E_{S_{1}} \cap \beta_{k} Q_{S_{1}}\right)
$$

If $v_{a, b}=b-w_{a}$, it is clear that $v_{a, b} \in Q_{\sigma_{k+1}^{*}}+\beta_{k} Q_{\sigma_{k+1}^{*}}=2^{k} Q_{\sigma_{k+1}^{*}}$, and therefore, by ($* *$),

$$
\left(\mathbf{0}_{\sigma_{k}}, v_{a, b}\right) \in P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(2^{k / 2} \sqrt{2\left|S_{1}\right|} E_{S_{1}} \cap 2^{k} Q_{S_{1}}\right)
$$

Then,

$$
\begin{gathered}
(a, b)=\left(a, w_{a}\right)+\left(\mathbf{0}_{\sigma_{k}}, v_{a, b}\right) \in P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(\alpha_{k} \sqrt{2\left|S_{1}\right|} E_{S_{1}} \cap \beta_{k} Q_{S_{1}}\right)+ \\
+P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(2^{k / 2} \sqrt{2\left|S_{1}\right|} E_{S_{1}} \cap 2^{k} Q_{S_{1}}\right) \subseteq P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(\alpha_{k+1} \sqrt{2\left|S_{1}\right|} E_{S_{1}} \cap \beta_{k+1} Q_{S_{1}}\right)
\end{gathered}
$$

Since $a \in Q_{\sigma_{k}}, b \in Q_{\sigma_{k+1}^{*}}$ were arbitrary, this means that

$$
Q_{\sigma_{k} \cup \sigma_{k+1}^{*}} \subseteq P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(\alpha_{k+1} \sqrt{2\left|S_{1}\right|} E_{S_{1}} \cap \beta_{k+1} Q_{S_{1}}\right)
$$

If we define $\sigma_{k+1}=\sigma_{k} \cup \sigma_{k+1}^{*}$, we readily see that $\left|\sigma_{k+1}\right| \geq\left(1-\frac{1}{2^{k+1}}\right)\left|S_{1}\right|$, and this completes the inductive step. The first step $(k=1)$ is much simpler.

For our next two lemmas we shall need to assume that the vectors u_{1}, \ldots, u_{s} are linearly independent:
Lemma 3. Let S_{1} be a non-empty subset of S. Then, for every $\theta \in\left(0, \frac{1}{4}\right)$ we can find disjoint $\sigma, \tau \subseteq S_{1}$ with $|\sigma| \geq \frac{\left|S_{1}\right|}{2},|\tau| \leq \theta\left|S_{1}\right|$ such that

$$
P_{S_{1} \backslash \tau}\left(E_{S_{1}}\right) \supseteq \mathbf{0}_{S_{1} \backslash(\sigma \cup \tau)} \times c \sqrt{\theta} D_{\sigma},
$$

where $c>0$ is an absolute constant.
Proof: Set $V_{S_{1}}=\operatorname{span}\left\{u_{j}, j \in S_{1}\right\}$. Then, there exist $x_{i} \in V_{S_{1}}, i \in S_{1}$, such that

$$
\left\langle x_{1}, u_{j}\right\rangle=\delta_{i j}, \text { for any pair of } i, j \in S_{1} .
$$

Applying Lemma 2 for the ellipsoid $E_{S_{1}}$ we obtain $\tau \subseteq S_{1},|\tau| \leq \theta\left|S_{1}\right|$, for which

$$
P_{S_{1} \backslash \tau}\left(E_{S_{1}}\right) \supseteq \frac{c \sqrt{\theta}}{\sqrt{\left|S_{1}\right|}}[-1,1]^{S_{1} \backslash \tau} .
$$

