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Abstract

We discuss a problem posed by Bardny, Katchalski and Pach: if {P; : i € I} is a family of closed
convex sets in R” such that diam (ﬂie[ PZ-) = 1 then there exist s < 2n and i1,...,4s € I such that

diam (P»;l n---N P’LS) < Cn,

where C,, < c¢y/n for an absolute constant ¢ > 0. We prove that this statement holds true with
Cn < en''/2. All the previously known estimates for C,, were exponential or superexponential in the
dimension n.

1 Introduction

In this note we provide a polynomial estimate for a question of Barany, Katchalski and Pach on the quanti-
tative version of Helly’s theorem for the diameter of convex sets in Euclidean space. Helly’s theorem states
that, if P = {P; : i € I} is a finite family of at least n + 1 convex sets in R™ and if every n + 1 or fewer
members of P have non-empty intersection, then (,.; P; # (). This classical result and its variants have
found important applications in discrete and computational geometry (see e.g. [9], [10] and [I]).

Bérany, Katchalski and Pach obtained in [3] a quantitative version of Helly’s theorem for the diameter:

Theorem 1.1. Let {P; :i € I'} be a family of closed convex sets in R™ such that diam ((;c; P;) = 1. There
erist s < 2n and i1,...,1s € I such that

(1.1) diam (P, N---NP;) < Cp,
where Cy, > 0 is a constant depending only on the dimension.

The example of the cube [—1,1]™ in R"™, expressed as an intersection of exactly 2n closed half-spaces,
shows that one cannot replace 2n by 2n — 1 in the statement above. The optimal growth of the constant C,,
as a function of n is not completely understood. In [3] the authors established the bound C,, < (en)™/? and
conjectured that the bound should be polynomial in n; in fact they asked if (cn)"/ 2 can be replaced by cy/n.

In [8] we proved that there exists an absolute constant o > 2 with the following property: if {P; : i € I}

is a finite family of convex bodies in R™ with diam (ﬂiel Pl-) =1, then there exist s < an and i1,...,is € T
such that
(1.2) diam(P;, N---NP;,) < en®?,

where ¢ > 0 is an absolute constant. Note that the estimate is polynomial in the dimension but the restriction
s < 2n is relaxed to s < an for some absolute constant o > 2. In this note we consider the original question
of Bérany, Katchalski and Pach, and provide a polynomial estimate.

Theorem 1.2. Let {P; :i € I} be a finite family of convex bodies in R™ with diam (ﬂiel PZ-) =1. We can
find s < 2n and iq,...,is € I such that

(1.3) diam(P;, N---NP;.) < en'l/?,

where ¢ > 0 is an absolute constant.



All the previously known estimates for the question were exponential or superexponential in the dimen-
sion. The main step for the proof of Theorem [1.2]is a Helly-type inclusion theorem.

Theorem 1.3. Let {P; : i € I} be a finite family of convex bodies in R™ with int (N;c; P;) # 0. For any
k > mn there exist z € R", s < k+n and i1,...,is € I such that

(1.4) z+ P, N--NP, Cynnln+2) (z + ﬂ R-) ,

el
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where 7y, = (%) .

A main tool for the proof of T heorem is the following theorem of Batson, Spielman and Srivastava [6]:
Ifvy,...,vm € S" 1 and aq,...,a,, > 0 satisfy “John’s decomposition of the identity” I,, = Z;’;l a;v; @vj,
where (v; ® v;)(y) = (vj,y)v;, then for every d > 1 there exists a subset o C {1,...,m} with || < dn and

bj >0, j € o, such that I,, <>".__bja;v; @ v; 2 v31,, where v4 := gi.

jEOo

It is clear that if we apply Theorem with ¥ = n + 1 then we obtain polynomial estimates (of order
O(n*)) for the diameter with s < 2n + 1. In order to reduce the number of the bodies P;; from 2n + 1 to
2n, and get the precise statement of Theorem [1.2] we use the idea of a lemma from [3] (see Lemma in
the next section).

In a different direction, Soberén proved in [15] that for any finite family of convex sets in R™ with the
property that the intersection of every 2n of them has diameter at least 1, one can partition the family into
a fixed number of subfamilies (depending only on n and £ > 0), each having an intersection with diameter
at least 1 —e.

Closing this introductory section we mention that Bardny, Katchalski and Pach in [3] obtained also a
quantitative Helly-type result for volume (see also [4]). They proved that if {P; : ¢ € T} is a family of closed
convex sets in R™ such that ’ﬂ Pi| > 0 then we may find s < 2n and iq,...,is € I such that

Ak

icl

iel

[Py N---N P, | < D

9

where D,, > 0 is a constant depending only on n. The bound in [3] was O(n2"2) and it was conjectured
that one might actually have D,, < n®" for an absolute constant ¢ > 0. Naszdédi [I3] has recently proved a
volume version of Helly’s theorem with D,, < (cn)?", where ¢ > 0 is an absolute constant. In fact, a slight
modification of Naszddi’s argument leads to the exponent 37" instead of 2n. In [7], relaxing the requirement
that s < 2n to the weaker one that s = O(n), we showed that there exists an absolute constant o > 2 with

the following property: for every family {F; : i € I} of closed convex sets in R"™, such that P = [,; P; has
positive volume, there exist s < an and i1, ...,is € I such that
(1.5) |P, NN P | < (en)™|P|,

where ¢ > 0 is an absolute constant.

