Geometry of random sections of isotropic convex bodies

Apostolos Giannopoulos, Labrini Hioni and Antonis Tsolomitis

Abstract

Let K be an isotropic symmetric convex body in \mathbb{R}^{n}. We show that a subspace $F \in G_{n, n-k}$ of codimension $k=\gamma n$, where $\gamma \in(1 / \sqrt{n}, 1)$, satisfies $$
K \cap F \subseteq \frac{c}{\gamma} \sqrt{n} L_{K}\left(B_{2}^{n} \cap F\right)
$$ with probability greater than $1-\exp (-\sqrt{n})$. Using a different method we study the same question for the L_{q}-centroid bodies $Z_{q}(\mu)$ of an isotropic log-concave probability measure μ on \mathbb{R}^{n}. For every $1 \leqslant q \leqslant n$ and $\gamma \in(0,1)$ we show that a random subspace $F \in G_{n,(1-\gamma) n}$ satisfies $Z_{q}(\mu) \cap F \subseteq c_{2}(\gamma) \sqrt{q} B_{2}^{n} \cap F$. We also give bounds on the diameter of random projections of $Z_{q}(\mu)$ and using them we deduce that if K is an isotropic convex body in \mathbb{R}^{n} then for a random subspace F of dimension $(\log n)^{4}$ one has that all directions in F are sub-Gaussian with constant $O\left(\log ^{2} n\right)$.

1 Introduction

A convex body K in \mathbb{R}^{n} is called isotropic if it has volume $|K|=1$, its center of mass is at the origin (we call these convex bodies "centered"), and its inertia matrix is a multiple of the identity matrix: there exists a constant $L_{K}>0$ such that

$$
\begin{equation*}
\int_{K}\langle x, \theta\rangle^{2} d x=L_{K}^{2} \tag{1.1}
\end{equation*}
$$

for every θ in the Euclidean unit sphere S^{n-1}. For every centered convex body K in \mathbb{R}^{n} there exists an invertible linear transformation $T \in G L(n)$ such that $T(K)$ is isotropic. This isotropic image of K is uniquely determined up to orthogonal transformations. A well-known problem in asymptotic convex geometry asks if there exists an absolute constant $C_{1}>0$ such that

$$
\begin{equation*}
L_{n}:=\max \left\{L_{K}: K \text { is isotropic in } \mathbb{R}^{n}\right\} \leqslant C_{1} \tag{1.2}
\end{equation*}
$$

for all $n \geqslant 1$ (see Section 2 for background information on isotropic convex bodies and log-concave probability measures). Bourgain proved in [5] that $L_{n} \leqslant c \sqrt[4]{n} \log n$, and Klartag [19] improved this bound to $L_{n} \leqslant c \sqrt[4]{n}$. A second proof of Klartag's bound appears in [21].

Recall that the inradius $r(K)$ of a convex body K in \mathbb{R}^{n} with $0 \in \operatorname{int}(K)$ is the largest $r>0$ for which $r B_{2}^{n} \subseteq K$, while the radius $R(K):=\max \left\{\|x\|_{2}: x \in K\right\}$ of K is the smallest $R>0$ for which $K \subseteq R B_{2}^{n}$. It is not hard to see that the inradius and the radius of an isotropic convex body K in \mathbb{R}^{n} satisfy the bounds $c_{1} L_{K} \leqslant r(K) \leqslant R(K) \leqslant c_{2} n L_{K}$, where $c_{1}, c_{2}>0$ are absolute constants. In fact, Kannan, Lovász and Simonovits [17] have proved that

$$
\begin{equation*}
R(K) \leqslant(n+1) L_{K} \tag{1.3}
\end{equation*}
$$

Radius of random sections of isotropic convex bodies. The first question that we discuss in this article is to give sharp upper bounds for the radius of a random $(n-k)$-dimensional section of K. A natural "guess" is that the following question has an affirmative answer.

