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Abstract

We provide an extension of the Busemann-Straus/Grinberg inequality: if K is a bounded Borel set
in Rn, and 1 6 k < m 6 n, then∫

Gn,k

vrad(K ∩ E)km dνn,k(E) 6
∫
Gn,m

vrad(K ∩ F )km dνn,m(F ),

where vrad(A) denotes the volume radius of A. We also obtain a dual inequality for the volume radius
of projections in the case where K is a convex body in Rn:∫

Gn,k

vrad(PE(K))−km dνn,k(E) 6 Ckm

∫
Gn,m

vrad(PF (K))−km dνn,m(F ),

where C > 0 is an absolute constant. Moreover, we show that reverse inequalities also hold, and we
provide the corresponding extensions of the functional form of Grinberg’s inequality proved by Dann,
Paouris and Pivovarov.

1 Introduction

The following inequality was proved by Busemann and Straus [2], and independently by Grinberg [6]. If K
is a convex body in Rn then, for any 1 6 k 6 n− 1,

(1.1)

∫
Gn,k

Volk(K ∩ E)ndνn,k(E) 6
κnk
κkn

Voln(K)k,

where κs is the volume of the Euclidean unit ball in Rs and νn,k is the Haar probability measure on the
Grassmannian Gn,k. In fact, this inequality continues to hold true for any bounded Borel set K in Rn as
one can check from Grinberg’s argument; for this more general form see also [5, Section 7]. An important
property of the integral in the left hand side of (1.1), observed by Grinberg, is that it is invariant under
volume preserving linear transformations of K. The corresponding affine inequality states that

(1.2)

∫
An,k

Volk(K ∩ E)n+1dµn,k(E) 6
κn+1
k

κk+1
n

κ(k+1)n

κn(k+1)
Voln(K)k+1,

where µn,k is the Haar probability measure on the set An,k of k-dimensional affine subspaces of Rn. A
discussion of both results appears in [9, Section 8.6], where the following extension of (1.2) is also proved
(see [9, Theorem 8.6.4]). If K is a convex body in Rn and if 1 6 k < m 6 n then

(1.3)

∫
An,k

Volk(K ∩ E)m+1dµn,k(E) 6
κm+1
k

κk+1
m

κ(k+1)m

κk(m+1)

∫
An,m

Volm(K ∩ F )k+1dµn,m(F ).

In this short note we first point out a simple way to obtain the analogous extension of (1.1). We also show
that in the case where K is a convex body a reverse inequality holds (the parameter Lm in (1.5) below
is the maximum of the isotropic constants of m-dimensional convex bodies; see [1, Chapter 10] for further
information).
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Theorem 1.1. Let K be a bounded Borel set in Rn, and 1 6 k < m 6 n. Then,

(1.4)

∫
Gn,k

Volk(K ∩ E)m dνn,k(E) 6
κmk
κkm

∫
Gn,m

Volm(K ∩ F )k dνn,m(F ).

Note that κmk /κ
k
m 6 (

√
e)(m−k)m. On the other hand, if K is a symmetric convex body in Rn then the reverse

inequality

(1.5)

∫
Gn,k

Volk(K ∩ E)m dνn,k(E) > α
(m−k)m
m,k

∫
Gn,m

Volm(K ∩ F )k dνn,m(F ),

also holds, where αm,k = cmax

{
1

Lm
,
(

m
m−k log

(
em
m−k

))−1/2}
for some absolute constant c > 0.

If we assume that K is a symmetric convex body in Rn then a duality argument, based on the Blaschke-
Santaló and the Bourgain-Milman inequality (see [1, Chapter 8]), leads to related inequalities about the
volume of projections of K. In fact, one can do this without assuming the symmetry of the body, using a
direct argument.

