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Abstract
Let K be a convex body in R" with volume |K| = 1. We choose N >
n + 1 points z1,...,xn independently and uniformly from K, and write
C(z1,...,zn) for their convex hull. Let f : Rt — RT be a continuous

strictly increasing function and 0 < ¢ < n — 1. Then, the quantity

]E(K,N,fOWi):/};.../};f[Wi(C(xl,...,ﬁN))]dﬁN...dxl

is minimal if K is a ball (W; is the i-th quermassintegral of a compact convex
set). If f is convex and strictly increasing and 1 < ¢ < n—1, then the ball is
the only extremal body. These two facts generalize a result of H. Groemer
on moments of the volume of C(z1,...,zN).

1 Introduction

Let K be a convex body in R™ with volume |K| = 1. We choose N > n +1
points z1,...,zxN independently and uniformly from K, and write C(z1,...,znN)
for their convex hull. The p-th moment of the volume of this random polytope is
the quantity

IE,,(K,N):/ / |C(z1,...,zN)|Pdey ... dx;.
K K

Groemer [6], [7] proved that, for p > 1, E, (K, N) is minimized if and only if K
is an ellipsoid (the case n = 2, N = 3 had been established by Blaschke [1], [2]).
Letting p — oo, one recovers a result of Macbeath [10]: If |K| = 1 and N > n then
the maximal volume of a convex hull of NV points from K is minimal when K is an
ellipsoid.

Much less is known about the maximum of E,(K,N). In the planar case,
for every N > 2 the expected value E; (K, N) is maximal if and only if K is a
triangle (see [4] for the “if” part and [5] for a proof of the “if and only if” result).



The question is completely open in higher dimensions (the reader will find more
information about these and other related questions in [12]).

In this paper, we generalize Groemer’s theorem in two directions. First, we
replace volume by any quermassintegral W;, ¢ = 0,1,...,n — 1 of the random
polytope C(z1,...,zxN) (see below for definitions and notation). Second, we replace
the function  — zP, p > 1 by any continuous strictly increasing function on [0, c0).
The precise statement is as follows.

Theorem 1.1 Let f : Rt — Rt be a continuous strictly increasing function.
Then, for every i € {0,1,...,n — 1} the expected value

E(K,N,foW;) = / .. / fIWi(C(zq,...,zN))|deN ... dzy
K K
is minimal among all convex bodies K of volume 1 when K is a ball.

The proof of this fact is based on Steiner symmetrization: what we show is that
E(K,N, foW;) > E(S(K,8), N, foW;) where S(K, ) is the Steiner symmetral of K
in the direction of . An essential role is played by Kubota’s integral formula which
allows us to express the quermassintegrals of the random polytope as averages of
the volumes of its projections, thus “reducing” the problem to the volume case.

Let us note that in the volume case, Groemer’s theorem was extended to an
arbitrary f by Schopf [13] when N =n + 1 (and, recently, in [9] for any N > n).

In Section 3 we show that if f is convex and strictly increasing then the ball D
of volume 1 is the only convex body for which E(K, N, f o W;) is minimal. More
precisely, we have

Theorem 1.2 Let K be a convex body in R with |K| = 1. Assume that K is not
a ball. Then, there exists § € S™"~1 with the following property: for any N > n+1,
for anyi € {1,...,n—1} and any convez strictly increasing function f : Rt — RT
we have

E(S(Kae)aNaf o Wz) < E(K7N7f ° Wz);

where S(K,0) is the Steiner symmetral of K in the direction of 6.

The characterization of the ball which permits this uniqueness result is well-
known (see [3]): A convex body K is a ball if and only if the midpoint set of K
with respect to every line (see Section 3 for the definition) lies in a hyperplane
orthogonal to this line. If we omit the “orthogonality” requirement, then this
property characterizes ellipsoids and was used by Groemer for the “only if” part of
his theorem.

Notation and background We shall work in R™, which is equipped with an inner
product (-,-). The class of all compact convex subsets of R is denoted by ,,. We
write D,, and S™! for the unit ball and the unit sphere in R™ respectively. We
denote by G, 1 the Grassmannian of all k-dimensional subspaces of R, equipped



with the Haar probability measure v, . We write |K| for the volume of a convex
body K (the dimension of the body will be always clear) and w,, for the volume of
the Euclidean unit ball.