Question 1.1. There exists an absolute constant $\bar{c}_{0}>0$ with the following property: for every isotropic convex body K in \mathbb{R}^{n} and for every $1 \leqslant k \leqslant n-1$, a random subspace $F \in G_{n, n-k}$ satisfies

$$
\begin{equation*}
R(K \cap F) \leqslant \bar{c}_{0} \sqrt{n / k} \sqrt{n} L_{K} \tag{1.4}
\end{equation*}
$$

It was proved in [23] that if K is a symmetric convex body in \mathbb{R}^{n} then a random $F \in G_{n, n-k}$ satisfies

$$
\begin{equation*}
R(K \cap F) \leqslant c(n / k)^{3 / 2} \tilde{M}(K) \tag{1.5}
\end{equation*}
$$

where $c>0$ is an absolute constant and

$$
\begin{equation*}
\tilde{M}(K):=\frac{1}{|K|} \int_{K}\|x\|_{2} d x \tag{1.6}
\end{equation*}
$$

In the case of an isotropic convex body one has $|K|=1$ and

$$
\begin{equation*}
\tilde{M}(K) \leqslant\left(\int_{K}\|x\|_{2}^{2} d x\right)^{1 / 2}=\sqrt{n} L_{K} \tag{1.7}
\end{equation*}
$$

therefore 1.5 implies that a random $F \in G_{n, n-k}$ satisfies

$$
\begin{equation*}
R(K \cap F) \leqslant \bar{c}_{1}(n / k)^{3 / 2} \sqrt{n} L_{K}, \tag{1.8}
\end{equation*}
$$

where $\bar{c}_{1}>0$ is an absolute constant.
Our first main result shows that one can have a bound of the order of $\gamma^{-1} \sqrt{n} L_{K}$ when the codimension k is greater than γn.

Theorem 1.2. Let K be an isotropic symmetric convex body in \mathbb{R}^{n} and let $1 \leqslant k \leqslant n-1$. A random subspace $F \in G_{n, n-k}$ satisfies

$$
\begin{equation*}
R(K \cap F) \leqslant \frac{\bar{c}_{0} n}{\max \{k, \sqrt{n}\}} \sqrt{n} L_{K} \tag{1.9}
\end{equation*}
$$

with probability greater than $1-\exp (-\sqrt{n})$, where $\bar{c}_{0}>0$ is an absolute constant.
The proof is given in Section 3. Note that Theorem 1.2 gives non-trivial information when $k>\sqrt{n}$. In this case, writing $k=\gamma n$ for some $\gamma \in(1 / \sqrt{n}, 1)$ we see that

$$
\begin{equation*}
R(K \cap F) \leqslant \frac{\bar{c}_{0}}{\gamma} \sqrt{n} L_{K} \tag{1.10}
\end{equation*}
$$

with probability greater than $1-\exp (-\sqrt{n})$ on $G_{n,(1-\gamma) n}$. The result of [23] establishes a $\gamma^{-3 / 2}$-dependence on $\gamma=k / n$.

A standard approach to Question 1.1 would have been to combine the low M^{*}-estimate with an upper bound for the mean width

$$
\begin{equation*}
w(K):=\int_{S^{n-1}} h_{K}(x) d \sigma(x) \tag{1.11}
\end{equation*}
$$

of an isotropic convex body K in \mathbb{R}^{n}, that is, the L_{1}-norm of the support function of K with respect to the Haar measure on the sphere. This last problem was open for a number of years. The upper bound $w(K) \leqslant c n^{3 / 4} L_{K}$ appeared in the Ph.D. Thesis of Hartzoulaki [16]. Other approaches leading to the same bound can be found in Pivovarov [32] and in Giannopoulos, Paouris and Valettas [15]. Recently, E. Milman showed in [26] that if K is an isotropic symmetric convex body in \mathbb{R}^{n} then

$$
\begin{equation*}
w(K) \leqslant c_{3} \sqrt{n}(\log n)^{2} L_{K} \tag{1.12}
\end{equation*}
$$