Theorem 1.2. Let K be a convex body in Rn, and 1 6 k < m 6 n. Then,

(1.6)

∫
Gn,k

Volk(PE(K))−m dνn,k(E) 6 Ckmκ
k
m

κmk

∫
Gn,m

Volm(PF (K))−k dνn,m(F ),

where C > 0 is an absolute constant. On the other hand,

(1.7)

∫
Gn,m

Volm(PF (K))−k dνn,m(F ) 6 Ckmκ
m
k

κkm
(logm)km

∫
Gn,k

Volk(PE(K))−m dνn,k(E),

where C > 0 is an absolute constant.

A functional version of (1.1) is established in [4]: if 1 6 q 6 k 6 n− 1 and f is a non-negative, bounded
and integrable function on Rn then

(1.8)

∫
Gn,k

‖f |E‖n1
‖f |E‖n−k∞

dνn,k(E) 6
κnk
κkn
‖f‖n1 .

Our next result is a more general inequality which includes a functional version of Theorem 1.1 (choose q = k
and p = m− k) and (1.8) (choose also m = n).

Theorem 1.3. Let 1 6 q 6 k < m 6 n, and f be a non-negative, bounded and integrable function on Rn.
Then, for 0 6 p 6 m− k,

(1.9)

∫
Gn,k

‖f |E‖q(k+p)/k
1

‖f |E‖pq/k∞
dνn,k(E) 6

κ
q(k+p)/k
k

κ
q(k+p)/m
m

∫
Gn,m

‖f |F ‖q(k+p)/m
1 ‖f |F ‖q(m−k−p)/m∞ dνn,m(F ).

In particular, setting q = k and p = m− k we see that

(1.10)

∫
Gn,k

(∫
E
f(x) dλE(x)

)m
‖f |E‖m−k∞

dνn,k(E) 6
κmk
κkm

∫
Gn,m

(∫
F

f(x) dλF (x)

)k

dνn,m(F ).

We also state and prove the functional analogue of (1.3) (the case m = n was proved in [4]).

Theorem 1.4. Let 1 6 k < m 6 n, and f be a non-negative, bounded and integrable function on Rn. Then

(1.11)

∫
An,k

(∫
E
f(x) dλE(x)

)m+1

‖f |E‖m−k∞
dµn,k(E) 6

κm+1
k

κk+1
m

κm(k+1)

κk(m+1)

∫
An,m

(∫
F

f(x) dλF (x)

)k+1

dµn,m(F ).
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2 Notation and background

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote the corresponding Euclidean
norm by | · |, and write Bn

2 for the Euclidean unit ball, and Sn−1 for the unit sphere. Volume is denoted by
Voln and Lebesgue measure by λ. We write κn for the volume of Bn

2 and σn−1 for the Lebesgue measure on
Sn−1. Moreover, ωn is the surface area of Sn−1. We write ν for the Haar probability measure on O(n). The
Grassmann manifold Gn,k of k-dimensional subspaces of Rn is equipped with the Haar probability measure
νn,k. We write λE for the Lebesgue measure on some E ∈ Gn,k. We refer to the books [8] and [1] for basic
definitions and facts from convex geometry.

§2.1. Integration on Gn,k and An,k. For F ∈ Gn,m, k < m, νF,k is the measure on the set GF,k of
all k-dimensional subspaces of F , and for E ∈ Gn,k, k < m, νE,m is the measure on the set GE,m of all
m-dimensional subspaces of Rn that contain E. We also denote by An,k the set of all k-dimensional affine
subspaces of Rn and, given some k < m and F ∈ An,m, by AF,k the set of all k-dimensional affine subspaces
of F . Given some E ∈ An,k, k < m, AE,m stands for the set of all m-dimensional affine subspaces of Rn that
contain E. The respective probability measures are µn,k, µF,k and µE,m. Given 0 6 k < m 6 n we define

G(n, k,m) = {(F,E) ∈ Gn,k ×Gn,m : F ⊂ E}

and
A(n, k,m) = {(F,E) ∈ An,k ×An,m : F ⊂ E}.