Then, for any choice of scalars $\left(t_{i}\right)_{i \in S_{1} \backslash \tau}$ we can find a vector $\left(\delta_{j}\right)_{j \in S_{1}}$ in $E_{S_{1}}$ whose restriction in $\mathbb{R}^{S_{1} \backslash \tau}$ is $\left(\frac{c \sqrt{\theta}}{\sqrt{\left|S_{1}\right|}} \operatorname{sign} t_{j}\right)_{j \in S_{1} \backslash \tau}$. In view of the orthogonality relations between the x_{i} 's and the u_{j} 's, we see that

$$
\begin{gathered}
\sum_{i \in S_{1} \backslash \tau}\left|t_{i}\right|=\left\langle\sum_{i \in S_{1} \backslash \tau} t_{i} x_{i}, \sum_{j \in S_{1} \backslash \tau}\left(\operatorname{sign} t_{j}\right) u_{j}\right\rangle \\
=\frac{\sqrt{\left|S_{1}\right|}}{c \sqrt{\theta}}\left\langle\sum_{i \in S_{1} \backslash \tau} t_{i} x_{i}, \sum_{j \in S_{1}} \delta_{j} u_{j}\right\rangle=\frac{\sqrt{\left|S_{1}\right|}}{c \sqrt{\theta}}\left|\sum_{i \in S_{1} \backslash \tau} t_{i} x_{i}\right|_{n}\left|\sum_{j \in S_{1}} \delta_{j} u_{j}\right|_{n} \\
\leq \frac{\sqrt{\left|S_{1}\right|}}{c \sqrt{\theta}}\left|\sum_{i \in S_{1} \backslash \tau} t_{i} x_{i}\right|_{n} .
\end{gathered}
$$

It follows that the operator $T: \operatorname{span}\left\{x_{i}, i \in S_{1} \backslash \tau\right\} \subseteq \ell_{2}^{n} \rightarrow \ell_{1}^{\left|S_{1} \backslash \tau\right|}$, defined by $T x_{i}=e_{i}$ (where $\left\{e_{i}\right\}$ is the canonical orthonormal basis in $\mathbb{R}^{\left|S_{1} \backslash \tau\right|}$), has norm not exceeding $\sqrt{\left|S_{1}\right|} / c \sqrt{\theta}$. Then, $T^{*}: \ell_{\infty}^{\left|S_{1} \backslash \tau\right|} \rightarrow \ell_{2}^{n}$ is a 2 -absolutely summing operator with 2-summing norm $\pi_{2}\left(T^{*}\right) \leq K_{G} \frac{\sqrt{\left|S_{1}\right|}}{c \sqrt{\theta}}$, where K_{G} is Grothendieck's constant. From Pietch's factorization theorem, applied in the same context as in the proof of Theorem $1.2[\mathrm{BT}]$, we can find positive real numbers $\lambda_{i}, i \in S_{1} \backslash \tau$, with $\sum_{i \in S_{1} \backslash \tau} \lambda_{i}^{2}=1$, such that for any reals $t_{i}, i \in S_{1} \backslash \tau$,

$$
\left(\sum_{i \in S_{1} \backslash \tau}\left(\frac{t_{i}}{\lambda_{i}}\right)^{2}\right)^{1 / 2} \leq\left. K_{G} \frac{\sqrt{\left|S_{1}\right|}}{c \sqrt{\theta} \mid} \sum_{i \in S_{1} \backslash \tau} t_{i} x_{i}\right|_{n}
$$

Since $\sum_{i \in S_{1} \backslash \tau} \lambda_{i}^{2}=1$ and $\theta<\frac{1}{4}$, we apply Markov's inequality to obtain $\sigma \subseteq$ $S_{1} \backslash \tau,|\sigma| \geq \frac{\left|S_{1}\right|}{2}$, with $\lambda_{i} \leq \frac{2}{\sqrt{\left|S_{1}\right|}}$ for every $i \in \sigma$. Suppose now that $\left(\delta_{j}\right)_{j \in \sigma} \in D_{\sigma}$ is given, i.e $\sum_{j \in \sigma} \delta_{j}^{2} \leq 1$. The set $\left\{u_{j}, j \in \tau\right\} \cup\left\{x_{i}, i \in S_{1} \backslash \tau\right\}$ is linearly independent in $V_{S_{1}}$, hence a basis, so we can write

$$
\sum_{j \in \sigma} \delta_{j} u_{j}+\sum_{j \in \tau} \rho_{j} u_{j}=\sum_{i \in S_{1} \backslash \tau} t_{i} x_{i}
$$

for suitable $\left(\rho_{j}\right)_{j \in \tau},\left(t_{i}\right)_{i \in S_{1} \backslash \tau}$. Then,

