
On the diameter of proportional setionsof a symmetri onvex bodyA. Giannopoulos and V.D. Milman
AbstratLet K be a symmetri onvex body in Rn . Given any � 2 ( 12 ; 1), wegive lower and upper bounds for the diameter of a random [�n℄-dimensionalsetion of K. We are interested in a desription of the bounds whih mightbe useful from the omputational geometry point of view. Our approah isbased on the funtion M�K(r) = 1rM�(K \ rD) whih is easily omputable,and makes use of the low M�-estimate, a new onditional low M -estimateand Borsuk's antipodal theorem. In the ase of an �-regular body in M -position, the ratio of our bounds is independent of K and n.1 IntrodutionLet K be a symmetri onvex body in Rn . In this paper we study the followingquestion:Given any � 2 ( 12 ; 1), �nd an interval I = IK(�) = [r1; r2℄ where ri =ri(K;�); i = 1; 2, suh that most of the [�n℄-dimensional setions of K have diam-eter in I and r2=r1 is as small as possible.One naturally has to make preise the meaning of \most": we are interested inan estimate of the form�n;[�n℄ �E 2 Gn;[�n℄ : diam(K \ E) 2 I� � 1� h(�; n);for some funtion h tending as fast as possible to 0 when n!1, where Gn;k is theGrassmanian of k-dimensional subspaes of Rn equipped with the Haar probabilitymeasure �n;k.We were led to the formulation of this question by disussions with L. Lovaszand M. Simonovits on the omputational problems arising when one wants to de-termine the diameter of a symmetri onvex body in Rn : it is known that it is1



impossible to give a good estimate of the diameter in less than exponential (in thedimension) time. Therefore, dealing with our question, we are at the same timeinterested in a desription of the bounds r1 and r2 whih might be useful from theomputational geometry point of view.Our method is to push to its limit a well-known and ruial inequality of theasymptoti theory of �nite dimensional normed spaes, the LowM�-estimate [M2℄,[PT℄, [Go℄. In order to desribe our approah we need to introdue a few relatednotions: IfW is a symmetri onvex body in Rn we write k:kW for the norm induedto Rn by W and de�ne M(W ) = RSn�1 kxkW �(dx), where � is the rotationallyinvariant probability measure on the Eulidean unit sphere Sn�1. Also, if W o isthe polar body of W , let M�(W ) =M(W o) (this quantity has a natural geometrimeaning, being half of the mean width of W ). The Low M�-estimate states thatthere is a funtion f2 : (0; 1) ! (0; 1) { one an atually hoose f2(�) = 2p1� �for some absolute onstant 2 > 0 { suh that for every W and every � 2 (0; 1),(1:1) diam(W \ E) � 2M�(W )f2(�)for most E 2 Gn;[�n℄.This essentially gives an upper bound for the diameter of the proportionalsetions of an arbitrary bodyK: From (1.1) we easily dedue (Theorem 2.1) that forevery K and every � 2 (0; 1), if r > 0 satis�es the inequality 1rM�(K\rD) � f2(�)where D is the Eulidean unit ball in Rn , thendiam(K \ E) � 2rfor most E 2 Gn;[�n℄.It turns out that this appliation of the LowM�-estimate leads to bounds whihare \already exat": there exists a seond funtion f1 : (0; 1)! (0; 1) suh that foreveryK and every � 2 ( 12 ; 1), if r > 0 satis�es the inequality 1rM�(K\rD) � f1(�),then diam(K \ E) � 2g(�)rfor most E 2 Gn;[�n℄ (Theorem 2.7). One an atually see that f1(�) and g(�) maybe hosen to be two absolute onstants 1 and 01 in (0; 1) (whih an be writtendown expliitely and work for all � 2 ( 12 ; 1)). What is of importane is of oursethat both funtions f1 and f2 are independent of the body K and the dimension n.In view of the above, let us assoiate to eah symmetri onvex body K thefuntion M�K : (0;1)! (0; 1℄ de�ned byM�K(r) = M�(K \ rD)r :The funtion M�K is onto (0; 1℄ and dereasing, and if �1; �2 are the radii of theinsribed and irumsribed balls of K, then M�K(r) = 1 on (0; �1℄ and M�K(r) =2