In fact, it is not hard to see that his argument can be generalized to give the same estimate in the not necessarily symmetric case. The dependence on n is optimal up to the logarithmic term. From the sharp version of V. Milman's low M^{*}-estimate (due to Pajor and Tomczak-Jaegermann [28]; see [2, Chapter 7] for complete references) one has that, for every $1 \leqslant k \leqslant n-1$, a subspace $F \in G_{n, n-k}$ satisfies

$$
\begin{equation*}
R(K \cap F) \leqslant c_{4} \sqrt{n / k} w(K) \tag{1.13}
\end{equation*}
$$

with probability greater than $1-\exp \left(-c_{5} k\right)$, where $c_{4}, c_{5}>0$ are absolute constants. Combining (1.13) with E. Milman's theorem we obtain the folowing estimate:

Let K be an isotropic symmetric convex body in \mathbb{R}^{n}. For every $1 \leqslant k \leqslant n-1$, a subspace
$F \in G_{n, n-k}$ satisfies

$$
\begin{equation*}
R(K \cap F) \leqslant \frac{\bar{c}_{2} n(\log n)^{2} L_{K}}{\sqrt{k}} \tag{1.14}
\end{equation*}
$$

with probability greater than $1-\exp \left(-\bar{c}_{3} k\right)$, where $\bar{c}_{2}, \bar{c}_{3}>0$ are absolute constants.
Note that the upper bound of Theorem 1.2 has some advantages when compared to 1.14$)$: If k is proportional to n (say $k \geqslant \gamma n$ for some $\gamma \in(1 / \sqrt{n}, 1)$) then Theorem 1.2 guarantees that $R(K \cap F) \leqslant c(\gamma) \sqrt{n} L_{K}$ for a random $F \in G_{n, n-k}$. More generally, for all $k \geqslant \frac{c_{6} n}{(\log n)^{4}}$ we have

$$
\begin{equation*}
\frac{\bar{c}_{0} n \sqrt{n}}{\max \{k, \sqrt{n}\}} \leqslant \frac{\bar{c}_{2} n(\log n)^{2}}{\sqrt{k}}, \tag{1.15}
\end{equation*}
$$

and hence the estimate of Theorem 1.2 is stronger than 1.14 . Nevertheless, we emphasize that our bound is not optimal and it would be very interesting to decide whether (1.4) holds true; this would be optimal for all $1 \leqslant k \leqslant n$.

Radius of random sections of L_{q}-centroid bodies and their polars. In Section 4 we study the diameter of random sections of the L_{q}-centroid bodies $Z_{q}(\mu)$ of an isotropic log-concave probability measure μ on \mathbb{R}^{n}. Recall that a measure μ on \mathbb{R}^{n} is called log-concave if $\mu(\lambda A+(1-\lambda) B) \geqslant \mu(A)^{\lambda} \mu(B)^{1-\lambda}$ for any compact subsets A and B of \mathbb{R}^{n} and any $\lambda \in(0,1)$. A function $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ is called log-concave if its support $\{f>0\}$ is a convex set and the restriction of $\log f$ on it is concave. It is known that if a probability measure μ is log-concave and $\mu(H)<1$ for every hyperplane H, then μ is absolutely continuous with respect to the Lebesgue measure and its density f_{μ} is log-concave; see [4]. Note that if K is a convex body in \mathbb{R}^{n} then the Brunn-Minkowski inequality implies that the indicator function $\mathbf{1}_{K}$ of K is the density of a log-concave measure.

We say that a log-concave probability measure μ on \mathbb{R}^{n} is isotropic if its barycenter $\operatorname{bar}(\mu)$ is at the origin and

$$
\int_{\mathbb{R}^{n}}\langle x, \theta\rangle^{2} d \mu(x)=1
$$

for all $\theta \in S^{n-1}$. Note that the normalization is different from the one in 1.1; in particular, a centered convex body K of volume 1 in \mathbb{R}^{n} is isotropic if and only if the log-concave probability measure μ_{K} with density $x \mapsto L_{K}^{n} \mathbf{1}_{K / L_{K}}(x)$ is isotropic.