$$
\begin{gathered}
\left|\sum_{j \in \sigma} \delta_{j} u_{j}+\sum_{j \in \tau} \rho_{j} u_{j}\right|_{n}^{2}=\left\langle\sum_{j \in \sigma} \delta_{j} u_{j}+\sum_{j \in \tau} \rho_{j} u_{j}, \sum_{i \in S_{1} \backslash \tau} t_{i} x_{i}\right\rangle \\
=\left\langle\sum_{j \in \sigma} \delta_{j} u_{j}, \sum_{i \in \sigma} t_{i} x_{i}\right\rangle=\sum_{i \in \sigma} \delta_{i} t_{i} \leq\left(\sum_{i \in \sigma} t_{i}^{2}\right)^{1 / 2} \\
\leq\left(\sum_{i \in \sigma}\left(\frac{t_{i}}{\lambda_{i}}\right)^{2}\right)^{1 / 2} \frac{2}{\sqrt{\left|S_{1}\right|}} \leq\left(\sum_{i \in S_{1} \backslash \tau}\left(\frac{t_{i}}{\lambda_{i}}\right)^{2}\right)^{1 / 2} \frac{2}{\sqrt{\left|S_{1}\right|}} \leq \frac{2 K_{G}}{c} \frac{1}{\sqrt{\theta}}\left|\sum_{i \in S_{1} \backslash \tau} t_{i} x_{i}\right|_{n}
\end{gathered}
$$

and therefore,

$$
\left|\sum_{j \in \sigma} \delta_{j} u_{j}+\sum_{j \in \tau} \rho_{j} u_{j}\right|_{n} \leq \frac{2 K_{G}}{c} \frac{1}{\sqrt{\theta}}
$$

This means that $\mathbf{0}_{S_{1} \backslash(\sigma \cup \tau)} \times\left(\delta_{j}\right)_{j \in \sigma} \in \frac{1}{c_{1} \sqrt{\theta}} P_{S_{1} \backslash \tau}\left(E_{S_{1}}\right)$ with $c_{1}=c / 2 K_{G}$. Since $\left(\delta_{j}\right)_{j \in \sigma}$ was arbitrary in D_{σ}, the lemma follows.

We are now ready to prove Theorem 2 in the case of independent u_{j} 's:
Lemma 4. For every $\varepsilon \in(0,1)$ one can find $\sigma \subseteq S,|\sigma| \geq(1-\varepsilon) s$, such that

$$
P_{\sigma}(E) \supseteq c \sqrt{\varepsilon} D_{\sigma}
$$

where $c>0$ is an absolute constant.
Proof: Given $\varepsilon \in(0,1)$ we set $\theta=\varepsilon / 7$. Let also k be the non-negative integer for which $\frac{1}{2^{k+1}} \leq \varepsilon<\frac{1}{2^{k}}$. To obtain σ we shall follow an inductive procedure based on Lemma 3:

Step 1: We set $S_{0}=S$ and $\theta_{1}=\theta$. Since $\theta_{1} \in\left(0, \frac{1}{4}\right)$, we can find a pair $\left(\sigma_{1}, \tau_{1}\right)$ of disjoint subsets of S_{0} with $\left|\tau_{1}\right| \leq \theta_{1}\left|S_{0}\right|,\left|\sigma_{1}\right| \geq \frac{1}{2}\left|S_{0}\right|$, and $P_{S_{0} \backslash \tau_{1}}\left(E_{S_{0}}\right) \supseteq$
$\mathbf{0}_{S_{0} \backslash\left(\sigma_{1} \cup \tau_{1}\right)} \times c \sqrt{\theta_{1}} D_{\sigma_{1}}$, where c is the constant from Lemma 3. Finally, we define $S_{1}=S_{0} \backslash\left(\sigma_{1} \cup \tau_{1}\right)$. Note that $\left|S_{1}\right| \leq \frac{1}{2}\left|S_{0}\right|=\frac{s}{2}$.