M�(K)=r on [�2;1). Now, we an qualitatively desribe our main result in termsof M�K as follows:General Statement: There exist three funtions f1; f2 and g : (0; 1) ! (0; 1)suh that the following holds: Given a symmetri onvex body K in Rn and any� 2 ( 12 ; 1), let ri = ri(K;�); i = 1; 2; be the solutions of the equations(1:2) M�K(r) = fi(�); i = 1; 2;in r. Then, we havediam(K \E) 2 [2g(�)r1(K;�); 2r2(K;�)℄;for all E 2 Ln;k, where Ln;k is a subset of Gn;k of measure �n;k(Ln;k) � 1�h(�; n),k = [�n℄, and h(�; n)! 0 exponentially fast as n!1.Note that the simplest example of the Eulidean unit ball D in Rn shows thatthe funtion g is really needed in the statement above: we have M�D(r) = 1r on[1;1), hene for any funtion f1 : (0; 1) ! (0; 1) and for any �, the solution ofM�D(r) = f1(�) in r will be greater than 1 while obviously diam(D \ E) = 2 forevery E 2 Gn;[�n℄.The use of the funtionM�K meets the requirement of an e�etive determinationof the bounds r1 and r2 in our original question. The reason is that, for any sym-metri onvex body K, one an \ompute" with high probabilityM�K(r) e�etivelyto any given degree of auray: The empirial distribution method (desribed ina similar setting e.g in [BLM℄) shows that given any Æ and � in (0; 1), a randomhoie of N = [ log( 2Æ )�2 ℄ + 1 points x1; : : : ; xN in Sn�1 satis�es(1:3) jM�(K \ rD) � 1N NXi=1 kxik(K\rD)o j < �M�(K \ rD)with probability exeeding 1 � Æ, where  > 0 is an absolute onstant. One antherefore assume that M�K(r) an be easily determined for every r. Sine M�K isdereasing, one an then solve the equation M�K(r) = � for any given � < 1. Thenumber of steps needed depends, for example, on a rough estimate of the ratio�2=�1 of the radii of the irumsribed and the insribed ball of K.A seond point whih is of interest is that our general statement(1:4) 2g(�)(M�K)�1(f1(�)) � diam(K \ E) � 2(M�K)�1(f2(�))may be viewed as an asymptoti formula onneting the diameter of a random [�n℄-dimensional setion of K with a quite simple average parameter of K. Comparewith the following result obtained reently in [MS2℄: Let k = k(K) be the largestinteger for whih�n;k �fE 2 Gn;k : M(K)2 jxj � kxkK � 2M(K)jxj for all x 2 Eg� > 1� 1n:3



It is a well-known fat [M1℄ that k � n( M(K)diam(Ko))2 for some absolute onstant > 0. Rather surprisingly, it is observed in [MS2℄ that the reverse inequality isalso true: k(K) ' n( M(K)diam(Ko) )2. Again, proving a basi inequality to be exat givesrise to an asymptoti formula onneting the loal struture of an arbitrary bodyK with some of its global parameters. It is an important diretion to enrih thislist of high dimensional formulas.The main part of the paper is organized as follows: In Setion 2.1 we give theproof of the general statement with an exat desription of the funtions f1; f2and g, orresponding to one among many interpretations of the requirement thath(�; n)! 