Extensions of Grinberg's inequality and of its functional form

Giorgos Chasapis and Dimitris-Marios Liakopoulos

Abstract

We provide an extension of the Busemann-Straus/Grinberg inequality: if K is a bounded Borel set in \mathbb{R}^{n}, and $1 \leqslant k<m \leqslant n$, then $$
\int_{G_{n, k}} \operatorname{vrad}(K \cap E)^{k m} d \nu_{n, k}(E) \leqslant \int_{G_{n, m}} \operatorname{vrad}(K \cap F)^{k m} d \nu_{n, m}(F)
$$ where $\operatorname{vrad}(A)$ denotes the volume radius of A. We also obtain a dual inequality for the volume radius of projections in the case where K is a convex body in \mathbb{R}^{n} : $$
\int_{G_{n, k}} \operatorname{vrad}\left(P_{E}(K)\right)^{-k m} d \nu_{n, k}(E) \leqslant C^{k m} \int_{G_{n, m}} \operatorname{vrad}\left(P_{F}(K)\right)^{-k m} d \nu_{n, m}(F)
$$ where $C>0$ is an absolute constant. Moreover, we show that reverse inequalities also hold, and we provide the corresponding extensions of the functional form of Grinberg's inequality proved by Dann, Paouris and Pivovarov.

1 Introduction

The following inequality was proved by Busemann and Straus [2], and independently by Grinberg [6]. If K is a convex body in \mathbb{R}^{n} then, for any $1 \leqslant k \leqslant n-1$,

$$
\begin{equation*}
\int_{G_{n, k}} \operatorname{Vol}_{k}(K \cap E)^{n} d \nu_{n, k}(E) \leqslant \frac{\kappa_{k}^{n}}{\kappa_{n}^{k}} \operatorname{Vol}_{n}(K)^{k} \tag{1.1}
\end{equation*}
$$

where κ_{s} is the volume of the Euclidean unit ball in \mathbb{R}^{s} and $\nu_{n, k}$ is the Haar probability measure on the Grassmannian $G_{n, k}$. In fact, this inequality continues to hold true for any bounded Borel set K in \mathbb{R}^{n} as one can check from Grinberg's argument; for this more general form see also [5, Section 7]. An important property of the integral in the left hand side of 1.1 , observed by Grinberg, is that it is invariant under volume preserving linear transformations of K. The corresponding affine inequality states that

$$
\begin{equation*}
\int_{A_{n, k}} \operatorname{Vol}_{k}(K \cap E)^{n+1} d \mu_{n, k}(E) \leqslant \frac{\kappa_{k}^{n+1}}{\kappa_{n}^{k+1}} \frac{\kappa_{(k+1) n}}{\kappa_{n(k+1)}} \operatorname{Vol}_{n}(K)^{k+1} \tag{1.2}
\end{equation*}
$$

where $\mu_{n, k}$ is the Haar probability measure on the set $A_{n, k}$ of k-dimensional affine subspaces of \mathbb{R}^{n}. A discussion of both results appears in [9, Section 8.6], where the following extension of 1.2 is also proved (see [9, Theorem 8.6.4]). If K is a convex body in \mathbb{R}^{n} and if $1 \leqslant k<m \leqslant n$ then

$$
\begin{equation*}
\int_{A_{n, k}} \operatorname{Vol}_{k}(K \cap E)^{m+1} d \mu_{n, k}(E) \leqslant \frac{\kappa_{k}^{m+1}}{\kappa_{m}^{k+1}} \frac{\kappa_{(k+1) m}}{\kappa_{k(m+1)}} \int_{A_{n, m}} \operatorname{Vol}_{m}(K \cap F)^{k+1} d \mu_{n, m}(F) \tag{1.3}
\end{equation*}
$$

In this short note we first point out a simple way to obtain the analogous extension of (1.1). We also show that in the case where K is a convex body a reverse inequality holds (the parameter L_{m} in 1.5 below is the maximum of the isotropic constants of m-dimensional convex bodies; see [1, Chapter 10] for further information).