Inductive step: Suppose that S_{l} has been defined, and $\left|S_{l}\right|>\frac{\varepsilon}{2} s$. If in addition $l<k+2$, we define $\theta_{l+1}=2^{l / 2} \theta$. Note that then $\theta_{l+1} \leq \frac{\sqrt{2}}{7} 2^{k / 2} \varepsilon<\frac{\sqrt{2}}{7} \sqrt{\varepsilon}<\frac{1}{4}$, and therefore we can apply Lemma 3 to $E_{S_{l}}, \theta_{l+1}$ to obtain a pair $\left(\sigma_{l+1}, \tau_{l+1}\right)$ of disjoint subsets of S_{l}, with $\left|\tau_{l+1}\right| \leq \theta_{l+1}\left|S_{l}\right|,\left|\sigma_{l+1}\right| \geq \frac{1}{2}\left|S_{l}\right|$, and $P_{S_{l} \backslash \tau_{l+1}}\left(E_{S_{l}}\right) \supseteq$ $\mathbf{0}_{S_{l} \backslash\left(\sigma_{l+1} \cup \tau_{l+1}\right)} \times c \sqrt{\theta_{l+1}} D_{\sigma_{l+1}}$. To complete the inductive step, we define $S_{l+1}=$ $S_{l} \backslash\left(\sigma_{l+1} \cup \tau_{l+1}\right)$. Note also that $\left|S_{l+1}\right| \leq \frac{1}{2}\left|S_{l}\right|$ and hence, as far as we continue performing these steps, $\left|S_{l}\right| \leq \frac{s}{2^{i}}$.

We end this inductive construction when we arrive at a set S_{l} of cardinality $\left|S_{l}\right| \leq \frac{\varepsilon}{2} s$. This will certainly happen after at most $(k+2)$-steps, since $\frac{1}{2^{k+2}} \leq \frac{\varepsilon}{2}$ and our construction implies that $\left|S_{l}\right|<\frac{s}{2^{l}}$ for every admissible l.

Suppose that l_{*} is the first index for which $\left|S_{l_{*}}\right| \leq \frac{\varepsilon}{2} s$. We define $\sigma=\sigma_{1} \cup \ldots \cup$ $\sigma_{l_{*}}$.

Claim 1. $|\sigma| \geq(1-\varepsilon) s$.
[Proof: Note that $\bigcup_{1 \leq l \leq l_{*}}\left(\sigma_{l} \cup \tau_{l}\right)=S \backslash S_{l_{*}}$, hence

$$
\begin{aligned}
|S \backslash \sigma|=\left|S_{l_{*}}\right|+\sum_{1 \leq l \leq l_{*}}\left|\tau_{l}\right| & \leq \frac{\varepsilon}{2} s+\sum_{1 \leq l \leq l_{*}} \theta_{l}\left|S_{l-1}\right| \leq \frac{\varepsilon}{2} s+\theta \sum_{1 \leq l \leq l_{*}} 2^{\frac{l-1}{2}} \frac{s}{2^{l-1}} \\
& \left.<\frac{\varepsilon}{2} s+\frac{\varepsilon}{7} s\left(\sum_{l=0}^{\infty} \frac{1}{2^{\frac{l}{2}}}\right)<\varepsilon s .\right]
\end{aligned}
$$

Claim 2. If $1 \leq l \leq l_{*}$, then

$$
P_{\sigma}(E) \supseteq \mathbf{0}_{\sigma \backslash \sigma_{l}} \times c 2^{\frac{l-1}{4}} \sqrt{\theta} D_{\sigma_{l}}
$$

[Proof: Suppose that $\Delta_{l}=\left(\delta_{j}\right)_{j \in \sigma_{l}} \in c 2^{\frac{l-1}{4}} \sqrt{\theta} D_{\sigma_{l}}$. Then, our construction implies that $\mathbf{0}_{S_{l-1} \backslash\left(\sigma_{l} \cup \tau_{l}\right)} \times \Delta_{l} \in P_{S_{l-1} \backslash \tau_{l}}\left(E_{S_{l-1}}\right)$. Hence, we can find $\left(\zeta_{i}\right)_{i \in \tau_{l}}$ such that

$$
\left|\sum_{j \in \sigma_{l}} \delta_{j} u_{j}+\sum_{i \in \tau_{l}} \zeta_{i} u_{i}\right|_{n} \leq 1
$$