0 fast as n!1. Our argument for the lower bound makes use of a new\onditional low M -estimate". We also make use of Borsuk's antipodal theoremin an essential way, and this is what fores us to restrit ourselves to the ase� 2 ( 12 ; 1).What is interesting is of ourse the ratio r2=r1 and this makes it lear that thedependene of (M�K)�1 on f1(�) and f2(�) for a given � is quite important. InSetion 2.2 we give an example of an ellipsoid with highly inomparable semiaxeswhih shows that the behavior of (M�K)�1 an be very irregular: the interval I maybe huge even if the ratio f2(�)=f1(�) is very lose to 1. This indiates that oneannot expet a ompletely satisfatory answer with this \one step" determinationof I .On the other hand, what seems to ause problems in our approah is not thegeometry of the body K but the fat that K may be in a very bad \position" (likethe ellipsoid in our example), in whih ase even the question doesn't make muhsense. In fat, our original goal an be ahieved if we allow a linear transformationin order to bring the body K in some kind of a more \regular" position. In Setion2.3 we assume that K is in M -position with parameter � (in the terminology of[Pi℄), and we show that for every � 2 ( 12 ; 1) and for most E 2 Gn;[�n℄(1:5) diam(K \ E) ' (M�K)�1(12p1� �)up to  �(�), where  � : (0; 1) ! R+ is a �xed funtion depending only on �.Sine every body K has an aÆne image whih is in M -position, in this regular butgeneral enough ase (1.4) beomes a real asymptoti formula with f1(�) = f2(�) =12p1� �.We use the standard notation from [MS1℄: In pariular, j:j is a �xed Eulideannorm, the L�evy median of k:kW on Sn�1 is denoted by m or m(W ), the boundaryof W is denoted by bd(W ), jN j denotes the ardinality of a �nite set N , and theletter  is reserved for absolute positive onstants.Aknowledgement: This work was initiated at the Mathematial Sienes Re-searh Institute. The seond named author would like to thank IHES for its hospi-tality during the �nal stage of this work. Researh of the seond named author issupported in part by a BSF grant. 4



2 Upper and lower bounds for the diameter of arandom proportional setion2.1. Let us agree that a property of a random k-dimensional setion of the bodyK in Rn is one that holds for all setions K \ E with E in a subset Ln;k of Gn;kof measure �n;k(Ln;k) � 1� �n, where � = �( kn ) 2 (0; 1). There is nothing spei�about this hoie of the funtion h in our general statement: we want to examinemore losely the dependene on the other parameters involved in the problem, inpartiular the ratio f2( kn )=f1( kn ). Obvious modi�ations of the arguments givenbelow lead to various other possible estimates depending on what is of interest ineah ase.The upper bound for diam(K \ E) is a well-known onsequene of the lowM�-estimate [M2℄, [PT℄, [Go℄. We give the statement in the spirit of our presentdisussion with a brief sketh of the estimates involved in the proof:Theorem 2.1 Let � 2 (0; 1) and " 2 (0; 1). There exist n0 = n0("; �) and � =�("; �) 2 (0; 1) with the following property: for every symmetri onvex body K inRn , n � n0, we an �nd a set Ln;k � Gn;k, where k = [�n℄, of measure �n;k(Ln;k) �1� �n, suh that diam(K \ E) � 2r for every E 2 Ln;k, where r is the solution ofthe equation M�K(r) = (1� ")p1� �:Sketh of the proof: De�ne as = p2�( s+12 )=�( s2 ). One an hek that an�kan �(n�k�1n )1=2, and this implies that for n � n0("; �) we have(2:1) (1� "2 )an�kan(1� ")p1� � � 1 + "2 :Suppose that r satis�es the equation M�(K\rD)r = (1� ")p1� �. Then, Gordon'sproof of the low M�-estimate [Go, Corollary 3.4℄ shows that(2:2) kxkK\rD � (1� "2 )an�kanM�(K \ rD) jxj � 1 + "2r jxj; x 2 Efor all E in a subset Ln;k of Gn;k of measure �n;k(Ln;k) � 1 � 72exp(� 172a2n�k"2).Sine kxkK\rD = maxfkxkK ; 1r jxjg, this shows that atually(2:3) kxkK � 1r jxj; x 2 E;for every E 2 Ln;k, and this ompletes the proof sine �n;k(Ln;k) � 1 � �n("; �)(observe that a2n�k ' n� k). 2Our lower bound is based on a onditional low M -estimate. We start with thefollowing geometri lemma: 5



Lemma 2.2 Let W be a symmetri onvex body in Rn suh that W � D. Considerthe funtion k:kW on Sn�1 and denote its median by m. Then, for every R > 1mwe have �R(W \ RSn�1) � 1� �R(B(�2 + �0));where �0 2 (0; �2 ) is de�ned bysin �0 = mR �[R2 � 1℄ 12 � [(1=m)2 � 1℄ 12� :Here, �R denotes the rotationally invariant probability measure on RSn�1, whileB(�2 + �0) is a ap of angular radius �2 + �0 in RSn�1.Proof: Let A =W \ 1mSn�1 and onsider an arbitrary point � on the boundary ofA. We then learly have that � 2 bd(W ). If H(�) is any hyperplane that supportsW at �, let Æ = PH(�)(o) be the orthogonal projetion of the origin o onto H(�).Assume �rst that the points o; � and Æ determine a two-dimensional plane �(�).Write �;  for the points in �(�) where the lines Æ� and o� meet RSn�1. Let alsoy � 1 be the distane from o to Æ. If � = d�o; ' = do�Æ, and � = do�Æ, we have� = '� �, therefore sin � = sin' os �� os' sin �, and simple trigonometry showsthat(2:4) sin � = y1=m [R2 � y2℄ 12R � [(1=m)2 � y2℄ 121=m yR= myR �[R2 � y2℄ 12 � [(1=m)2 � y2℄ 12� :We easily hek that this is an inreasing funtion of y on [1; 1m ℄, and this showsthat(2:5) sin � � mR �[R2 � 1℄ 12 � [(1=m)2 � 1℄ 12 � = sin �0:If this is not the ase, then we atually have that H(�) is uniquely determined and� = Æ. Let  be the point where o� meets RSn�1, and for any two-dimensionalplane �(�) ontaining o� write � for the point where the line in �(�) perpendiularto o� at � meets RSn�1. If � = d�o, we readily see that(2:6) sin � = [R2 � (1=m)2℄ 12R � sin �0:Observe that, in both ases, H(�) separates the ap B(; �0) in RSn�1 from W .Sine the points  = (�); � 2 bd(A), form the boundary of (Rm)A, we onludethat W \ ((Rm)A)�0 = ;, where((Rm)A)�0 = fz 2 RSn�1 : z 2 B(x; �0) for some x 2 (Rm)Ag:On the other hand, by the de�nition of the median m we have �1=m(A) � 12 andhene �R((Rm)A) � 12 . From the isoperimetri inequality on the sphere RSn�16



(see [FLM℄ or [MS1℄) it follows that �R(((Rm)A)�0 ) � �R(B(�2 + �0)), and thismeans that(2:7) �R(W \RSn�1) � 1� �R(B(�2 + �0)): 2This Lemma shows that if m is lose to 1, and if R is hosen suitably large,then a big part ofW stays inside RD. In the next Lemma we make the dependeneon the various parameters more preise in order to extrat setions of W of (any)proportional dimension inside RD:Lemma 2.3 Let � 2 (0; 1) and k = [�n℄. There exists n0 = n0(�) for whih thefollowing holds: If � < 1 and " � "0(�; �) = 25 [ 12 ( �3 )�℄ 21�� , then for every symmetrionvex body W in Rn , n � n0, with W � D and m(W ) � 1 � ", we an �ndLn;k � Gn;k of measure �n;k(Ln;k) � 1� �k, suh thatW \ E � 5(3� ) �1�� 2 11��D \ Efor every E 2 Ln;k.Proof: We assume from the beginning that " < 12 . Let R = R(�; �) be a