The L_{q}-centroid bodies $Z_{q}(\mu), q \geqslant 1$, are defined through their support function

$$
\begin{equation*}
h_{Z_{q}(\mu)}(y):=\|\langle\cdot, y\rangle\|_{L_{q}(\mu)}=\left(\int_{\mathbb{R}^{n}}|\langle x, y\rangle|^{q} d \mu(x)\right)^{1 / q} \tag{1.16}
\end{equation*}
$$

and have played a key role in the study of the distribution of linear functionals with respect to the measure μ. For every $1 \leqslant q \leqslant n$ we obtain sharp upper bounds for the radius of random sections of $Z_{q}(\mu)$ of dimension proportional to n, thus extending a similar result of Brazitikos and Stavrakakis which was established only for $q \in[1, \sqrt{n}]$.

Theorem 1.3. Let μ be an isotropic log-concave probability measure on \mathbb{R}^{n} and let $1 \leqslant q \leqslant n$. Then:
(i) If $k=\gamma n$ for some $\gamma \in(0,1)$, then, with probability greater than $1-e^{-\bar{c}_{4} k}$, a random $F \in G_{n, n-k}$ satisfies

$$
\begin{equation*}
R\left(Z_{q}(\mu) \cap F\right) \leqslant \bar{c}_{5}(\gamma) \sqrt{q} \tag{1.17}
\end{equation*}
$$

where \bar{c}_{4} is an absolute constant and $\bar{c}_{5}(\gamma)=O\left(\gamma^{-2} \log ^{5 / 2}(c / \gamma)\right)$ is a positive constant depending only on γ.
(ii) With probability greater than $1-e^{-n}$, a random $U \in O(n)$ satisfies

$$
\begin{equation*}
Z_{q}(\mu) \cap U\left(Z_{q}(\mu)\right) \subseteq\left(\bar{c}_{6} \sqrt{q}\right) B_{2}^{n} \tag{1.18}
\end{equation*}
$$

where $\bar{c}_{6}>0$ is an absolute constant.
The method of proof is based on estimates (from [26] and [11) for the Gelfand numbers of symmetric convex bodies in terms of their volumetric parameters; combining these general estimates with fundamental (known) properties of the family of the centroid bodies $Z_{q}(\mu)$ of an isotropic log-concave probability measure μ we provide estimates for the minimal radius of a k-codimensional section of $Z_{q}(\mu)$. Then, we pass to bounds for the radius of random k-codimensional sections of $Z_{q}(\mu)$ using known results from [12], [34] and [24]. We conclude Section 4 with a discussion of the same questions for the polar bodies $Z_{q}^{\circ}(\mu)$ of the centroid bodies $Z_{q}(\mu)$.

Using the same approach we study the diameter of random sections of convex bodies which have maximal isotropic constant. Set

$$
\begin{equation*}
L_{n}^{\prime}:=\max \left\{L_{K}: K \text { is an isotropic symmetric convex body in } \mathbb{R}^{n}\right\} \tag{1.19}
\end{equation*}
$$

It is known that $L_{n} \leqslant c L_{n}^{\prime}$ for some absolute constant $c>0$ (see [9, Chapter 3]). We prove the following:
Theorem 1.4. Assume that K is an isotropic symmetric convex body in \mathbb{R}^{n} with $L_{K}=L_{n}^{\prime}$. Then:
(i) A random $F \in G_{n, n / 2}$ satisfies

$$
\begin{equation*}
R(K \cap F) \leqslant \bar{c}_{7} \sqrt{n} \tag{1.20}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{K \cap F} \leqslant \bar{c}_{8} \tag{1.21}
\end{equation*}
$$

with probability greater than $1-e^{-\bar{c}_{9} n}$, where $\bar{c}_{i}>0$ are absolute constants.
(ii) A random $U \in O(n)$ satisfies

$$
\begin{equation*}
K \cap U(K) \subseteq\left(\bar{c}_{10} \sqrt{n}\right) B_{2}^{n} \tag{1.22}
\end{equation*}
$$

with probability greater than $1-e^{-n}$, where $\bar{c}_{10}>0$ is an absolute constant.
The same arguments work if we assume that K has almost maximal isotropic constant, i.e. $L_{K} \geqslant \beta L_{n}^{\prime}$ for some (absolute) constant $\beta \in(0,1)$. We can obtain similar results, with the constants \bar{c}_{i} now depending only on β. It should be noted that Alonso-Gutiérrez, Bastero, Bernués and Paouris [1] have proved that every convex body K has a section $K \cap F$ of dimension $n-k$ with isotropic constant

$$
\begin{equation*}
L_{K \cap F} \leqslant c \sqrt{\frac{n}{k}} \log \left(\frac{e n}{k}\right) \tag{1.23}
\end{equation*}
$$

