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Abstract

We discuss a problem posed by Bárány, Katchalski and Pach: if {Pi : i ∈ I} is a family of closed
convex sets in Rn such that diam

(⋂
i∈I Pi

)
= 1 then there exist s 6 2n and i1, . . . , is ∈ I such that

diam (Pi1 ∩ · · · ∩ Pis) 6 Cn,

where Cn 6 c
√
n for an absolute constant c > 0. We prove that this statement holds true with

Cn 6 cn11/2. All the previously known estimates for Cn were exponential or superexponential in the
dimension n.

1 Introduction

In this note we provide a polynomial estimate for a question of Bárány, Katchalski and Pach on the quanti-
tative version of Helly’s theorem for the diameter of convex sets in Euclidean space. Helly’s theorem states
that, if P = {Pi : i ∈ I} is a finite family of at least n + 1 convex sets in Rn and if every n + 1 or fewer
members of P have non-empty intersection, then

⋂
i∈I Pi 6= ∅. This classical result and its variants have

found important applications in discrete and computational geometry (see e.g. [9], [10] and [1]).
Bárány, Katchalski and Pach obtained in [3] a quantitative version of Helly’s theorem for the diameter:

Theorem 1.1. Let {Pi : i ∈ I} be a family of closed convex sets in Rn such that diam
(⋂

i∈I Pi
)

= 1. There
exist s 6 2n and i1, . . . , is ∈ I such that

(1.1) diam (Pi1 ∩ · · · ∩ Pis) 6 Cn,

where Cn > 0 is a constant depending only on the dimension.

The example of the cube [−1, 1]n in Rn, expressed as an intersection of exactly 2n closed half-spaces,
shows that one cannot replace 2n by 2n− 1 in the statement above. The optimal growth of the constant Cn
as a function of n is not completely understood. In [3] the authors established the bound Cn 6 (cn)n/2 and
conjectured that the bound should be polynomial in n; in fact they asked if (cn)n/2 can be replaced by c

√
n.

In [8] we proved that there exists an absolute constant α > 2 with the following property: if {Pi : i ∈ I}
is a finite family of convex bodies in Rn with diam

(⋂
i∈I Pi

)
= 1, then there exist s 6 αn and i1, . . . , is ∈ I

such that

(1.2) diam(Pi1 ∩ · · · ∩ Pis) 6 cn3/2,

where c > 0 is an absolute constant. Note that the estimate is polynomial in the dimension but the restriction
s 6 2n is relaxed to s 6 αn for some absolute constant α > 2. In this note we consider the original question
of Bárány, Katchalski and Pach, and provide a polynomial estimate.

Theorem 1.2. Let {Pi : i ∈ I} be a finite family of convex bodies in Rn with diam
(⋂

i∈I Pi
)

= 1. We can
find s 6 2n and i1, . . . , is ∈ I such that

(1.3) diam(Pi1 ∩ · · · ∩ Pis) 6 cn11/2,

where c > 0 is an absolute constant.

1



All the previously known estimates for the question were exponential or superexponential in the dimen-
sion. The main step for the proof of Theorem 1.2 is a Helly-type inclusion theorem.

Theorem 1.3. Let {Pi : i ∈ I} be a finite family of convex bodies in Rn with int
(⋂

i∈I Pi
)
6= ∅. For any

k > n there exist z ∈ Rn, s 6 k + n and i1, . . . , is ∈ I such that

(1.4) z + Pi1 ∩ · · · ∩ Pis ⊆ γk,nn(n+ 2)

(
z +

⋂
i∈I

Pi

)
,

where γk,n =
(√

k+
√
n√

k−
√
n

)2
.

A main tool for the proof of Theorem 1.3 is the following theorem of Batson, Spielman and Srivastava [6]:
If v1, . . . , vm ∈ Sn−1 and a1, . . . , am > 0 satisfy “John’s decomposition of the identity” In =

∑m
j=1 ajvj ⊗ vj ,

where (vj ⊗ vj)(y) = 〈vj , y〉vj , then for every d > 1 there exists a subset σ ⊆ {1, . . . ,m} with |σ| 6 dn and

bj > 0, j ∈ σ, such that In �
∑
j∈σ bjajvj ⊗ vj � γ2dIn, where γd :=

√
d+1√
d−1 .

It is clear that if we apply Theorem 1.3 with k = n + 1 then we obtain polynomial estimates (of order
O(n4)) for the diameter with s 6 2n + 1. In order to reduce the number of the bodies Pij from 2n + 1 to
2n, and get the precise statement of Theorem 1.2, we use the idea of a lemma from [3] (see Lemma 2.3 in
the next section).