Since $\sigma \cap \tau_{l}=\emptyset$, it is clear that $\mathbf{0}_{\sigma \backslash \sigma_{l}} \times \Delta_{l} \in P_{\sigma}(E)$.]
To conclude the proof of the lemma, suppose that $\Delta=\left(\delta_{j}\right)_{j \in \sigma}$ is an arbitrary point in D_{σ}, i.e $\sum_{j \in \sigma} \delta_{j}^{2} \leq 1$. Consider the restriction $\Delta_{l}=\mathbf{0}_{\sigma \backslash \sigma_{l}} \times\left(\delta_{j}\right)_{j \in \sigma_{l}}$ of Δ in $\mathbb{R}^{\sigma_{l}}$, and set $\left|\Delta_{l}\right|=\left(\sum_{j \in \sigma_{l}} \delta_{j}^{2}\right)^{1 / 2}, 1 \leq l<l_{*}$. By Claim 2, each Δ_{l} belongs to $\frac{\left|\Delta_{l}\right|}{c 2^{\frac{l-1}{4}} \sqrt{\theta}} P_{\sigma}(E)$, thus

$$
\Delta=\sum_{1 \leq l \leq l_{*}} \Delta_{l} \in\left(\sum_{1 \leq l \leq l_{*}} \frac{\left|\Delta_{l}\right|}{c 2^{\frac{l-1}{4}} \sqrt{\theta}}\right) P_{\sigma}(E)
$$

$$
\begin{gathered}
\subseteq \frac{1}{c \sqrt{\theta}}\left(\sum_{1 \leq l \leq l_{*}}\left|\Delta_{l}\right|^{2}\right)^{1 / 2}\left(\sum_{l=0}^{\infty} \frac{1}{2^{\frac{l}{2}}}\right)^{1 / 2} P_{\sigma}(E) \\
\quad \subseteq \frac{\sqrt{7}}{c}\left(\frac{\sqrt{2}}{\sqrt{2}-1}\right)^{1 / 2} \frac{1}{\sqrt{\varepsilon}} P_{\sigma}(E)
\end{gathered}
$$

and the lemma is proved with $c^{\prime}=c / 5$.
Proof of Theorem 2. Assume that u_{1}, \ldots, u_{s} are arbitrary vectors in \mathbb{R}^{n} with $\left|u_{j}\right|_{n} \leq 1, j=1, \ldots, s$. Set $v_{i}=u_{i}+e_{i+n}, i=1, \ldots, s$, where $\left\{e_{i}\right\}_{i \leq n+s}$ is the canonical orthonormal basis in \mathbb{R}^{n+s}. Then, the v_{i} 's are linearly independent $\sqrt{2}$-norm vectors in \mathbb{R}^{n+s}, and if

$$
E^{*}=\left\{\left(\delta_{j}\right)_{j \leq s}:\left|\sum_{j \leq s} \delta_{j} v_{j}\right|_{n+s} \leq 1\right\}
$$

Lemma 4 implies that, given $\varepsilon \in(0,1)$, there exists $\sigma \subseteq S,|\sigma| \geq(1-\varepsilon) s$, for which

$$
P_{\sigma}\left(E^{*}\right) \supseteq c^{\prime \prime} \sqrt{\varepsilon} D_{\sigma}
$$

with $c^{\prime \prime}=c / \sqrt{2}, c$ the constant from Lemma 4. Since $\left|\sum_{j \leq s} \delta_{j} v_{j}\right|_{n+s}^{2}=\left|\sum_{j \leq s} \delta_{j} u_{j}\right|_{n}^{2}+$ $\sum_{j \leq s} \delta_{j}^{2}$, we readily see that

$$
P_{\sigma}(E) \supseteq c^{\prime \prime} \sqrt{\varepsilon} D_{\sigma}
$$

and Theorem 2 is proved.

3 Proof of Theorem 1 with $d=1$

For the proof of the proportional Dvoretzky-Rogers factorization result, we shall combine Theorem 2 with the method used in $[\mathrm{ST}]$: Let $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$ be an n dimensional normed space and $\varepsilon \in(0,1)$ be given. Without loss of generality, we may assume that the ellipsoid of minimal volume containing the unit ball B_{X} of X is the Euclidean unit ball D. By John's theorem $[\mathrm{J}], D \subseteq \sqrt{n} B_{X}$. We can also find contact points $y_{i}, i \leq N,\left\|y_{i}\right\|_{X}=\left|y_{i}\right|_{n}=1, N=O\left(n^{2}\right)$, and positive real numbers $\mu_{i}, i \leq N$, such that the following representation of the identity holds: for every $x \in \mathbb{R}^{n}, x=\sum_{i \leq N} \mu_{i}\left\langle x, y_{i}\right\rangle y_{i}$. Now, if s is the smallest integer $\geq\left(1-\frac{\varepsilon}{2}\right) n$, we can choose x_{1}, \ldots, x_{s} among the y_{i} 's so that