Let K be a convex body in R™. Steiner’s formula, which is a special case of
Minkowski’s theorem, states that the volume of K + tD,,, t > 0, can be expanded
as a polynomial in ¢:

K +tD, =Y (?) Wi (K.
=0

The i-th quermassintegral of K is the mixed volume W;(K) = V(K;n — i, Dy;1)
appearing in this formula (we refer the reader to the book of Schneider [11] for
the theory of mixed volumes). Two of the quermassintegrals, W; and W,_1, are
particularly important since the surface area of K is 9(K) = nW;(K) and the mean
width w(K) of K is given by w(K) = (2/wp)Wy_1(K).

What we are going to use is some basic properties of the quermassintegrals: they
are monotone, continuous with respect to the Hausdorff metric, and homogeneous
of degree n —i. We will also use Kubota’s integral formula

Wi(K) = / |Pp(K)|vnm i(dE), 1<i<n-—1

n,n—i

in an essential way. Here, Pg(K) is the orthogonal projection of K onto E.

2 The symmetrization argument

Let 0 #6 € R* and H(#) = (#)*+. We fix an N-tuple Y = (y1,...,yn) of points in
H(#) and consider the function Fy : RN — Rt defined by

(2.1) Fy(ti,...,tn) = |C(y1 + ta0,...,yn + tn0)].
The main ingredient in the argument of Groemer [7] is the following:
Lemma 2.1 Fy is a convex function on RY . O

Let now E be an s-dimensional subspace of R"”. We define a second function
FE,Y : ]RN — Rt by

(22) FE7y(t1, . ,tN) = |PE(C(y1 + t10, oL YN T+ tNG))|
Lemma 2.2 The function Fgy is convex on RV .
Proof: Let u = Pg(f) and w; = Pg(y;), i =1,...,N. Then,

PE(C(y1 +410,...,yN +tN9)) = C’(w1 +tu,...,wN +tNu).



It may happen that v = 0, in which case Fgy(t1,...,tn) = |C(wy,...,wy)| is
constant, and hence, a convex function.
Assume now that u # 0. Then, w; = z; + s;u with z; L u,i=1,..., N. In this
case,
Fpy(ti,...,tn) = |C(z1 + (s1 + t)u, ..., 28 + (sn +En)u)]

which is a convex function on RY by Lemma 2.1 (applied on E, with the z;’s
replacing the y;’s and u replacing 6). |

Lemma 2.3 Let 0 #0 and y1,...,yn € H(A). The function
Fyi(ty,...,tn) = Wi(C(yr + t16,...,yn + tn0))
is an even convex function for everyi=0,1,...,n — 1.

Proof: When ¢ = 0, this is exactly Lemma 2.1. If 7 > 0, we apply Kubota’s integral
formula

Wid) = 2 [ P i)

n,n—i

to the bodies C'(y; + t16, ...,yn + tn0) and use Lemma 2.2.

The fact that Fy,; is even follows from the observation that C'({y;+¢;0 : j < N})
and C({y; —t;0 : j < N}) are reflections of each other with respect to H(6). Since
Wi(A) = W;(U(A)) for every U € O(n) and any i = 0,1,...,n — 1, this completes
the proof. O

Let 71,...,rn be fixed positive real numbers and consider the parallelotope
Q={S=(s1,...,8n) :|si| <, i=1,...,N}.

Lemma 2.4 For every B € RV and a > 0, we define
Q(B,a) ={S€Q: Fy;(B+S)<a}.
Let A€ (0,1). If B,B' € RN and Q(B,q),Q(B',a) # 0, then
(2.3) QOB + (1= NB', )" > XNQ(B,)['/™ + (1 = N)[Q(B', )|/,

Proof: Let S € Q(B,«a) and S’ € Q(B’,«). Then, using the convexity of Fy,; we
see that

FyiAB+8)+(1-NB +95") <AFy;(B+S)+(1-)\NFy;(B'+5") <.