Notation. We work in R™, which is equipped with a Euclidean inner product (-,-). We denote by || - ||2
the corresponding Euclidean norm, and write By for the Euclidean unit ball and S™~! for the unit sphere.
Volume is denoted by | - | and the circumradius of K is the radius of the smallest ball which is centered at

the origin and contains K:
R(K) = max{||z|2: z € K}.

Finally, given two symmetric positive definite matrices A and B we write A < B if (Az,z) < (Bx,z) for all
x € R™. We refer to the books [I4] and [2] for basic facts from convex geometry.



2 Proof of the theorem

The proof of Theorem is based on an extension to the non-symmetric case of the following fact, obtained
by Gluskin-Litvak in [II] and Barvinok in [5]: If K is a symmetric convex body in R™ then for any k > n
there exist N < k points x1,...,zy € K such that

(2.1) absconv({z1,...,2n}) C K C v, nv/nabsconv({z1,...,zn}).
We shall first prove the next proposition, which is a variant of a result from [g].

Proposition 2.1. Let K be a convex body in R™, such that the ellipsoid of minimal volume containing K is
the Buclidean unit ball By . For every k > n there is a subset X C K NS™™ ! of cardinality card(X) < k+n
such that

Vk+n
Vk—/n

Proof. Since BY is the minimal volume ellipsoid of K, by John’s theorem [12] we may find v; € K N S"~!
and a; > 0, j € J, such that

(2.3) I, = Zajvj ®v; and Zijj = 0.
JjeJ jeJ
It is well-known that (2.3)) implies that

(2.2) K CBjyC ( ) n(n + 2) conv(X).

1
(2.4) conv{vy,...,v,m} 2 —BY.
n
- o (VEEvm) . .
Set d=k/n>1and vgp :=v4 = T and apply the theorem of Batson, Spielman and Srivastava to

find a subset o C J with o] < k and positive scalars bj, j € o, such that T':= 3", bjv; ® v; satisfies

In j Z bj’l)j (24 Vj j ’Yk,nIn'
jET
Taking traces we see that
b:= Z b]‘ < Yk,nTl
jEo
Note that the vector w = — L jeo bjvj has length [lwl|z < = djeo Ui = 1 and hence w € conv{v;, j € J}

by (2.4). Therefore, we may find x > 1 such that kw belongs to some facet of conv{v;,j € J}. Then, we
apply Carathéodory’s theorem to find 7 C J with |7| < n and p; > 0, i € 7 such that

(2.5) Kw = Zpivi and Zpi =1.
1ET 1ET
We will show that
1

(2.6) C:=conv({v; : j€oUTt}) D mBg.

Recall that the Minkowski functional of C, defined by pe(y) = min{t > 0 : y € ¢C}, is subadditive and
positively homogeneous. Given x € S"~! we set 6 = min{(z,v;) : j € o} and observe that [§] < 1 and
(x,vj) —d < 2forall j €o. If 6§ <0, we write

pe(T(x) <pe | T(x) =6 b | +pc |6 bjv; | =pc | D bi((x,v5) = 8)v; | + pe (16]bnw)

JjE€o jE€o jEOo

< b, v5) — 8)pe(v;) + [8]brpe (w).

jEO



Since pc(vj) < 1 and (z,v;) — 6 <2 for all j € o, we see that 3, b;((z,v;) — §)pc(vj) <23 ,c,b; = 2b.
Since w € C we have po(w) < 1 and we also have |§|bnpx (w) < bn. Therefore, if § < 0 then we finally get

pe(T(x)) < 2b+bn =b(n+2) < ypnn(n + 2).

If § > 0 then (z,v;) > 0 for all j € o, therefore

(2.7) pe(T(@) =pc | D bila,v)v; | <Y biw,v)pe(v;) < by < Yenn.

Jj€o j€o jeo
In any case,
(2.8) pr-1(c)(@) < Ven(n + 2)ppy (z)
for all z € S"~1. Since I,, < T, we also have By C T(BY), and hence
(2.9) K C B} CT(BY) C nn(n +2)C.

Since card(c U T) < k + n, the proof is complete. O

Theorem 2.2. Let {P; : i € I} be a finite family of convex bodies in R™ with int ((,c; P;) # 0. For any
k > n there exist z €¢ R", s < k+n and 11, ...15 € I such that

(2.10) z+ P, N---NP, Crppnn+2) (z—!—ﬂ]%) ,
i€l

In particular, assuming that diam (ﬂ PZ-) = 1 we get that for every k > n there exist s < k+n and

i1,...15 € I such that

iel

(2.11) diam(P;, N---NP;,) < Y pn(n +2).