Theorem 1.1. Let K be a bounded Borel set in \mathbb{R}^{n}, and $1 \leqslant k<m \leqslant n$. Then,

$$
\begin{equation*}
\int_{G_{n, k}} \operatorname{Vol}_{k}(K \cap E)^{m} d \nu_{n, k}(E) \leqslant \frac{\kappa_{k}^{m}}{\kappa_{m}^{k}} \int_{G_{n, m}} \operatorname{Vol}_{m}(K \cap F)^{k} d \nu_{n, m}(F) \tag{1.4}
\end{equation*}
$$

Note that $\kappa_{k}^{m} / \kappa_{m}^{k} \leqslant(\sqrt{e})^{(m-k) m}$. On the other hand, if K is a symmetric convex body in \mathbb{R}^{n} then the reverse inequality

$$
\begin{equation*}
\int_{G_{n, k}} \operatorname{Vol}_{k}(K \cap E)^{m} d \nu_{n, k}(E) \geqslant \alpha_{m, k}^{(m-k) m} \int_{G_{n, m}} \operatorname{Vol}_{m}(K \cap F)^{k} d \nu_{n, m}(F) \tag{1.5}
\end{equation*}
$$

also holds, where $\alpha_{m, k}=c \max \left\{\frac{1}{L_{m}},\left(\frac{m}{m-k} \log \left(\frac{e m}{m-k}\right)\right)^{-1 / 2}\right\}$ for some absolute constant $c>0$.
If we assume that K is a symmetric convex body in \mathbb{R}^{n} then a duality argument, based on the BlaschkeSantaló and the Bourgain-Milman inequality (see [1, Chapter 8]), leads to related inequalities about the volume of projections of K. In fact, one can do this without assuming the symmetry of the body, using a direct argument.

Theorem 1.2. Let K be a convex body in \mathbb{R}^{n}, and $1 \leqslant k<m \leqslant n$. Then,

$$
\begin{equation*}
\int_{G_{n, k}} \operatorname{Vol}_{k}\left(P_{E}(K)\right)^{-m} d \nu_{n, k}(E) \leqslant C^{k m} \frac{\kappa_{m}^{k}}{\kappa_{k}^{m}} \int_{G_{n, m}} \operatorname{Vol}_{m}\left(P_{F}(K)\right)^{-k} d \nu_{n, m}(F) \tag{1.6}
\end{equation*}
$$

where $C>0$ is an absolute constant. On the other hand,

$$
\begin{equation*}
\int_{G_{n, m}} \operatorname{Vol}_{m}\left(P_{F}(K)\right)^{-k} d \nu_{n, m}(F) \leqslant C^{k m} \frac{\kappa_{k}^{m}}{\kappa_{m}^{k}}(\log m)^{k m} \int_{G_{n, k}} \operatorname{Vol}_{k}\left(P_{E}(K)\right)^{-m} d \nu_{n, k}(E) \tag{1.7}
\end{equation*}
$$

where $C>0$ is an absolute constant.
A functional version of (1.1) is established in [4]: if $1 \leqslant q \leqslant k \leqslant n-1$ and f is a non-negative, bounded and integrable function on \mathbb{R}^{n} then

$$
\begin{equation*}
\int_{G_{n, k}} \frac{\left\|\left.f\right|_{E}\right\|_{1}^{n}}{\left\|\left.f\right|_{E}\right\|_{\infty}^{n-k}} d \nu_{n, k}(E) \leqslant \frac{\kappa_{k}^{n}}{\kappa_{n}^{k}}\|f\|_{1}^{n} \tag{1.8}
\end{equation*}
$$

Our next result is a more general inequality which includes a functional version of Theorem 1.1 (choose $q=k$ and $p=m-k$) and (choose also $m=n$).

Theorem 1.3. Let $1 \leqslant q \leqslant k<m \leqslant n$, and f be a non-negative, bounded and integrable function on \mathbb{R}^{n}. Then, for $0 \leqslant p \leqslant m-k$,

$$
\begin{equation*}
\int_{G_{n, k}} \frac{\left\|\left.f\right|_{E}\right\|_{1}^{q(k+p) / k}}{\left\|\left.f\right|_{E}\right\|_{\infty}^{p q / k}} d \nu_{n, k}(E) \leqslant \frac{\kappa_{k}^{q(k+p) / k}}{\kappa_{m}^{q(k+p) / m}} \int_{G_{n, m}}\left\|\left.f\right|_{F}\right\|_{1}^{q(k+p) / m}\left\|\left.f\right|_{F}\right\|_{\infty}^{q(m-k-p) / m} d \nu_{n, m}(F) \tag{1.9}
\end{equation*}
$$

