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Abstract

It is shown that intrinsic volumes of a convex body decrease under linear contractions.

Let C ⊂ RN be a convex body and BN
2 the Euclidean ball in RN . The Steiner formula

expresses the volume of the Minkowski sum C + εBN
2 in terms of the intrinsic volumes

V0, V1, . . . , VN of C:

volN
(
C + εBN

2

)
=

N∑
n=0

ωnVN−n(C)εn.

Here volN (·) denotes N -dimensional Lebesgue measure and ωn = voln (Bn
2 ). Of particular

interest are V1, VN−1 and VN , which are multiples of the mean-width, surface area and
volume, respectively. We refer the reader to [5] for background on intrinsic volumes. In
addition to their role in convex geometry, intrinsic volumes also appear in connection with
Gaussian processes; see, e.g., [9], [10] and the references therein.

The purpose of this note is to prove the following.

Proposition 1.1. Let C ⊂ RN be a convex body and let S be a linear contraction, i.e.,
‖Sx‖2 6 ‖x‖2 for each x ∈ RN . Then for n = 1, . . . , N ,

Vn(SC) 6 Vn(C).

The case of V1 and arbitrary contractions (not necessarily linear) is well-studied [6, The-
orem 2 in §5], [1, Theorem 1]; see also [2, pg 177]. Of course for VN one has VN(SC) =
|det(S)| volN (C). For other intrinsic volumes, we were unable to find Proposition 1.1 in the
literature but noticed that it follows from some results in [4] and thought it was worthwhile
to show the details.
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Particularly useful for our purpose is the Gaussian representation of intrinsic volumes, as
in [10]; see also [8]. If ΓN,n = [γij] is an n × N matrix with independent N(0,1) Gaussian
entries, then the n-th intrinsic volume of C ⊂ RN is given by

Vn(C) =
(2π)n/2

ωnn!
E voln (ΓN,nC) .

As in [4], we say that a function F : (Rn)N → R+ satisfies Groemer’s Convexity
Condition, or simply (GCC), if for every z ∈ Rn and for every y1 . . . , yN ∈ z⊥ the function
FY : RN → R+ defined by

FY (t) = F (y1 + t1z, . . . , yN + tNz)

is even and convex. The latter definition was motivated by isoperimetric-type problems for
random convex sets in [3]. In particular, by adapting [3, Lemma 3], it was shown in [4,
Proposition 4.1] that for a convex body C ⊂ RN , the function F : (Rn)N → R+ defined by

F (x1, . . . , xN) = voln ([x1 . . . xN ]C) , (1)

where [x1 . . . xN ] denotes the n × N matrix with columns x1, . . . , xN , viewed as a linear
operator from RN to Rn, satisfies (GCC). The latter property fits well with symmetrization
techniques and can be used in various isoperimetric-type problems for the volume of random
(and non-random) sets [4, Theorem 1.1].

For our present purpose, we require less than the (GCC) condition. In fact, we will use
only the following consequence.

Lemma 1.2. If F : (Rn)N → R+ satisfies (GCC) then for any x1, . . . , xN ∈ Rn and any
1 6 j 6 N , the function

R 3 s 7→ F (x1, . . . , sxj, . . . , xN) (2)

is convex.

The lemma is immediate since the restriction of a convex function to a line is itself convex.
Additionally, we will make use of the following elementary lemma (the proof is given in

[4, Lemma 3.7]).

Lemma 1.3. Let ρ : Rn → R+ be a function such that

R 3 s 7→ ρ(sx)

is convex for each x ∈ Rn. If X is a symmetric random vector with values in Rn, then

R+ 3 s 7→ Eρ(sX)

is an increasing function.
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Here and elsewhere, we use the term “increasing” in the non-strict sense.

Proof of Proposition 1.1. As noted above, the function F : (Rn)N → R+ defined according
to (1) satisfies (GCC). Let g1, . . . , gN denote the columns of the Gaussian random matrix
ΓN,n. If g1, . . . , gN are fixed, then

R 3 s 7→ F (g1, . . . , gj−1, sgj, gj+1, . . . , gN)

is convex by Lemma 1.2. Letting Ej denote expectation with respect gj and applying Lemma
1.3, we have that

R+ 3 s 7→ EjF (g1, . . . , gj−1, sgj, gj+1, . . . , gN)

is an increasing function.
Suppose first that S is represented by theN×N diagonal matrix S = diag(1, . . . , 1, sj, 1, . . . , 1)

where sj ∈ [0, 1] is in the jth-column. Then

EjF (g1, . . . , gj−1, sjgj, gj+1, . . . , gN) 6 EjF (g1, . . . , gj−1, gj, gj+1, . . . , gN)

and hence

(2π)−n/2ωnn!Vn(SC) = E voln (ΓN,nSC)

= EF (g1, . . . , gj−1, sjgj, gj+1, . . . , gN)

6 EF (g1, . . . , gN)

= (2π)−n/2ωnn!Vn(C).

In the general case, using singular value decomposition, one writes S = UDV T , where D is
the diagonal matrix diag(s1, . . . , sN), and U and V are orthogonal. Since S is a contraction,
its singular values satisfy 0 6 si 6 1 for i = 1, . . . , N . To conclude, we use the fact
that intrinsic volumes are invariant under orthogonal transformations and apply the latter
argument iteratively.

Remark 1.4. The latter proof uses ideas from [7, Lemma 2.7].
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