Therefore, if we choose k =n + 1, we get that there exist s < 2n+1 and i1,...i5s € I such that

(2.12) diam(P;, N---NP;) < 16n(n +2)(n+ 1)%
Proof. Let P =(),c; Pi. We may assume that 0 € int(P) and that the minimal volume ellipsoid of the polar
body
(2.13) P° = conv (U Pf)
i€l

of P is the Euclidean unit ball. Using Proposition [2.1{for K = P° we may find X = {vy,...,vs} C P°NS"~!
with card(X) = s < k + n such that

(2.14) P° C vy pn(n+2)conv({v1,...,vs}).

Since vy, ..., vs are contact points of P° with B, we can easily check that we actually have v; € |J,; P/
for all j =1,...,s. In other words, we may find ¢1,...,¢; € I such that v; € Pi‘;,, j=1,...,s. Then, (2.14)
implies that

(2.15) P° C vy mn(n +2)conv(Py U---UPY),

and passing to the polar bodies, we get

(2.16) P,N---NP, Crygpn(n+2)P

as claimed. Since Vn11., = (vVn+ 14 y/n)* < 16(n + 1), the proof is complete. O



For the final step of the proof of Theorem we use the idea of a lemma from [3] which will allow us
to further reduce the number of the bodies P;; from 2n + 1 to 2n. We include a sketch of its proof for the
reader’s convenience.

Lemma 2.3. Let P,..., Py,y1 be convex bodies in R™ such that 0 € Py N ---N Poyy1. If the circumradius
of PLN - N Payyq is equal to R then we can find 1 < j < 2n+ 1 such that the circumradius of ﬂZ"H

i=1,i#]
is at most R/t,, where t, = sin((2n3/2)~1) > ﬁ

Proof. 1f C' is a spherical cap such that dist(0,conv(C)) = ¢ then we can write it as a geodesic ball C' =
B(v,m/2 = §) (for some v € S"~1) where ¢ = sind. Then,

5
#(C) = o(B(v,8)) = 2fi 1/ (sin 0)"~1d,

where o is the standard rotationally invariant probability measure on the sphere and I = foﬂ/ 2 (cos 0)*do

(see e.g. [2] Chapter 3]). Therefore, we will have o(C) > 5 if

1 (&0 12 2n
sin0)"tdo = / cosu)" tdu > ,
In—l /(; ( ) In—l Py ( ) 2n + 1

or equivalently
1

§
1
n—1
du < ————.
In—l/o (cosu) U 1

It is known VkI > 1 for all k > 1 and we trivially have cosu < 1 for all u € [0,6]. If we choose §,, = 271%/2
then we get

5
" 1 1 1
n—1
du < 6, = < < . .
/O (COS U) U n 2n3/2 (271 + 1) /n — 1 2n+1
Therefore, if dist(0, conv(C)) = t,, = sind,, we have that

o(C) >

n
n+1

We assume that for any 1 < j < 2n 4 1 the circumradius of ﬂfiﬁ £ P; is greater than 1 and we will show

that the circumradius of P; N --- N Pay4q is greater than ¢,. We can choose y; € ﬂ?ﬁf;j P; with ||y;ll2 =1
and then we consider the spherical cap C; with center y; and dist(0, conv(C;)) = ¢,. We claim that there
exists v € S"~! which belongs to at least n + 1 of the C}’s; otherwise, each point of S"~! would be covered
by at most n of the C;’s and this would imply that

ol n
2n+1 -
z:: @nt1)- g5 =m

a contradiction. Now, consider the spherical cap C(v) with center v and dist(0, conv(C(v))) = t,. We have
at least n + 1 of the y;’s in C(v), and we may assume that y1,...,y,41 € C(v). Each line segment [0, y;],

j < m+ 1, meets the bounding hyperplane H of C'(v) at some point w; € ﬂ?nﬂ# P;. Applying Radon’s

theorem for the points w1, ..., w,,1 in H, we find a point u € ﬂ"+1 (ﬂ?ﬂ‘;j Pi) =PyN---NPayis. Since

u € H, we have [Ju||2 > t,. O

Now, let {P; : i € I} be a finite family of convex bodies in R™ with diam ((0;c; P;) = 1. We may assume
that 0 € (;c; P;. First we apply Theorem.to find s <2n+1 and 4y, ...15 € I such that

(2.17) diam(P;, N---N P;.) < ein?,



where ¢; > 0 is an absolute constant. If s < 2n then there is nothing to do, otherwise s = 2n 4+ 1 and then
we apply Lemma and keep 2n of the P;,’s so that the diameter of their intersection is bounded by

(2.18) cnt 3% L epntt/?,
where c; > 0 is an absolute constant. This completes the proof of Theorem
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