In particular, setting $q=k$ and $p=m-k$ we see that

$$
\begin{equation*}
\int_{G_{n, k}} \frac{\left(\int_{E} f(x) d \lambda_{E}(x)\right)^{m}}{\left\|\left.f\right|_{E}\right\|_{\infty}^{m-k}} d \nu_{n, k}(E) \leqslant \frac{\kappa_{k}^{m}}{\kappa_{m}^{k}} \int_{G_{n, m}}\left(\int_{F} f(x) d \lambda_{F}(x)\right)^{k} d \nu_{n, m}(F) \tag{1.10}
\end{equation*}
$$

We also state and prove the functional analogue of (1.3) (the case $m=n$ was proved in (4).
Theorem 1.4. Let $1 \leqslant k<m \leqslant n$, and f be a non-negative, bounded and integrable function on \mathbb{R}^{n}. Then

$$
\begin{equation*}
\int_{A_{n, k}} \frac{\left(\int_{E} f(x) d \lambda_{E}(x)\right)^{m+1}}{\left\|\left.f\right|_{E}\right\|_{\infty}^{m-k}} d \mu_{n, k}(E) \leqslant \frac{\kappa_{k}^{m+1}}{\kappa_{m}^{k+1}} \frac{\kappa_{m(k+1)}}{\kappa_{k(m+1)}} \int_{A_{n, m}}\left(\int_{F} f(x) d \lambda_{F}(x)\right)^{k+1} d \mu_{n, m}(F) . \tag{1.11}
\end{equation*}
$$

2 Notation and background

We work in \mathbb{R}^{n}, which is equipped with a Euclidean structure $\langle\cdot, \cdot\rangle$. We denote the corresponding Euclidean norm by $|\cdot|$, and write B_{2}^{n} for the Euclidean unit ball, and S^{n-1} for the unit sphere. Volume is denoted by Vol_{n} and Lebesgue measure by λ. We write κ_{n} for the volume of B_{2}^{n} and σ_{n-1} for the Lebesgue measure on S^{n-1}. Moreover, ω_{n} is the surface area of S^{n-1}. We write ν for the Haar probability measure on $O(n)$. The Grassmann manifold $G_{n, k}$ of k-dimensional subspaces of \mathbb{R}^{n} is equipped with the Haar probability measure $\nu_{n, k}$. We write λ_{E} for the Lebesgue measure on some $E \in G_{n, k}$. We refer to the books 8 and 1 for basic definitions and facts from convex geometry.
§2.1. Integration on $G_{n, k}$ and $A_{n, k}$. For $F \in G_{n, m}, k<m, \nu_{F, k}$ is the measure on the set $G_{F, k}$ of all k-dimensional subspaces of F, and for $E \in G_{n, k}, k<m, \nu_{E, m}$ is the measure on the set $G_{E, m}$ of all m-dimensional subspaces of \mathbb{R}^{n} that contain E. We also denote by $A_{n, k}$ the set of all k-dimensional affine subspaces of \mathbb{R}^{n} and, given some $k<m$ and $F \in A_{n, m}$, by $A_{F, k}$ the set of all k-dimensional affine subspaces of F. Given some $E \in A_{n, k}, k<m, A_{E, m}$ stands for the set of all m-dimensional affine subspaces of \mathbb{R}^{n} that contain E. The respective probability measures are $\mu_{n, k}, \mu_{F, k}$ and $\mu_{E, m}$. Given $0 \leqslant k<m \leqslant n$ we define

$$
G(n, k, m)=\left\{(F, E) \in G_{n, k} \times G_{n, m}: F \subset E\right\}
$$

and

$$
A(n, k, m)=\left\{(F, E) \in A_{n, k} \times A_{n, m}: F \subset E\right\} .
$$

The space $G(n, k, m)$ is a homogeneous $S O(n)$-space and can be equipped with a rotationally invariant probability measure $\nu_{n, k, m}$. We shall use the following fact (for a proof see [9, Theorem 7.1.1]). If $1 \leqslant k<$ $m \leqslant n-1$ and $g: G(n, k, m) \rightarrow \mathbb{R}$ is a non-negative $\nu_{n, k, m}$-measurable function then

$$
\begin{align*}
\int_{G(n, k, m)} g d \nu_{n, k, m} & =\int_{G_{n, m}} \int_{G_{F, k}} g(E, F) d \nu_{F, k}(E) d \nu_{n, m}(F) \tag{2.1}\\
& =\int_{G_{n, k}} \int_{G_{E, m}} g(E, F) d \nu_{E, m}(F) d \nu_{n, k}(E) .
\end{align*}
$$