Lemma 5 [ST]: $\operatorname{dist}\left(x_{i}, \operatorname{span}\left\{x_{j}: j \neq i\right\}\right) \geq \sqrt{\frac{\varepsilon}{2}}, i=1, \ldots, s$.
Hence, there exist $v_{j}, j \leq s$, in $\operatorname{span}\left\{x_{i}, i \leq s\right\}$ satisfying
(i) $\left|v_{j}\right|_{n} \leq \sqrt{2 / \varepsilon}, j=1, \ldots, s$
(ii) $\left\langle x_{i}, v_{j}\right\rangle=\delta_{i j}, i, j=1, \ldots, s$.

Set $u_{j}=\sqrt{\varepsilon / 2} v_{j}$ and define $E=\left\{\left(\delta_{j}\right)_{j \leq s}:\left|\sum_{j<s} \delta_{j} u_{j}\right|_{n} \leq 1\right\}$. From Theorem 2 we obtain $\sigma \subseteq S,|\sigma| \geq\left(1-\frac{\varepsilon}{2}\right) s$, with $P_{\sigma}(E) \supseteq c \sqrt{\varepsilon} D_{\sigma}$. Then $|\sigma| \geq(1-\varepsilon) n$, and for any choice of scalars $\mathbf{t}=\left(t_{i}\right)_{i \in \sigma}$ we have

$$
|\mathbf{t}|^{2}=\sum_{i \in \sigma} t_{i}^{2}=\left\langle\sum_{i \in \sigma} t_{i} x_{i}, \sum_{j \in \sigma} t_{j} v_{j}\right\rangle=\sqrt{\frac{2}{\varepsilon}}\left\langle\sum_{i \in \sigma} t_{i} x_{i}, \sum_{j \in \sigma} t_{j} u_{j}\right\rangle .
$$

We can extend $\left(\frac{c \sqrt{\varepsilon}}{|\boldsymbol{t}|} t_{j}\right)_{j \in \sigma}$ to a vector $\left(\delta_{j}\right)_{j \leq s}$ in E. Hence,

$$
|\mathbf{t}|^{2}=\sqrt{\frac{2}{\varepsilon}} \frac{|\mathbf{t}|}{c \sqrt{\varepsilon}}\left\langle\sum_{i \in \sigma} t_{i} x_{i}, \sum_{j \leq s} \delta_{j} u_{j}\right\rangle \leq \frac{c^{\prime}}{\varepsilon}|\mathbf{t}|\left|\sum_{i \in \sigma} t_{i} x_{i}\right|_{n}
$$

and since $|| \leq.\|$.$\| and the x_{i}$'s are of $\|$.$\| -norm one, we have$

$$
\left(\sum_{i \in \sigma} t_{i}^{2}\right)^{1 / 2} \leq \frac{c^{\prime}}{\varepsilon}\left|\sum_{i \in \sigma} t_{i} x_{i}\right|_{n} \leq \frac{c^{\prime}}{\varepsilon}\left\|\sum_{i \in \sigma} t_{i} x_{i}\right\|_{X} \leq \frac{c^{\prime}}{\varepsilon} \sum_{i \in \sigma}\left|t_{i}\right|
$$

Defining $\beta: \ell_{1}^{|\sigma|} \rightarrow X$ with $\beta\left(e_{i}\right)=x_{i}, i \in \sigma$, and $\alpha: X \rightarrow \ell_{2}^{|\sigma|}$ with $\alpha=T P_{\sigma}$ where P_{σ} is the orthogonal projection of X onto $\operatorname{span}\left\{x_{i}, i \in \sigma\right\}$ and $T x_{i}=e_{i}$, we have a factorization $i_{1,2}=\alpha \mathrm{o} \beta$ of the identity $i_{1,2}: \ell_{1}^{|\sigma|} \rightarrow \ell_{2}^{|\sigma|}$ with $\|\alpha\|\|\beta\| \leq c^{\prime} / \varepsilon$. By duality and by the extension property of ℓ_{∞}^{n}, this is then equivalent to the assertion of the theorem.