The space G(n, k,m) is a homogeneous SO(n)-space and can be equipped with a rotationally invariant
probability measure νn,k,m. We shall use the following fact (for a proof see [9, Theorem 7.1.1]). If 1 6 k <
m 6 n− 1 and g : G(n, k,m)→ R is a non-negative νn,k,m-measurable function then∫

G(n,k,m)

g dνn,k,m =

∫
Gn,m

∫
GF,k

g(E,F ) dνF,k(E) dνn,m(F )(2.1)

=

∫
Gn,k

∫
GE,m

g(E,F ) dνE,m(F ) dνn,k(E).

An analogous identity holds true for affine subspaces. If 1 6 k < m 6 n − 1 and g : A(n, k,m) → R is a
non-negative measurable function, we have

(2.2)

∫
An,m

∫
AF,k

g(E,F ) dµF,k(E) dµn,m(F ) =

∫
An,k

∫
AE,m

g(E,F ) dµE,m(F ) dµn,k(E)

(for a proof see [9, Theorem 7.1.2]).

§2.2. Affine and dual affine quermassintegrals. For every convex body K (or more generally for any
bounded Borel set) in Rn and 1 6 k 6 n− 1 we define the normalized affine quermassintegrals of K,

Φ[k](K) := Voln(K)−
1
n

(∫
Gn,k

Volk(PE(K))−n dνn,k(E)

)− 1
kn

.

It is known that for every centered convex body K in Rn,

(2.3) c1

√
n

k
6 Φ[k](K) 6 c2 min

{√
n

k
log n, (n/k)3/2

√
log(en/k)

}
for some absolute constants c1, c2 > 0. The bounds on the right hand side of (2.3) were proved in [3]. The
second bound is better when k is proportional to n. The left hand side inequality was proved in [7].
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For every convex body (or more generally for any bounded Borel set) K in Rn and 1 6 k 6 n − 1 one
can also define the normalized dual affine quermassintegrals of K, by

(2.4) Φ̃[k](K) := Voln(K)−
n−k
kn

(∫
Gn,n−k

Voln−k(K ∩ E)n dνn,n−k(E)

) 1
kn

.

By Grinberg’s inequality, we know that if K is a bounded Borel set in Rn then

(2.5) [Φ̃[k](K)]kn 6 [Φ̃[k](B
n
2 )]kn =

κnn−k

κn−kn

6 (
√
e)kn.

Assuming that K is a centered convex body in Rn there are two lower bounds on Φ̃[k], proved in [3]:

(2.6) Φ̃[k](K) > max

{
c1L
−1
K , c2

(√
n

k
log
(en
k

))−1}
.

In particular, the second bound above is better when k is proportional to n.

3 Proof of the results and further remarks

We start with the proof of Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. Let K be a bounded Borel set in Rn, and 1 6 k < m 6 n. Using (2.1) and (2.4) we
observe that the dual affine quermassintegrals satisfy the following identity:∫

Gn,m

Volk(K ∩ E)m dνn,m(E) =

∫
Gn,m

(∫
GF,k

Volk(K ∩ E)m dνF,k(E)

)
dνn,m(F )(3.1)

=

∫
Gn,m

Volm(K ∩ F )k[Φ̃[m−k](K ∩ F )](m−k)m dνn,m(F ).

Since

[Φ̃[m−k](K ∩ F )](m−k)m 6
κmk
κkm

by Grinberg’s inequality (2.5), we conclude that

(3.2)

∫
Gn,k

Volk(K ∩ E)m dνn,k(E) 6
κmk
κkm

∫
Gn,m

Volm(K ∩ F )k dνn,m(F ).

For the reverse inequality, assuming that K is a symmetric convex body in Rn, we combine (3.1) with the
lower bounds

Φ̃[m−k](K ∩ F ) > max

c1L−1K∩F , c2

(√
m

m− k
log

(
em

m− k

))−1
and the fact that LK∩F 6 Lm for all F ∈ Gn,m, to get

(3.3)

∫
Gn,k

Volk(K ∩ E)m dνn,k(E) > α
(m−k)m
m,k

∫
Gn,m

Volm(K ∩ F )k dνn,m(F ),

where αm,k = cmax

{
1

Lm
,
(

m
m−k log

(
em
m−k

))−1/2}
for some absolute constant c > 0.
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Remark 3.1. The volume radius of a bounded Borel set A in Rs is the quantity

vrad(A) =

(
Vols(A)

κs

)1/s

.