In a different direction, Soberón proved in [15] that for any finite family of convex sets in Rn with the
property that the intersection of every 2n of them has diameter at least 1, one can partition the family into
a fixed number of subfamilies (depending only on n and ε > 0), each having an intersection with diameter
at least 1− ε.

Closing this introductory section we mention that Bárány, Katchalski and Pach in [3] obtained also a
quantitative Helly-type result for volume (see also [4]). They proved that if {Pi : i ∈ I} is a family of closed
convex sets in Rn such that

∣∣⋂
i∈I Pi

∣∣ > 0 then we may find s 6 2n and i1, . . . , is ∈ I such that

|Pi1 ∩ · · · ∩ Pis | 6 Dn

∣∣∣∣∣⋂
i∈I

Pi

∣∣∣∣∣ ,
where Dn > 0 is a constant depending only on n. The bound in [3] was O(n2n

2

) and it was conjectured
that one might actually have Dn 6 ncn for an absolute constant c > 0. Naszódi [13] has recently proved a
volume version of Helly’s theorem with Dn 6 (cn)2n, where c > 0 is an absolute constant. In fact, a slight
modification of Naszódi’s argument leads to the exponent 3n

2 instead of 2n. In [7], relaxing the requirement
that s 6 2n to the weaker one that s = O(n), we showed that there exists an absolute constant α > 2 with
the following property: for every family {Pi : i ∈ I} of closed convex sets in Rn, such that P =

⋂
i∈I Pi has

positive volume, there exist s 6 αn and i1, . . . , is ∈ I such that

(1.5) |Pi1 ∩ · · · ∩ Pis | 6 (cn)n |P |,

where c > 0 is an absolute constant.

Notation. We work in Rn, which is equipped with a Euclidean inner product 〈·, ·〉. We denote by ‖ · ‖2
the corresponding Euclidean norm, and write Bn2 for the Euclidean unit ball and Sn−1 for the unit sphere.
Volume is denoted by | · | and the circumradius of K is the radius of the smallest ball which is centered at
the origin and contains K:

R(K) = max{‖x‖2 : x ∈ K}.

Finally, given two symmetric positive definite matrices A and B we write A � B if 〈Ax, x〉 6 〈Bx, x〉 for all
x ∈ Rn. We refer to the books [14] and [2] for basic facts from convex geometry.
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2 Proof of the theorem

The proof of Theorem 1.3 is based on an extension to the non-symmetric case of the following fact, obtained
by Gluskin-Litvak in [11] and Barvinok in [5]: If K is a symmetric convex body in Rn then for any k > n
there exist N 6 k points x1, . . . , xN ∈ K such that

(2.1) absconv({x1, . . . , xN}) ⊆ K ⊆ γk,n
√
n absconv({x1, . . . , xN}).

We shall first prove the next proposition, which is a variant of a result from [8].

Proposition 2.1. Let K be a convex body in Rn, such that the ellipsoid of minimal volume containing K is
the Euclidean unit ball Bn2 . For every k > n there is a subset X ⊆ K ∩ Sn−1 of cardinality card(X) 6 k+ n
such that

(2.2) K ⊆ Bn2 ⊆

(√
k +
√
n√

k −
√
n

)2

n(n+ 2) conv(X).

Proof. Since Bn2 is the minimal volume ellipsoid of K, by John’s theorem [12] we may find vj ∈ K ∩ Sn−1
and aj > 0, j ∈ J , such that

(2.3) In =
∑
j∈J

ajvj ⊗ vj and
∑
j∈J

ajvj = 0.

It is well-known that (2.3) implies that

(2.4) conv{v1, . . . , vm} ⊇
1

n
Bn2 .

Set d = k/n > 1 and γk,n := γd =
(√

k+
√
n√

k−
√
n

)2
and apply the theorem of Batson, Spielman and Srivastava to

find a subset σ ⊆ J with |σ| 6 k and positive scalars bj , j ∈ σ, such that T :=
∑
j∈σ bjvj ⊗ vj satisfies

In �
∑
j∈σ

bjvj ⊗ vj � γk,nIn.

Taking traces we see that

b :=
∑
j∈σ

bj 6 γk,nn.