An analogous identity holds true for affine subspaces. If $1 \leqslant k<m \leqslant n-1$ and $g: A(n, k, m) \rightarrow \mathbb{R}$ is a non-negative measurable function, we have

$$
\begin{equation*}
\int_{A_{n, m}} \int_{A_{F, k}} g(E, F) d \mu_{F, k}(E) d \mu_{n, m}(F)=\int_{A_{n, k}} \int_{A_{E, m}} g(E, F) d \mu_{E, m}(F) d \mu_{n, k}(E) \tag{2.2}
\end{equation*}
$$

(for a proof see 9, Theorem 7.1.2]).
§2.2. Affine and dual affine quermassintegrals. For every convex body K (or more generally for any bounded Borel set) in \mathbb{R}^{n} and $1 \leqslant k \leqslant n-1$ we define the normalized affine quermassintegrals of K,

$$
\Phi_{[k]}(K):=\operatorname{Vol}_{n}(K)^{-\frac{1}{n}}\left(\int_{G_{n, k}} \operatorname{Vol}_{k}\left(P_{E}(K)\right)^{-n} d \nu_{n, k}(E)\right)^{-\frac{1}{k n}} .
$$

It is known that for every centered convex body K in \mathbb{R}^{n},

$$
\begin{equation*}
c_{1} \sqrt{\frac{n}{k}} \leqslant \Phi_{[k]}(K) \leqslant c_{2} \min \left\{\sqrt{\frac{n}{k}} \log n,(n / k)^{3 / 2} \sqrt{\log (e n / k)}\right\} \tag{2.3}
\end{equation*}
$$

for some absolute constants $c_{1}, c_{2}>0$. The bounds on the right hand side of (2.3) were proved in [3]. The second bound is better when k is proportional to n. The left hand side inequality was proved in [7].

For every convex body (or more generally for any bounded Borel set) K in \mathbb{R}^{n} and $1 \leqslant k \leqslant n-1$ one can also define the normalized dual affine quermassintegrals of K, by

$$
\begin{equation*}
\tilde{\Phi}_{[k]}(K):=\operatorname{Vol}_{n}(K)^{-\frac{n-k}{k n}}\left(\int_{G_{n, n-k}} \operatorname{Vol}_{n-k}(K \cap E)^{n} d \nu_{n, n-k}(E)\right)^{\frac{1}{k n}} \tag{2.4}
\end{equation*}
$$

By Grinberg's inequality, we know that if K is a bounded Borel set in \mathbb{R}^{n} then

$$
\begin{equation*}
\left[\tilde{\Phi}_{[k]}(K)\right]^{k n} \leqslant\left[\tilde{\Phi}_{[k]}\left(B_{2}^{n}\right)\right]^{k n}=\frac{\kappa_{n-k}^{n}}{\kappa_{n}^{n-k}} \leqslant(\sqrt{e})^{k n} \tag{2.5}
\end{equation*}
$$

Assuming that K is a centered convex body in \mathbb{R}^{n} there are two lower bounds on $\tilde{\Phi}_{[k]}$, proved in 3]:

$$
\begin{equation*}
\tilde{\Phi}_{[k]}(K) \geqslant \max \left\{c_{1} L_{K}^{-1}, c_{2}\left(\sqrt{\frac{n}{k} \log \left(\frac{e n}{k}\right)}\right)^{-1}\right\} \tag{2.6}
\end{equation*}
$$

In particular, the second bound above is better when k is proportional to n.

3 Proof of the results and further remarks

We start with the proof of Theorem 1.1 and Theorem 1.2 .