Therefore, the inequality (1.4) takes the simple equivalent form

(3.4)

∫
Gn,k

vrad(K ∩ E)km dνn,k(E) 6
∫
Gn,m

vrad(K ∩ F )km dνn,m(F ).

Remark 3.2. A variant of (3.4) is proved in [5, Theorem 7.4]: If K is a bounded Borel set in Rn then, for
any 1 6 k < m 6 n− 1 and 0 < p 6 m,

(3.5)

∫
Gn,k

vrad(K ∩ E)kp dνn,k(E) 6

(∫
Gn,m

vrad(K ∩ F )mp dνn,m(F )

) k
m

.

In the case p = m the estimate of Theorem 1.1 is stronger by Hölder’s inequality. We can actually prove a
stronger version of Gardner’s theorem for all values of p.

Theorem 3.3. Let K be a bounded Borel set in Rn. For any 1 6 k < m 6 n− 1 and 0 < p 6 m,

(3.6)

∫
Gn,k

vrad(K ∩ E)kp dνn,k(E) 6
∫
Gn,m

vrad(K ∩ F )kp dνn,m(F ).

Proof. Given 1 6 r 6 s, 0 < p 6 s, and a convex body A in Rs we first apply Hölder’s, and then Grinberg’s
inequality to write

∫
Gs,r

(
Volr(A ∩ E)

κr

)p

dνs,r(E) 6

(∫
Gs,r

(
Volr(A ∩ E)

κr

)s

dνs,r(E)

) p
s

6

(
Vols(A)

κs

) rp
s

.

This shows that

(3.7)

∫
Gs,r

vrad(A ∩ E)rp dνs,r(E) 6 vrad(A)rp.

Now if 1 6 k < m 6 n− 1, we apply (3.7) for r := k, s := m and A = K ∩ F where F ∈ Gn,m to see that∫
Gn,k

vrad(K ∩ E)kp dνn,k(E) =

∫
Gn,m

∫
GF,k

vrad(K ∩ E)kp dνF,k(E) dνn,m(F )

6
∫
Gn,m

vrad(K ∩ F )kp dνn,m(F ).

This finishes the proof of (3.6). Note that Hölder’s inequality immediately gives (3.5).

We pass now to the proof of Theorem 1.2. In the case where K is a symmetric convex body one can
combine Theorem 1.1 with a duality argument, based on the Blaschke-Santaló and the Bourgain-Milman
inequality (see [1, Chapter 8]), to obtain the result. We provide a direct argument which leads to the same
result without assuming the symmetry of the body.

Proof of Theorem 1.2. Let K be a bounded Borel set in Rn, and 1 6 k < m 6 n. Note that if p 6= 0 then∫
Gn,k

Volk(PE(K))p dνn,k(E) =

∫
Gn,m

∫
GF,k

Volk(PE(PF (K)))p dνF,k(E) dνn,m(F ).
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In particular, for p = −m we get

(3.8)

∫
Gn,k

Volk(PE(K))−m dνn,k(E) =

∫
Gn,m

Volm(PFK)−kΦ[k](PF (K))−km dνn,m(F ).

Using the lower bound from (2.3) we conclude that

(3.9)

∫
Gn,k

Volk(PE(K))−m dνn,k(E) 6 Ckmκ
k
m

κmk

∫
Gn,m

Volm(PF (K))−k dνn,m(F ),

where C > 0 is an absolute constant. On the other hand, in view of (3.8) and of the upper bound in (2.3),
we have that (1.6) can be reversed, up to a logm factor; we have

(3.10)

∫
Gn,m

Volm(PF (K))−k dνn,m(F ) 6 Ckmκ
m
k

κkm
(logm)km

∫
Gn,k

Volk(PE(K))−m dνn,k(E),

where C > 0 is an absolute constant.