Note that the vector w = − 1
bn

∑
j∈σ bjvj has length ‖w‖2 6 1

bn

∑
j∈σ bj = 1

n , and hence w ∈ conv{vj , j ∈ J}
by (2.4). Therefore, we may find κ > 1 such that κw belongs to some facet of conv{vj , j ∈ J}. Then, we
apply Carathéodory’s theorem to find τ ⊆ J with |τ | 6 n and ρi > 0, i ∈ τ such that

(2.5) κw =
∑
i∈τ

ρivi and
∑
i∈τ

ρi = 1.

We will show that

(2.6) C := conv({vj : j ∈ σ ∪ τ}) ⊇ 1

γk,nn(n+ 2)
Bn2 .

Recall that the Minkowski functional of C, defined by pC(y) = min{t > 0 : y ∈ tC}, is subadditive and
positively homogeneous. Given x ∈ Sn−1 we set δ = min{〈x, vj〉 : j ∈ σ} and observe that |δ| 6 1 and
〈x, vj〉 − δ 6 2 for all j ∈ σ. If δ < 0, we write

pC(T (x)) 6 pC

T (x)− δ
∑
j∈σ

bjvj

+ pC

δ∑
j∈σ

bjvj

 = pC

∑
j∈σ

bj(〈x, vj〉 − δ)vj

+ pC (|δ|bnw)

6
∑
j∈σ

bj(〈x, vj〉 − δ)pC(vj) + |δ|bnpC(w).
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Since pC(vj) 6 1 and 〈x, vj〉 − δ 6 2 for all j ∈ σ, we see that
∑
j∈σ bj(〈x, vj〉 − δ)pC(vj) 6 2

∑
j∈σ bj = 2b.

Since w ∈ C we have pC(w) 6 1 and we also have |δ|bnpK(w) 6 bn. Therefore, if δ < 0 then we finally get

pC(T (x)) 6 2b+ bn = b(n+ 2) 6 γk,nn(n+ 2).

If δ > 0 then 〈x, vj〉 > 0 for all j ∈ σ, therefore

(2.7) pC(T (x)) = pC

∑
j∈σ

bj〈x, vj〉vj

 6
∑
j∈σ

bj〈x, vj〉pC(vj) 6
∑
j∈σ

bj 6 γk,nn.

In any case,

(2.8) pT−1(C)(x) 6 γk,nn(n+ 2)pBn2 (x)

for all x ∈ Sn−1. Since In � T , we also have Bn2 ⊆ T (Bn2 ), and hence

(2.9) K ⊆ Bn2 ⊆ T (Bn2 ) ⊆ γk,nn(n+ 2)C.

Since card(σ ∪ τ) 6 k + n, the proof is complete.

Theorem 2.2. Let {Pi : i ∈ I} be a finite family of convex bodies in Rn with int
(⋂

i∈I Pi
)
6= ∅. For any

k > n there exist z ∈ Rn, s 6 k + n and i1, . . . is ∈ I such that

(2.10) z + Pi1 ∩ · · · ∩ Pis ⊆ γk,nn(n+ 2)

(
z +

⋂
i∈I

Pi

)
,

In particular, assuming that diam
(⋂

i∈I Pi
)

= 1 we get that for every k > n there exist s 6 k + n and
i1, . . . is ∈ I such that

(2.11) diam(Pi1 ∩ · · · ∩ Pis) 6 γk,nn(n+ 2).

Therefore, if we choose k = n+ 1, we get that there exist s 6 2n+ 1 and i1, . . . is ∈ I such that

(2.12) diam(Pi1 ∩ · · · ∩ Pis) 6 16n(n+ 2)(n+ 1)2.

Proof. Let P =
⋂
i∈I Pi. We may assume that 0 ∈ int(P ) and that the minimal volume ellipsoid of the polar

body

(2.13) P ◦ = conv

(⋃
i∈I

P ◦i

)

of P is the Euclidean unit ball. Using Proposition 2.1 for K = P ◦ we may find X = {v1, . . . , vs} ⊂ P ◦∩Sn−1
with card(X) = s 6 k + n such that

(2.14) P ◦ ⊆ γk,nn(n+ 2)conv({v1, . . . , vs}).