funtionof � and � to be determined, and de�ne �0 by the equation sin �0 = mR ([R2 � 1℄ 12 �[(1=m)2 � 1℄ 12 ). This is an inreasing funtion of m, therefore(1) sin �0 � (1� ")[1� 1R2 ℄ 12 � 1R ["(2� ")℄ 12 � 1, provided that, say, R � 2.A omputation analogous to the one in (2.4) shows that(2) os �0 � [1� 1R2 ℄ 12 [1�m2℄ 12 + mR � p2"+ 1R .Let Jn = R �=20 osn�2 t dt. By Lemma 2.2 we know that(2:8) �R(W \ RSn�1) � 12Jn Z �2�0 osn�2 t dt � 12Jn(n� 1) osn�1 �0sin �0 ;and sine Jn � 2=pn, we arrive at(2:9) �R(W \ RSn�1) � 3pn [p2"+ 1R ℄n�1:Consider now a 45R -net N on Sk�1. This an be done with jN j � (1+ 52R)k � [3R℄k.A standard argument shows that if(2:10) jN j�R(W \RSn�1) � �k;then there exists Ln;k � Gn;k with �n;k(Ln;k) � 1 � �k suh that for every E 2Ln;k there exists a 45 -net of E \ RSn�1 disjoint from W . This means that if7



x 2 E \ RSn�1, we an �nd y 2 RSn�1 for whih kykW � 1 and jx � yj � 45 ,therefore kxkW � kykW � kx� ykW � 1� 45 = 15R jxjor, equivalently,(2:11) W \ E � 5RD \ E:For n large enough, our ondition on "; �; and R thus beomes:(2:12) �p2"+ 1R�n�1 [3R℄k � �k :Let � = kn�1 . Then, (2.10) will be true if(2:13) p2"R� + 1R1�� � (�3)�:Choose R = 2 11�� ( 3� ) �1�� . If " � "0(�; �) and if n is large enough (in whih asewe may pratially assume that � = �), then one an easily hek that (2.13) issatis�ed. 2Remark 2.4 Observe that our method annot produe R smaller than ( 3� ) �1�� evenif we are allowed to hoose " arbitrarily lose to 0 (this follows immediately from(2.13)). It is not lear if a better argument might give that R("; �; �)! 1 as "! 0for every �xed � 2 (0; 1).Using Lemma 2.3 we an easily prove the following onditional lowM -estimate:Theorem 2.5 Let � < 1, � 2 (0; 1) and K be a symmetri onvex body in Rn ,n � n0(�; �). Find r > 0 for whihM(o(rK [D)) = 1� 13 [12(�3)�℄ 21�� :Then, we an �nd Ln;[�n℄ � Gn;[�n℄ with �n;[�n℄(Ln;[�n℄) � 1� � [�n℄ suh thatK \ E � �5(3� ) �1�� 2 11��� 1r (D \ E) = R(�; �)r (D \ E);for every E 2 Ln;[�n℄.Proof: Let W = o(rK [ D). From our hoie of r we have M(W ) = 1 �13 [ 12 ( �3 )�℄ 21�� , and sine k:kW is 1-Lipshitz on Sn�1 a standard argument from[M1℄ (see also [FLM℄ or [MS1℄) shows that for every Æ 2 (0; 1)(2:14) � �fy 2 Sn�1 : j kykW �m(W ) j > Æg� < 4e�nÆ2=2;8



whih means that(2:15) 1� 13[12(�3)�℄ 21�� = ZSn�1 kykW �(dy) � m(W ) + Æ + 4e�nÆ2=2;therefore, for n � n0(�; �) the right hoie of Æ givesm(W ) � 1� "0(�; �):We now apply Lemma 2.3 for " = "0 to �nd Ln;[�n℄ � Gn;[�n℄ of measure �n;[�n℄(Ln;[�n℄) �1� � [�n℄, suh that(2:16) W \ E � 5(3� ) �1�� 2 11��D \E = R(�; �)D \E;for every E 2 Ln;[�n℄. Sine rK �W , the proof is omplete. 2If n is large enough, one an hoose � almost equal to 1 and still ahieve \almostfull measure" for Ln;[�n℄. In order to give the avor of the statement, we rewritethe low M -estimate given by Theorem 2.5 in a less preise form:Conditional Low M-estimate: There exist two absolute positive onstants  <1; C > 1 suh that if K is a symmetri onvex body in Rn , n large enough, and ifr > 0 satis�es M�K(r) � 1�  11�� ;then diam(Ko \ E) � 20r C �1��for all � 2 (0; 1) and all E in a subset Ln;[�n℄ of Gn;[�n℄ with �n;[�n℄(Ln;[�n℄) �1� [�n℄. 2Compare with the version of the LowM�-estimate whih was used in the proofof Theorem 2.1:Low M�-estimate: If K is a symmetri onvex body in Rn and if r > 0 satis�esM�K(r) � 12p1� �;then diam(K \ E) � 2rfor all � 2 (0; 1) and all E in a subset Ln;[�n℄ of Gn;[�n℄ of almost full measure.We proeed to the lower bound for the diameter of [�n℄-dimensional setionsof K. Besides Theorem 2.5, our proof is also based on the following appliation ofBorsuk's antipodal theorem:Lemma 2.6 Let K be a symmetri onvex body in Rn . For every subspae E withdimE > dimE? we an �nd y 2 bd(PE(K))\K, where PE denotes the orthogonalprojetion onto E and bd(PE(K)) is the boundary of PE(K).9