Next, we discuss the proofs of the corresponing extensions of the functional version of (1.1). Recall that,
as proved in [4], if 1 6 q 6 k 6 n− 1 and f is a non-negative, bounded and integrable function on Rn then

(3.11)

∫
Gn,k

‖f |E‖n1
‖f |E‖n−k∞

dνn,k(E) 6
κnk
κkn
‖f‖n1 .

The main tool for the proof of this inequality in [4] were integral geometric formulas of Blaschke-Petkantschin
type. Our next result is a more general inequality which includes a functional version of Theorem 1.1 (choose
q = k and p = m− k) and (3.11) (choose also m = n).

Theorem 3.4. Let 1 6 q 6 k < m 6 n, and f be a non-negative, bounded and integrable function on Rn.
Then, for 0 6 p 6 m− k,

(3.12)

∫
Gn,k

‖f |E‖q+pq/k
1

‖f |E‖pq/k∞
dνn,k(E) 6

κ
q(k+p)/k
k

κ
q(k+p)/m
m

∫
Gn,m

‖f |F ‖q(k+p)/m
1 ‖f |F ‖q(m−k−p)/m∞ dνn,m(F ).

In particular, setting q = k and p = m− k we see that

(3.13)

∫
Gn,k

(∫
E
f(x) dλE(x)

)m
‖f |E‖m−k∞

dνn,k(E) 6
κmk
κkm

∫
Gn,m

(∫
F

f(x) dλF (x)

)k

dνn,m(F ).

Proof. The first inequality is a direct application of [4, Theorem 5.1] which states that if g is a non-negative,
bounded integrable function on Rm and if 1 6 q 6 k 6 m and 0 6 p 6 m− k, then∫

Gm,k

‖g|E‖q(p+k)/k
1

‖g|E‖pq/k∞
dνm,k(E) 6

κ
q(k+p)/k
k

κ
q(k+p)/m
m

‖g‖q(k+p)/m
1 ‖g‖q(m−k−p)/m∞ .

We assume that f is a non-negative, bounded and integrable function on Rn, and applying this inequality
for g = f |F where F ∈ Gn,m, we write∫

Gn,k

‖f |E‖q+pq/k
1

‖f |E‖pq/k∞
dνn,k(E) =

∫
Gn,m

(∫
GF,k

‖f |E‖q+pq/k
1

‖f |E‖pq/k∞
dνF,k(E)

)
dνn,m(F )

6
κ
q(k+p)/k
k

κ
q(k+p)/m
m

∫
Gn,m

‖f |F ‖q(k+p)/m
1 ‖f |F ‖q(m−k−p)/m∞ dνn,m(F ).

The second claim of the theorem follows if we choose q = k and p = m− k.
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Finally, Theorem 1.4 is the functional analogue of (1.3) (the case m = n was proved in [4]).

Proof of Theorem 1.4. It was proved in [4] that if g is a non-negative, bounded integrable function on Rm

then

(3.14)

∫
Am,k

(∫
E
g(x) dλE(x)

)m+1

‖g|E‖m−k∞
dµm,k(E) 6

κm+1
k

κk+1
m

κm(k+1)

κk(m+1)

(∫
Rm

g(x) dx

)k+1

.

Let 1 6 k < m 6 n, and f be a non-negative, bounded and integrable function on Rn. Then, applying the
previous inequality for g = f |F where F ∈ Gn,m, we write∫

An,k

(∫
E
f(x) dλE(x)

)m+1

‖f |E‖m−k∞
dµn,k(E) =

∫
An,m

(∫
AF,k

(∫
E
f(x) dλE(x)

)m+1

‖f |E‖m−k∞
dµF,k(E)

)
dµn,m(F )

6
κm+1
k

κk+1
m

κm(k+1)

κk(m+1)

∫
An,m

(∫
F

f(x) dλF (x)

)k+1

dµn,m(F ),

as claimed.
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