Proof of Theorem 1.1. Let K be a bounded Borel set in \mathbb{R}^{n}, and $1 \leqslant k<m \leqslant n$. Using (2.1) and (2.4) we observe that the dual affine quermassintegrals satisfy the following identity:

$$
\begin{gather*}
\int_{G_{n, m}} \operatorname{Vol}_{k}(K \cap E)^{m} d \nu_{n, m}(E)=\int_{G_{n, m}}\left(\int_{G_{F, k}} \operatorname{Vol}_{k}(K \cap E)^{m} d \nu_{F, k}(E)\right) d \nu_{n, m}(F) \tag{3.1}\\
=\int_{G_{n, m}} \operatorname{Vol}_{m}(K \cap F)^{k}\left[\tilde{\Phi}_{[m-k]}(K \cap F)\right]^{(m-k) m} d \nu_{n, m}(F)
\end{gather*}
$$

Since

$$
\left[\tilde{\Phi}_{[m-k]}(K \cap F)\right]^{(m-k) m} \leqslant \frac{\kappa_{k}^{m}}{\kappa_{m}^{k}}
$$

by Grinberg's inequality 2.5 , we conclude that

$$
\begin{equation*}
\int_{G_{n, k}} \operatorname{Vol}_{k}(K \cap E)^{m} d \nu_{n, k}(E) \leqslant \frac{\kappa_{k}^{m}}{\kappa_{m}^{k}} \int_{G_{n, m}} \operatorname{Vol}_{m}(K \cap F)^{k} d \nu_{n, m}(F) \tag{3.2}
\end{equation*}
$$

For the reverse inequality, assuming that K is a symmetric convex body in \mathbb{R}^{n}, we combine (3.1) with the lower bounds

$$
\tilde{\Phi}_{[m-k]}(K \cap F) \geqslant \max \left\{c_{1} L_{K \cap F}^{-1}, c_{2}\left(\sqrt{\frac{m}{m-k} \log \left(\frac{e m}{m-k}\right)}\right)^{-1}\right\}
$$

and the fact that $L_{K \cap F} \leqslant L_{m}$ for all $F \in G_{n, m}$, to get

$$
\begin{equation*}
\int_{G_{n, k}} \operatorname{Vol}_{k}(K \cap E)^{m} d \nu_{n, k}(E) \geqslant \alpha_{m, k}^{(m-k) m} \int_{G_{n, m}} \operatorname{Vol}_{m}(K \cap F)^{k} d \nu_{n, m}(F) \tag{3.3}
\end{equation*}
$$

where $\alpha_{m, k}=c \max \left\{\frac{1}{L_{m}},\left(\frac{m}{m-k} \log \left(\frac{e m}{m-k}\right)\right)^{-1 / 2}\right\}$ for some absolute constant $c>0$.

Remark 3.1. The volume radius of a bounded Borel set A in \mathbb{R}^{s} is the quantity

$$
\operatorname{vrad}(A)=\left(\frac{\operatorname{Vol}_{s}(A)}{\kappa_{s}}\right)^{1 / s}
$$

Therefore, the inequality (1.4) takes the simple equivalent form

$$
\begin{equation*}
\int_{G_{n, k}} \operatorname{vrad}(K \cap E)^{k m} d \nu_{n, k}(E) \leqslant \int_{G_{n, m}} \operatorname{vrad}(K \cap F)^{k m} d \nu_{n, m}(F) \tag{3.4}
\end{equation*}
$$

Remark 3.2. A variant of (3.4) is proved in [5, Theorem 7.4]: If K is a bounded Borel set in \mathbb{R}^{n} then, for any $1 \leqslant k<m \leqslant n-1$ and $0<p \leqslant m$,

$$
\begin{equation*}
\int_{G_{n, k}} \operatorname{vrad}(K \cap E)^{k p} d \nu_{n, k}(E) \leqslant\left(\int_{G_{n, m}} \operatorname{vrad}(K \cap F)^{m p} d \nu_{n, m}(F)\right)^{\frac{k}{m}} \tag{3.5}
\end{equation*}
$$

In the case $p=m$ the estimate of Theorem 1.1 is stronger by Hölder's inequality. We can actually prove a stronger version of Gardner's theorem for all values of p.