Proof: Without loss of generality we may assume that K is stritly onvex. Forevery y 2 bd(PE(K)) there exists unique t(y) 2 bd(K) suh that PE(t(y)) = y.De�ne the map T : bd(PE(K))! E? with T (y) = t(y)� y. Then, T is ontinuousand antisymmetri, and sine dimE > dimE? we an apply Borsuk's theorem to�nd y 2 bd(PE(K)) with t(y) = y. 2Theorem 2.7 below gives a lower bound for the diameter of [�n℄-dimensionalsetions ofK, � 2 ( 12 ; 1). Adding this information to Theorem 2.1 whih gave upperbounds in exatly the same spirit, we omplete the proof of our General Statement:Theorem 2.7 Let � < 1, � 2 ( 12 ; 1), and K be a symmetri onvex body in Rn ,n � n0(�; �). Find r > 0 for whihM�K(r) = M�(K \ rD)r = 1� 148(�3)2:Then, we an �nd Ln;[�n℄ � Gn;[�n℄ with �n;[�n℄(Ln;[�n℄) � 1� � n2 , suh thatdiam(K \ E) � 110(�3)rfor every E 2 Ln;[�n℄.Proof: Apply Theorem 2.5 to Ko with any �0 > 12 . We an �nd Ln;[�0n℄ � Gn;[�0n℄with �n;[�0n℄(Ln;[�0n℄) � 1� � [�0n℄, for whih(2:17) Ko \ E � R(�0; �)r D \ Efor every E 2 Ln;[�0n℄. Let E 2 Ln;[�0n℄. Passing to polars in E we get(2:18) PE(K) � rR(�0; �)D \ E:Sine �0 > 12 , assuming that n � n0(�0) we have dimE > dimE?. Therefore, wean apply Lemma 2.6 to �nd y 2 bd(PE(K)) \K. In partiular, y 2 K \ E andjyj � rR(�0;�) whih means that(2:19) diam(K \E) � 2rR(�0; �) :For n large enough, we an assume that (2.19) is true with �0 = 12 , whih gives thetheorem in the speial ase of � = 12 . Now, let � > 12 , and de�neLn;[�n℄ = fF 2 Gn;[�n℄ : there is E 2 Ln;[n2 ℄+1 with E � Fg:Claim: �n;[�n℄(Ln;[�n℄) � �n;[n2 ℄+1(Ln;[n2 ℄+1).[This is a general fat: Fix E0 � F0, with dimE0 = [n2 ℄ + 1 and dimF0 = [�n℄.By the de�nition of Ln;[�n℄, if for some T 2 On we have TE0 2 Ln;[n2 ℄+1, thenTF0 2 Ln;[�n℄. It follows that(2:20) �n;[�n℄(Ln;[�n℄) = � �T 2 On : TF0 2 Ln;[�n℄�10



� ��T 2 On : TE0 2 Ln;[n2 ℄+1� = �n;[n2 ℄+1(Ln;[n2 ℄+1) � 1� � n2 : ℄On the other hand, it is lear that if F 2 Ln;[�n℄, then for some E � F in Ln;[n2 ℄+1we have(2:21) diam(K \ F ) � diam(K \ E) � 110(�3)r;whih ompletes the proof. 22.2. An example on the behavior ofM�K. To show thatM�K may behave ina quite irregular way, we study the behavior of the funtionM�E(r) = 1rM�(E\rD)for an ellipsoid with highly inomparable semiaxes. Let " 2 (0; 1) be a very smallpositive number, and de�neE = fx = (x1; : : : ; xn) 2 Rn : nXi=1 "2ix2i � 1g:Given any r > 0, one easily heks that E \ rD is p2{isomorphi to the ellipsoidE0(r) = fx 2 Rn : nXi=1("2i + 1r2 )x2i � 1g:In partiular, if M�2 (W ) = �RSn�1 kxk2W o�(dx)�1=2, we have M�2 (E0(r)) �M�2 (E \rD) � p2M�2 (E0(r)) for every r > 0. Consider the funtion F (r) = 1rM�2 (E0(r)).It is easy to see that(2:22) F (r) = 1r " 1n nXi=1 r2r2"2i + 1#1=2 = " 1n nXi=1 �i(r)#1=2 ;where �i(r) = 1=(r2"2i + 1). We shall estimate F ("�k); k = 1; 2; : : : ; n:(1) If i < k, then 0 � �i("�k) � "2.(2) If i = k, then �i("�k) = 12 .