4 Remarks

(1) The $\sqrt{\varepsilon}$-dependence on ε in Theorem 2 is best possible: Set $n=s+1$ and $u_{j}=\frac{1}{\sqrt{2}}\left(e_{j}+e_{n}\right), j=1, \ldots, s$, where $\left\{e_{j}\right\}_{j \leq n}$ is the usual orthonormal basis of \mathbb{R}^{n}. Given $\varepsilon \in(0,1)$ and given any $\sigma \subseteq S$ with $|\sigma| \geq(1-\varepsilon) s$, a point (t, t, \ldots, t) is in $P_{\sigma}(E)$ only if $|t| \leq c \frac{\sqrt{\varepsilon}}{\sqrt{s}}$ (S.J. Szarek [Sz.3]).
(2) The argument used in the proof of Theorem 1 and an application of the Cauchy-Schwartz inequality give us the following:
Corollary 1. If $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$ is such that the ellipsoid of minimal volume containing B_{X} is D and if $\varepsilon \in(0,1)$, then we can find $x_{1}, \ldots, x_{m} \in X,\left\|x_{i}\right\|_{X}=$ $\left|x_{i}\right|_{n}=1, m \geq(1-\varepsilon) n$, such that for any reals t_{1}, \ldots, t_{m},

$$
\left|\sum_{i=1}^{m} t_{i} x_{i}\right|_{n} \geq \frac{c \varepsilon}{\sqrt{m}} \sum_{i=1}^{m}\left|t_{i}\right|
$$

Corollary 1, combined with the method of S.J. Szarek-M. Talagrand [ST] gives the upper estimate $d\left(X, \ell_{\infty}^{n}\right) \leq c n^{5 / 6}$ for the Banach-Mazur distance to the cube (Corollary 1 can be deduced from Lemma 2: this was the main result in [G]).

Acknowledgement: This work was done while the author was visiting Case Western Reserve University. I would like to thank the Department of Mathematics for the hospitality and Professor S.J. Szarek for helpful discussions.

References

[BS] J. Bourgain and S.J. Szarek, The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization, Israel J. Math. 62 (1988), 169-180.
[BT] J. Bourgain and L. Tzafriri, Invertibility of "large" submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math. 57 (1987), 137-224.
[DR] A. Dvoretzky and C.A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. USA 36 (1950), 192-197.
[G] A.A. Giannopoulos, A note on the Banach-Mazur distance to the cube, Operator Theory: Advances and applications 77 (1995), 67-73.
[J] F. John, Extremum problems with inequalities as subsidiary conditions, Courant Anniversary Volume, New York: Interscience 1948, 187-204.
[LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I: Sequence spaces, Springer-Verlag, 1977.
[MS] V.D. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Mathematics 1200 (1986).
[Pi] A. Pietch, Operator Ideals, North Holland (1978).
[ST] S.J. Szarek and M. Talagrand, An "isomorphic" version of the Sauer-Shelah lemma and the Banach-Mazur distance to the cube, Lecture Notes in Mathematics 1376 (1989), 105-112.
[Sa] N. Sauer, On the density of families of sets, J. Comb. Theory, Ser. A 13 (1972), 145-147.
[Sh] S. Shelah, A combinatorial problem: stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972), 247-261.
[Sz.1] S.J. Szarek, Spaces with large distance to ℓ_{∞}^{n} and random matrices, American J. Math 112 (1990), 899-942.
[Sz.2] S.J. Szarek, On the geometry of the Banach-Mazur compactum, Lecture Notes in Mathematics 1470 (1991), 48-59.
[Sz.3] S.J. Szarek, Personal Communication.
[TJ] N. Tomczak-Jaegermann, Banach-Mazur distances and Finite Dimensional Operator Ideals, Longman (1988).

Department of Mathematics, Case Western Reserve University, Cleveland, Ohio, USA
Current address: Department of Mathematics, University of Crete, Iraklion, Crete, Greece
E-mail: deligia@talos.cc.uch.gr