Since v1, . . . , vs are contact points of P ◦ with Bn2 , we can easily check that we actually have vj ∈
⋃
i∈I P

◦
i

for all j = 1, . . . , s. In other words, we may find i1, . . . , is ∈ I such that vj ∈ P ◦ij , j = 1, . . . , s. Then, (2.14)
implies that

(2.15) P ◦ ⊆ γk,nn(n+ 2)conv(P ◦i1 ∪ · · · ∪ P
◦
is),

and passing to the polar bodies, we get

(2.16) Pi1 ∩ · · · ∩ Pis ⊆ γk,nn(n+ 2)P

as claimed. Since γn+1,n = (
√
n+ 1 +

√
n)4 6 16(n+ 1)2, the proof is complete.
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For the final step of the proof of Theorem 1.2 we use the idea of a lemma from [3] which will allow us
to further reduce the number of the bodies Pij from 2n + 1 to 2n. We include a sketch of its proof for the
reader’s convenience.

Lemma 2.3. Let P1, . . . , P2n+1 be convex bodies in Rn such that 0 ∈ P1 ∩ · · · ∩ P2n+1. If the circumradius
of P1 ∩ · · · ∩ P2n+1 is equal to R then we can find 1 6 j 6 2n+ 1 such that the circumradius of

⋂2n+1
i=1,i6=j Pi

is at most R/tn, where tn = sin((2n3/2)−1) > 1
πn3/2 .

Proof. If C is a spherical cap such that dist(0, conv(C)) = t then we can write it as a geodesic ball C =
B(v, π/2− δ) (for some v ∈ Sn−1) where t = sin δ. Then,

σ(C) = σ(B(v, δ)) =
1

2In−1

∫ π
2−δ

0

(sin θ)n−1dθ,

where σ is the standard rotationally invariant probability measure on the sphere and Ik =
∫ π/2
0

(cos θ)kdθ
(see e.g. [2, Chapter 3]). Therefore, we will have σ(C) > n

2n+1 if

1

In−1

∫ π
2−δ

0

(sin θ)n−1dθ =
1

In−1

∫ π/2

δ

(cosu)n−1du >
2n

2n+ 1
,

or equivalently
1

In−1

∫ δ

0

(cosu)n−1du <
1

2n+ 1
.

It is known
√
kIk > 1 for all k > 1 and we trivially have cosu 6 1 for all u ∈ [0, δ]. If we choose δn = 1

2n3/2

then we get ∫ δn

0

(cosu)n−1du 6 δn =
1

2n3/2
<

1

(2n+ 1)
√
n− 1

6 In−1 ·
1

2n+ 1
.

Therefore, if dist(0, conv(C)) = tn = sin δn we have that

σ(C) >
n

2n+ 1
.

We assume that for any 1 6 j 6 2n + 1 the circumradius of
⋂2n+1
i=1,i6=j Pi is greater than 1 and we will show

that the circumradius of P1 ∩ · · · ∩ P2n+1 is greater than tn. We can choose yj ∈
⋂2n+1
i=1,i6=j Pi with ‖yj‖2 = 1

and then we consider the spherical cap Cj with center yj and dist(0, conv(Cj)) = tn. We claim that there
exists v ∈ Sn−1 which belongs to at least n+ 1 of the Cj ’s; otherwise, each point of Sn−1 would be covered
by at most n of the Cj ’s and this would imply that

n >
2n+1∑
j=1

σ(Cj) > (2n+ 1) · n

2n+ 1
= n,

a contradiction. Now, consider the spherical cap C(v) with center v and dist(0, conv(C(v))) = tn. We have
at least n + 1 of the yj ’s in C(v), and we may assume that y1, . . . , yn+1 ∈ C(v). Each line segment [0, yj ],

j 6 n + 1, meets the bounding hyperplane H of C(v) at some point wj ∈
⋂2n+1
i=1,i6=j Pi. Applying Radon’s

theorem for the points w1, . . . , wn+1 in H, we find a point u ∈
⋂n+1
j=1

(⋂2n+1
i=1,i6=j Pi

)
= P1 ∩ · · · ∩P2n+1. Since

u ∈ H, we have ‖u‖2 > tn.

Now, let {Pi : i ∈ I} be a finite family of convex bodies in Rn with diam
(⋂

i∈I Pi
)

= 1. We may assume
that 0 ∈

⋂
i∈I Pi. First we apply Theorem 2.2 to find s 6 2n+ 1 and i1, . . . is ∈ I such that

(2.17) diam(Pi1 ∩ · · · ∩ Pis) 6 c1n
4,
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where c1 > 0 is an absolute constant. If s 6 2n then there is nothing to do, otherwise s = 2n+ 1 and then
we apply Lemma 2.3 and keep 2n of the Pij ’s so that the diameter of their intersection is bounded by

(2.18) c1n
4 · πn3/2 6 c2n

11/2,

where c2 > 0 is an absolute constant. This completes the proof of Theorem 1.2.
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