Theorem 3.3. Let K be a bounded Borel set in \mathbb{R}^{n}. For any $1 \leqslant k<m \leqslant n-1$ and $0<p \leqslant m$,

$$
\begin{equation*}
\int_{G_{n, k}} \operatorname{vrad}(K \cap E)^{k p} d \nu_{n, k}(E) \leqslant \int_{G_{n, m}} \operatorname{vrad}(K \cap F)^{k p} d \nu_{n, m}(F) \tag{3.6}
\end{equation*}
$$

Proof. Given $1 \leqslant r \leqslant s, 0<p \leqslant s$, and a convex body A in \mathbb{R}^{s} we first apply Hölder's, and then Grinberg's inequality to write

$$
\int_{G_{s, r}}\left(\frac{\operatorname{Vol}_{r}(A \cap E)}{\kappa_{r}}\right)^{p} d \nu_{s, r}(E) \leqslant\left(\int_{G_{s, r}}\left(\frac{\operatorname{Vol}_{r}(A \cap E)}{\kappa_{r}}\right)^{s} d \nu_{s, r}(E)\right)^{\frac{p}{s}} \leqslant\left(\frac{\operatorname{Vol}_{s}(A)}{\kappa_{s}}\right)^{\frac{r p}{s}}
$$

This shows that

$$
\begin{equation*}
\int_{G_{s, r}} \operatorname{vrad}(A \cap E)^{r p} d \nu_{s, r}(E) \leqslant \operatorname{vrad}(A)^{r p} \tag{3.7}
\end{equation*}
$$

Now if $1 \leqslant k<m \leqslant n-1$, we apply (3.7) for $r:=k, s:=m$ and $A=K \cap F$ where $F \in G_{n, m}$ to see that

$$
\begin{aligned}
\int_{G_{n, k}} \operatorname{vrad}(K \cap E)^{k p} d \nu_{n, k}(E) & =\int_{G_{n, m}} \int_{G_{F, k}} \operatorname{vrad}(K \cap E)^{k p} d \nu_{F, k}(E) d \nu_{n, m}(F) \\
& \leqslant \int_{G_{n, m}} \operatorname{vrad}(K \cap F)^{k p} d \nu_{n, m}(F)
\end{aligned}
$$

This finishes the proof of (3.6). Note that Hölder's inequality immediately gives (3.5).

We pass now to the proof of Theorem 1.2 . In the case where K is a symmetric convex body one can combine Theorem 1.1 with a duality argument, based on the Blaschke-Santaló and the Bourgain-Milman inequality (see [1, Chapter 8]), to obtain the result. We provide a direct argument which leads to the same result without assuming the symmetry of the body.

Proof of Theorem 1.2. Let K be a bounded Borel set in \mathbb{R}^{n}, and $1 \leqslant k<m \leqslant n$. Note that if $p \neq 0$ then

$$
\int_{G_{n, k}} \operatorname{Vol}_{k}\left(P_{E}(K)\right)^{p} d \nu_{n, k}(E)=\int_{G_{n, m}} \int_{G_{F, k}} \operatorname{Vol}_{k}\left(P_{E}\left(P_{F}(K)\right)\right)^{p} d \nu_{F, k}(E) d \nu_{n, m}(F)
$$

In particular, for $p=-m$ we get

$$
\begin{equation*}
\int_{G_{n, k}} \operatorname{Vol}_{k}\left(P_{E}(K)\right)^{-m} d \nu_{n, k}(E)=\int_{G_{n, m}} \operatorname{Vol}_{m}\left(P_{F} K\right)^{-k} \Phi_{[k]}\left(P_{F}(K)\right)^{-k m} d \nu_{n, m}(F) \tag{3.8}
\end{equation*}
$$

Using the lower bound from $\sqrt{2.3}$ we conclude that

$$
\begin{equation*}
\int_{G_{n, k}} \operatorname{Vol}_{k}\left(P_{E}(K)\right)^{-m} d \nu_{n, k}(E) \leqslant C^{k m} \frac{\kappa_{m}^{k}}{\kappa_{k}^{m}} \int_{G_{n, m}} \operatorname{Vol}_{m}\left(P_{F}(K)\right)^{-k} d \nu_{n, m}(F) \tag{3.9}
\end{equation*}
$$

where $C>0$ is an absolute constant. On the other hand, in view of (3.8) and of the upper bound in (2.3), we have that $\sqrt{1.6}$ can be reversed, up to a $\log m$ factor; we have

$$
\begin{equation*}
\int_{G_{n, m}} \operatorname{Vol}_{m}\left(P_{F}(K)\right)^{-k} d \nu_{n, m}(F) \leqslant C^{k m} \frac{\kappa_{k}^{m}}{\kappa_{m}^{k}}(\log m)^{k m} \int_{G_{n, k}} \operatorname{Vol}_{k}\left(P_{E}(K)\right)^{-m} d \nu_{n, k}(E) \tag{3.10}
\end{equation*}
$$

where $C>0$ is an absolute constant.