(3) If i > k, then (1 + "2)�1 � �i("�k) � 1.It follows that e.g for all k 2 [n3 ; 2n3 ℄,(2:23) 13 + 12n � "2 � F 2("�k) � 23 + 12n + "2:Sine M�(E \ rD) � M�2 (E \ rD) � p2M�(E \ rD), M�E satis�es the inequality1p2F (r) �M�E(r) � p2F (r), and this shows that if " is small enough then for everypair of k; l 2 [n3 ; 2n3 ℄ we haveM�E("�k)=M�E("�l) �  for some absolute onstant  >0. It follows that for some k 2 [n3 ; 2n3 ℄ we must have M�E("�k)=M�E("�k�1) � 1=n1 ,where 1 is some other absolute onstant. Hene, if n is large and if " is too small,11



we an have r1; r2 with r1=r2 arbitrarily large andM�E(r1)=M�E(r2) arbitrarily loseto 1. Note that this happens in the \interesting" interval of the range of M�E .2.3. Diameter of the setions of a body in M-position. It is well-knownthat every symmetri onvex body an be put in a \regular" position by meansof a linear transformation [M3℄. We use this result in the formulation of Pisier[Pi℄: For every � > 12 any body K has a linear image K whih is �-regular: If�K = (jKj=jDj) 1n is the volume radius of K, and if N(U; V ) denotes the overingnumber of U by V i.e the minimal ardinality of a set fx1; : : : ; xNg � U for whihU � Si�N (xi + V ), then(2:24) maxf[N(K; t�KD)℄ 1n ; [N(�KD; tK)℄ 1n g �  exp(1(�)t� 1� )for every t � 1, where  > 0 is an absolute onstant and 1(�) is a positive onstantdepending only on �.Moreover, it an be proved that for every K there exists a linear image K suhthat bothK andK0 (as well as any orthogonal images of them) are �-regular. Also,if r1; r2 > 0 and W = o((K \ r1D) [ r2D), then both W and W o are �-regularwith some possibly di�erent (but independent from r1 and r2) onstants 0; 0(�).Assume that K is �-regular in the strong sense de�ned above and onsider any� 2 ( 12 ; 1). Apply Theorem 2.1 with " = 12 to �nd r > 0 for whih M�K(r) =12p1� �. Then, for most [�n℄-dimensional subspaes E of Rn (most in the senseof x2.1) we have(2:25) diam(K \ E) � 2r:Set K1 = (K \ rD)o. Then, M(K1) = 12p1� �r and kxkK1 � rjxj for everyx 2 Rn . By [BLM℄ we an �nd orthogonal transformations u1; : : : ; us with s � 11��suh that(2:26) 14(1� �) 12 rD � 1s sXi=1 ui(Ko1 ) � (1� �) 12 rD:Sine Ko1 is also �-regular, the inverse Brunn-Minkowski inequality [M3℄, [Pi℄ showsthat(2:27) 14(1� �) 12 r � 2(�)s� � jKo1 jjDj � 1n :Now hoose R > 0 for whih M�(K1 \RD) = R=2p2. Applying Theorem 2.1 onemore (this time for � = 12 ), we see that for most ([n2 ℄ + 1)-dimensional subspaes Fof Rn we have(2:28) diam(K1 \ F ) � 2R;12



and repeating the argument above we see that(2:29) 14p2R � 3� jK1 \ RDjjDj � 1n � 3� jK1jjDj � 1n :Multiplying (2.27) and (2.29), and making use of the Blashke-Santal�o inequalityand of the estimate on s, we obtain(2:30) rR � 4(�)(1� �)�+ 12 :From (2.28), taking polars in F we have PF (K) � PF (K \ rD) � 1RD \ F , andapplying Borsuk's theorem as in Theorem 2.7 we see that diam(K \ F ) � 2R (weassume that n is large enough). Exatly the same lower bound is true for most[�n℄-dimensional subspaes, � 2 ( 12 ; 1). Thus, we have proved the following:Theorem 2.8 Let � 2 ( 12 ; 1), � > 12 , and K be an �-regular symmetri onvexbody in Rn , n � n0(�). Find r > 0 for whihM�K(r) = M�(K \ rD)r = 12p1� �:Then, for most [�n℄-dimensional subspaes E of Rn we havediam(K \ E) 2 [2(�)(1� �)�+ 12 r; 2r℄;where (�) > 0 is a onstant depending only on �. 2
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