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Abstract

We show that Bourgain’s estimate Lx < c/nlogn for the isotropic
constant holds true for non-symmetric convex bodies as well.

1 Introduction

Let K be a convex body in R" with volume |K| = 1. Then, K is called isotropic if
there exists a constant Ly > 0 such that

(1) /K (2,0)2dr = L%,

for every § € S™71. It is not hard to check (see [MP] for the origin symmetric
case) that every convex body has an isotropic image under GL(n). Moreover, this
isotropic position is uniquely determined up to orthogonal transformations, hence
the isotropic constant Lk is an invariant for the class {TK : T € GL(n)}.

An important problem asks if there exists an absolute constant C' > 0 such
that Lx < C for every isotropic convex body K with centroid at the origin o.
This question has many equivalent reformulations: Let us mention the hyperplane
problem which asks if every convex body of volume 1 has a hyperplane section
through its centroid with “area” greater than an absolute constant.

Bourgain [B] has shown that Lx < c¢/nlogn for every origin symmetric
isotropic convex body K in R™. This is the best known general estimate for the
isotropic constant. Dar [D1] proved that Lx < ¢'v/n for every convex body with
centroid at the origin. The purpose of this note is to extend Bourgain’s estimate
to non-symmetric isotropic bodies:

Theorem. If K is an isotropic convex body in R"™, then Li < c/nlogn.

We shall actually follow Bourgain’s argument, as presented in [D2]. We will
make no assumption about the origin.



2 Proof of the Theorem

In what follows, K is an isotropic, not necessarily symmetric convex body in R"™.
The letters ¢, ¢, 1, co etc. will denote absolute positive constants.
Observe that (1) is equivalent to

@) /K (@, Ta)dz = (t:T)L%

for every T € L(R™). In particular, if T € SL(n) is symmetric and positive, the
arithmetic-geometric means inequality gives nL% < (trT)L3%, which implies the
following;:

Lemma 1. For every symmetric and positive T € SL(n) we have
(3) nL3 < / (z,Tx)dx. O
K

Lemma 2. For every § € S 1,

0 [ (L20) 4 <2

Proof: This is a consequence of Borell’s lemma (see [MS], Appendix III): There
exists ¢ > 0 such that

5) ([ |<x,9>|pdx)l/p < [ (e.0)da

for every p > 1 and § € S"~'. If K is isotropic, then [, [(z,6)|dz < Lk for every
6 € S*~1, and the Lemma follows from (5). O

If V is a convex body in R"™, the mean width w(V') of V' is the quantity

w(V) = /SH {max(z, 8) — min(z, 9)} o(df),

zeV z€V

where ¢ is the rotationally invariant probability measure on S™~!. Well-known
results from [L], [FT] and [P] show that for every symmetric convex body V in R”
there exists T' € SL(n) for which

(6) w(TV)w((TV)°) < c3logn,

where (T'V)° is the polar body of TV. We will need the following extension to the
non-symmetric case:

Lemma 3. Let K be a convez body in R™ with |K| = 1. There exists a symmeltric
and positive T € SL(n) such that

(7) w(TK) < 2c3y/nlogn.



Proof: Consider the difference body V' = K — K of K. Then, we can find T' € SL(n)
such that w(TV)w((TV)°) < ¢3logn. Since mean width is invariant under orthog-
onal transformations, we may clearly assume that 7' is symmetric and positive.
Now, if || - || is the norm induced to R® by TV,

w@vy) = [ llota)

</5n_1 ||9||”U(d9)> o <||113‘,;||>1/n |

where D,, is the Euclidean unit ball. Hence,

v

T 1/n
(8) w(TV) < ¢ <||DV||> logn < csv/n|TV[/" log n.

Observe that TV = T(K — K) = TK — TK. From the Rogers-Shephard inequality
[RS] we have [TV| < (*")|TK| < 4™. Hence,

(9) w(TV) < 4dezy/nlogn.

Finally,

w(TV) = 2/5 max (z,0)o(d0) :2/

n—-12ETK-TK Sgn—1
= 2u(TK).

{ max (z,0) — min (z, 9)} o(df)

zeTK zeTK

This shows that w(TK) < 2¢3y/nlogn. O

The last ingredient of the proof is the Dudley-Fernique decomposition of a
convex body A:

Lemma 4. Let A C RD,, be a convez body in R", where R > 0. There exist finite
sets Z; CR", j € N with

j 2
log |Z;| < csn <2 u;%(A)> ,

which satisfy the following: For every v € A and every m € N we can find z; €
Z;N(BR/27)Dy,, j=1,...,m and wy, € (R/2™)D,, such that

r=2z1+ ...+ 2Zm + Wy,

Proof: Recall that the covering number N(A,tD,,) is the smallest integer N for
which there exist N translates of tD,, whose union covers A. Using Sudakov’s
inequality [S] we see that

2 2
log N(A,D,) < log N(A — A,tDy,) < can <M) e <w(tA)> |

3



For every j € N we find N; C R* with |N;| = N(4,(R/2)D,,) such that A C
UyeNj(y + (R/Qj)Dn), and set Zj = Nj — Nj—l; ] Z 1 (and NO = {0}) IfxeA
and m € N, for every j < m there exists y; € N; such that |z — y;| < R/27. We
write

r=y1+ W2 —y)+ .o+ Um = Ym—1) + (T —ym),

and conclude the proof with z; = y; —y;—1 and wy, = — yp. O

Proof of the Theorem: Let K be an isotropic convex body. By Lemma 3, there exists
a symmetric and positive ' € SL(n) such that w(TK) < 2c3y/nlogn. Lemma 1
shows that

% < < .
(10) nLj < /K(a:,T:U)d:U < Kzrrel%>1<(|(z,x)|da:

Let A =TK in Lemma 4, and consider the sets Z;, j € N. Then, for every z € K,

m
ma; 2,T < ma; z,x)| + ma; w, T
zGT}I(( @) < ];zezjm(a‘R};zi)Dn Iz, 2)] we(R/zﬁ)Dn [(w, )]

- R
< = -
< ]Z:; T e, @)+ el

where Z is the unit vector parallel to z. Using the above and taking into account
the fact that [, |z|dz < \/nLk, we see that

2€Z

(11) nL3 < Z / max| z, x)|dx + —\/_LK
K

Now, Lemma 2 shows that for every ¢t > 0

Prob <:C €EK: max|(z z)| > t) < 2|Zj|exp(—t/c1 LK),
2€Z;

and this implies that

w(TK)2 > 2 |

/ max |(Z,z)|de < cgLk log|Z;| < ernLi <
K R

2E€EZ;

Inserting this information into (11) we see that

‘ ‘ 2m R
2 2
nLy < csLk <nw (TK) +\/ﬁ2m>.

Choosing m € N such that R/2™ ~ {/nw(TK), we get

nL3 < an%w(TK)LK,



and the estimate w(TK) < 2c¢34/nlogn completes the proof. O

Remark. If K is isotropic and has its centroid at the origin, then

Ly ~ / |(z,0)|dx ~ |K N+t
K

for every § € S"~! (see [F] for precise estimates). Therefore, in this case, the
Theorem implies that all hyperplane sections of K through the origin have “area”
greater than 1/c{/nlogn, where ¢ > 0 is an absolute constant.
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