Therefore,
(2.4) QOB + (1 - N)B',a) 2 AQ(B,a) + (1 - NQ(B',a)
and the result follows from the Brunn-Minkowski inequality. |



Lemma 2.5 Let 0 #60 € R” and y1,...,yn € H(8). For every B € RN and every
a >0,

(2.5) 1Q(0,a)| 2 |Q(B, &),

where O is the origin in RN .

Proof: If Q(B,a) is empty, there is nothing to prove. Otherwise, we observe that
Q(—B,a) = —Q(B,a) (because Fy, is even) and apply Lemma 2.4 with B’ = —B
and A = 1/2 to conclude the proof. O

Now, let K be a convex body in R® with |K| = 1. Let § € S"~! and write
Py(K) for the orthogonal projection of K onto H(#). For every y € P(K), let
y + b(y)# be the midpoint and 2r(y) be the length of ¢(K,y) := K N (y + RY) for
every y € H(B). If y1,...,yn € Py(K), we set

(2.6)
Micogowi(nseosi) = [ [ fWC o )dey - da
Z(K,yl) l(Kﬁ’lN)
Then,

(2.7)  E(K,N,foW;) = /

/ Mgk o, pow; (Y1, - yN)dyn ... dy;.
Py (K) Py (K)

Let S(K,6) be the Steiner symmetral of K in the direction of 6. Then,
Py(S(K,0)) = Py(K) = P and for every y € P the midpoint and length of
(S(K,0),y) are y (that is, b'(y) = 0) and 2r'(y) = 2r(y).

Lemma 2.6 Let yi,...,yn € Py(K). Then, for any continuous strictly increasing
function f: Rt — Rt and anyi=0,1,...,n —1,
(2.8) Mg, pow; (Y15 -+ UN) = Ms(k,0).0,fow; (U1, -+ YN)-

Proof: Let Q = {S = (s1,...,5n) : |si] <r(yi), i =1,...,N}. In the notation of
the previous lemmas, we have

Mk o, fow; (Y1, YN) = /f[Fy7i(B+S)]dS
Q

= /Oo {S€Q:Fyi(B+S)>f"(t)}dt

[ ter- @ o
By the definition of S(K,#8),
Moo gomn,om) = [ SIS = [ (@1 100 0)) at

and the result follows from Lemma 2.5. O

Lemma 2.6 and (2.7) show that E(K, N, foWW;) decreases under Steiner symmetriza-
tion.



Theorem 2.1 Let K be a conver body with volume |K| =1 and let § € S" L. If
S(K,0) is the Steiner symmetral of K in the direction of 6, then

E(S(Kae)aNafOWi) SE(KaNafOWi)

for every continuous strictly increasing function f : Rt — RY and any i =
0,1,...,n—1. O

For every convex body K there is a sequence of successive Steiner symmetriza-
tions of K which converges to a ball with respect to the Hausdorff metric. Therefore,
Theorem 2.1 shows that E(K, N, f o W;) is minimal in the case of a ball.

Theorem 2.2 Let K be a convez body and let D be a ball of volume |D| = |K| = 1.
Then,
E(K,N,foW;) >E(D,N, f oW;)

for every continuous strictly increasing function f : Rt — RY and any i =
0,1,...,n—1. O

As an application we obtain a generalization of Macbeath’s result. Assume that
|K| = |D| = 1. If we take fp(z) =P, p > 0 in Theorem 2.2, we see that

(/K.../K[W,-(C(xl,...,xN))]pde”'d%)l/p

is minimal for D. Passing to the limit as p — oo, we have

Corollary 2.1 Let |K| =1 and 0 < i < n—1. For every N > n the mazimal
value of the i-th quermassintegral of a convex hull of N points from K is minimal
when K is a ball. a

3 The uniqueness result

Let K be a convex body in R” and let § € S*~ L. If a line L parallel to § meets
K, it does so in a line segment. We write M (K, ) for the set of all midpoints of
these lines. Then, one has the following characterization of an ellipsoid (or a ball
respectively, see [3] - also [8]):

Lemma 3.1 Let K be a convezx body in R". Then, K is an ellipsoid (ball) if and
only if for every § € S"~1 the midpoint set M (K,0) is contained in a hyperplane
(which is orthogonal to 6). O

Using this characterization, we will show that if K is not a ball, then under
a suitable Steiner symmetrization of K every quantity of the form E(-, N, f o W;)
strictly decreases.