Next, we discuss the proofs of the corresponing extensions of the functional version of (1.1). Recall that, as proved in [4], if $1 \leqslant q \leqslant k \leqslant n-1$ and f is a non-negative, bounded and integrable function on \mathbb{R}^{n} then

$$
\begin{equation*}
\int_{G_{n, k}} \frac{\left\|\left.f\right|_{E}\right\|_{1}^{n}}{\left\|\left.f\right|_{E}\right\|_{\infty}^{n-k}} d \nu_{n, k}(E) \leqslant \frac{\kappa_{k}^{n}}{\kappa_{n}^{k}}\|f\|_{1}^{n} . \tag{3.11}
\end{equation*}
$$

The main tool for the proof of this inequality in [4] were integral geometric formulas of Blaschke-Petkantschin type. Our next result is a more general inequality which includes a functional version of Theorem 1.1 (choose $q=k$ and $p=m-k$) and (3.11) (choose also $m=n$).
Theorem 3.4. Let $1 \leqslant q \leqslant k<m \leqslant n$, and f be a non-negative, bounded and integrable function on \mathbb{R}^{n}. Then, for $0 \leqslant p \leqslant m-k$,

$$
\begin{equation*}
\int_{G_{n, k}} \frac{\left\|\left.f\right|_{E}\right\|_{1}^{q+p q / k}}{\left\|\left.f\right|_{E}\right\|_{\infty}^{p q / k}} d \nu_{n, k}(E) \leqslant \frac{\kappa_{k}^{q(k+p) / k}}{\kappa_{m}^{q(k+p) / m}} \int_{G_{n, m}}\left\|\left.f\right|_{F}\right\|_{1}^{q(k+p) / m}\left\|\left.f\right|_{F}\right\|_{\infty}^{q(m-k-p) / m} d \nu_{n, m}(F) \tag{3.12}
\end{equation*}
$$

In particular, setting $q=k$ and $p=m-k$ we see that

$$
\begin{equation*}
\int_{G_{n, k}} \frac{\left(\int_{E} f(x) d \lambda_{E}(x)\right)^{m}}{\left\|\left.f\right|_{E}\right\|_{\infty}^{m-k}} d \nu_{n, k}(E) \leqslant \frac{\kappa_{k}^{m}}{\kappa_{m}^{k}} \int_{G_{n, m}}\left(\int_{F} f(x) d \lambda_{F}(x)\right)^{k} d \nu_{n, m}(F) \tag{3.13}
\end{equation*}
$$

Proof. The first inequality is a direct application of [4. Theorem 5.1] which states that if g is a non-negative, bounded integrable function on \mathbb{R}^{m} and if $1 \leqslant q \leqslant k \leqslant m$ and $0 \leqslant p \leqslant m-k$, then

$$
\int_{G_{m, k}} \frac{\left\|\left.g\right|_{E}\right\|_{1}^{q(p+k) / k}}{\left\|\left.g\right|_{E}\right\|_{\infty}^{p q / k}} d \nu_{m, k}(E) \leqslant \frac{\kappa_{k}^{q(k+p) / k}}{\kappa_{m}^{q(k+p) / m}}\|g\|_{1}^{q(k+p) / m}\|g\|_{\infty}^{q(m-k-p) / m}
$$

We assume that f is a non-negative, bounded and integrable function on \mathbb{R}^{n}, and applying this inequality for $g=\left.f\right|_{F}$ where $F \in G_{n, m}$, we write

$$
\begin{aligned}
\int_{G_{n, k}} \frac{\left\|\left.f\right|_{E}\right\|_{1}^{q+p q / k}}{\left\|\left.f\right|_{E}\right\|_{\infty}^{p q / k}} d \nu_{n, k}(E) & =\int_{G_{n, m}}\left(\int_{G_{F, k}} \frac{\left\|\left.f\right|_{E}\right\|_{1}^{q+p q / k}}{\left\|\left.f\right|_{E}\right\|_{\infty}^{p q / k}} d \nu_{F, k}(E)\right) d \nu_{n, m}(F) \\
& \leqslant \frac{\kappa_{k}^{q(k+p) / k}}{\kappa_{m}^{q(k+p) / m}} \int_{G_{n, m}}\left\|\left.f\right|_{F}\right\|_{1}^{q(k+p) / m}\left\|\left.f\right|_{F}\right\|_{\infty}^{q(m-k-p) / m} d \nu_{n, m}(F)
\end{aligned}
$$

The second claim of the theorem follows if we choose $q=k$ and $p=m-k$.