Lemma 3.2 Let K be a convex body in R* with |K| = 1. If K is not a ball, we
can find @ € S*1 such that for any N > n+1 there exist y1,...,yn € Py(K) with
(3.1 Fy;(0,...,0) < Fy;(b1,...,bn)

for everyi=1,...,n—1, where y; + b;0 is the midpoint of K N (y; + RA).

Proof: If K is not an ellipsoid, there exists # € S™~! such that M (K,#) is not

contained in a hyperplane. This means that for any N > n + 1 we can find
Y1,---,yn € Py(K) so that

(32) Fy’()(bl, ceey bN) = |C’(y1 + b19, YN+ bN0)| > 0.

Fixie {1,...,n—1} andlet E € G, ,,—;. By Lemma 2.2, F y is a convex function
on RY. Therefore,

(33) 2FE7Y(07"'70) S FE,Y(bla"'abN) +FE7Y(_b17"'7_bN)‘

Moreover, if § € E we have strict inequality in (3.3): the right hand side is strictly
positive because C(y; + b16,...,yn + by6) has non-empty interior, while the left
hand side vanishes.

Given A € K,, the function E — Pg(A) is continuous on G p—;. From
Kubota’s formula and (3.3) we get

2w
2Fyi(0,...,0) = = / Fry(0,...,0) v i(dE)
n—1t JGp n—i
w
< n / FE7y(b1, ey bN)I/mn_,'(dE)
Wn—i JGn nos
w
+ n/ Fpy(=by,...,—bN)Vpn—i(dE)
Wn—i JGn i

= 2Fy,(br,...,bn),

where we have also used the fact that Fy; is even.

Finally, assume that K is an ellipsoid but not a ball. We can now find 6 €
Sn1 such that M(K,6) lies on a hyperplane with normal vector u # +6. Given
N >n+1, we choose y1,...,yn € Py(K) so that the convex hull of the midpoints
y; + b;0 has dimension n — 1. If ¢ € {1,...,n — 1} and E € Gy —; is such that
0 € E but u ¢ E, then

(3.4) FE7y(0,...,0):0<FE7y(b1,...,bN).

Working as before and using (3.3) and (3.4) we get (3.1). i
Theorem 3.1 Let K be a convex body in R with |K|=1. Assume that K is not
a ball. Then, there exists 0 € S™~1 with the following property: for any N > n+1,
for anyi € {1,...,n—1} and any convez strictly increasing function f : Rt — R

we have
]E(S(Kae):N:fOWi) <]E(K7N7fOWi)7

where S(K,0) is the Steiner symmetral of K in the direction of 6.



Proof: Let N, i and f be given (we may assume that f(0) = 0). Theorem 2.1
shows that

(3.5) E(S(K,0),N,f oW;) <E(K,N, f o W;).
Assume that there is equality in (3.5). Then, Lemma 2.6 shows that
(3.6) Mg, pow; (21, -, 2N) = Mgk 0),0,fow; (215 -+ -, 2N)

for any choice of points z1,...,zxy € Py(K). Choose y; € Py(K) so that Lemma
3.2 holds true. We have

(37) MK,G,fOWi(yla---ayN) = /Qf[Fyﬂ(B-l‘S)]dS

where Q@ = {S = (s1,-..,s~5) : |si| <r(y:), i=1,...,N}. Since Fy, is convex and
f is convex increasing, we get

(3.8) 2f[Fy,i(9)] < flFyi(B+ 9)] + f[Fyi(—B+5)]

for every S € ), and Lemma 3.2 claims that there is strict inequality when S = O.
Integrating on ) we see that
(3.9)

2Ms(k,0),0,fow; (Y15 - - YN) < ME,o,pow; (Y15 YN) + Mg g row, (Y1, -, YN)

where K is the reflection of K with respect to #-. From (2.6) we easily check that

(3.10) Mo, pow: (Y1, YN) = Mg g pow, (Y1, -5 YN)

and hence,

(3.11) Msk.,0),0,fow; Y1, yYN) < MK o, pow; (W1, - YN),

which contradicts (3.6). O
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