Finally, Theorem 1.4 is the functional analogue of 1.3 (the case $m=n$ was proved in (4]).
Proof of Theorem 1.4. It was proved in [4] that if g is a non-negative, bounded integrable function on \mathbb{R}^{m} then

$$
\begin{equation*}
\int_{A_{m, k}} \frac{\left(\int_{E} g(x) d \lambda_{E}(x)\right)^{m+1}}{\left\|\left.g\right|_{E}\right\|_{\infty}^{m-k}} d \mu_{m, k}(E) \leqslant \frac{\kappa_{k}^{m+1}}{\kappa_{m}^{k+1}} \frac{\kappa_{m(k+1)}}{\kappa_{k(m+1)}}\left(\int_{\mathbb{R}^{m}} g(x) d x\right)^{k+1} \tag{3.14}
\end{equation*}
$$

Let $1 \leqslant k<m \leqslant n$, and f be a non-negative, bounded and integrable function on \mathbb{R}^{n}. Then, applying the previous inequality for $g=\left.f\right|_{F}$ where $F \in G_{n, m}$, we write

$$
\begin{aligned}
\int_{A_{n, k}} \frac{\left(\int_{E} f(x) d \lambda_{E}(x)\right)^{m+1}}{\left\|\left.f\right|_{E}\right\|_{\infty}^{m-k}} d \mu_{n, k}(E) & =\int_{A_{n, m}}\left(\int_{A_{F, k}} \frac{\left(\int_{E} f(x) d \lambda_{E}(x)\right)^{m+1}}{\left\|\left.f\right|_{E}\right\|_{\infty}^{m-k}} d \mu_{F, k}(E)\right) d \mu_{n, m}(F) \\
& \leqslant \frac{\kappa_{k}^{m+1}}{\kappa_{m}^{k+1}} \frac{\kappa_{m(k+1)}}{\kappa_{k(m+1)}} \int_{A_{n, m}}\left(\int_{F} f(x) d \lambda_{F}(x)\right)^{k+1} d \mu_{n, m}(F)
\end{aligned}
$$

as claimed.

References

[1] S. Artstein-Avidan, A. Giannopoulos and V. D. Milman, Asymptotic Geometric Analysis, Part I, Mathematical Surveys and Monographs 202, Amer. Math. Soc. (2015).
[2] H. Busemann and E. G. Straus, Area and normality, Pacific J. Math. 10 (1960) 35-72.
[3] N. Dafnis and G. Paouris, Estimates for the affine and dual affine quermassintegrals of convex bodies, Illinois Journal of Mathematics 56 (2012), 1005-1021.
[4] S. Dann, G. Paouris and P. Pivovarov, Bounding marginal densities via affine isoperimetry, Proceedings of the London Mathematical Society 113 (2016), 140-162.
[5] R. J. Gardner, The dual Brunn-Minkowski theory for bounded Borel sets: dual affine quermassintegrals and inequalities, Adv. Math. 216 (2007), 358-386.
[6] E. L. Grinberg, Isoperimetric inequalities and identities for k-dimensional cross-sections of convex bodies, Math. Ann. 291 (1991) 75-86.
[7] G. Paouris and P. Pivovarov, Small-ball probabilities for the volume of random convex sets, Discrete Comput. Geom. 49 (2013), no. 3, 601-646.
[8] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Second expanded edition. Encyclopedia of Mathematics and Its Applications 151, Cambridge University Press, Cambridge, 2014.
[9] R. Schneider and W. Weil, Stochastic and integral geometry, Probability and its Applications, Springer-Verlag, Berlin (2008).

2010 MSC: Primary 52A23; Secondary 46B06, 52A40, 60D05.

Giorgos Chasapis: Department of Mathematics, University of Athens, Panepistimioupolis 157-84, Athens, Greece. E-mail: gchasapis@math.uoa.gr

Dimitris-Marios Liakopoulos: Department of Mathematics, University of Athens, Panepistimioupolis 157-84, Athens, Greece.
E-mail: dimliako1@gmail.com