For the proof of this result they considered an α-regular M-position of K. In Theorem 1.4 we consider convex bodies in the isotropic position and the estimates 1.20 and 1.21 hold for a random subspace F.

Radius of random projections of L_{q}-centroid bodies and sub-Gaussian subspaces of isotropic convex bodies. Let K be a centered convex body of volume 1 in \mathbb{R}^{n}. We say that a direction $\theta \in S^{n-1}$ is a ψ_{α}-direction (where $1 \leqslant \alpha \leqslant 2$) for K with constant $b>0$ if

$$
\begin{equation*}
\|\langle\cdot, \theta\rangle\|_{L_{\psi_{\alpha}}(K)} \leqslant b\|\langle\cdot, \theta\rangle\|_{2}, \tag{1.24}
\end{equation*}
$$

where

$$
\begin{equation*}
\|\langle\cdot, \theta\rangle\|_{L_{\psi_{\alpha}}(K)}:=\inf \left\{t>0: \int_{K} \exp \left((|\langle x, \theta\rangle| / t)^{\alpha}\right) d x \leqslant 2\right\} . \tag{1.25}
\end{equation*}
$$

Markov's inequality implies that if K satisfies a ψ_{α}-estimate with constant b in the direction of θ then for all $t \geqslant 1$ we have $\left|\left\{x \in K:|\langle x, \theta\rangle| \geqslant t\|\langle\cdot, \theta\rangle\|_{2}\right\}\right| \leqslant 2 e^{-t^{a} / b^{\alpha}}$. Conversely, one can check that tail estimates of this form imply that θ is a ψ_{α}-direction for K.

It is well-known that every $\theta \in S^{n-1}$ is a ψ_{1}-direction for K with an absolute constant C. An open question is if there exists an absolute constant $C>0$ such that every K has at least one sub-Gaussian direction (ψ_{2}-direction) with constant C. It was first proved by Klartag in [20] that for every centered convex body K of volume 1 in \mathbb{R}^{n} there exists $\theta \in S^{n-1}$ such that

$$
\begin{equation*}
\left|\left\{x \in K:|\langle x, \theta\rangle| \geqslant c t\|\langle\cdot, \theta\rangle\|_{2}\right\}\right| \leqslant e^{-\frac{t^{2}}{[\log (t+1)]^{2 a}}} \tag{1.26}
\end{equation*}
$$

for all $t \geqslant 1$, where $a=3$ (equivalently, $\|\langle\cdot, \theta\rangle\|_{L_{\psi_{2}}(K)} \leqslant C(\log n)^{a}\|\langle\cdot, \theta\rangle\|_{2}$). This estimate was later improved by Giannopoulos, Paouris and Valettas in [14] and [15] (see also [13]) who showed that the body $\Psi_{2}(K)$ with support function $y \mapsto\|\langle\cdot, y\rangle\|_{L_{\psi_{2}}(K)}$ has volume

$$
\begin{equation*}
c_{1} \leqslant\left(\frac{\left|\Psi_{2}(K)\right|}{\left|Z_{2}(K)\right|}\right)^{1 / n} \leqslant c_{2} \sqrt{\log n} \tag{1.27}
\end{equation*}
$$

From (1.27) it follows that there exists at least one sub-Gaussian direction for K with constant $b \leqslant C \sqrt{\log n}$.
Brazitikos and Hioni in [7] proved that if K is isotropic then logarithmic bounds for $\|\langle\cdot, \theta\rangle\|_{L_{\psi_{2}}(K)}$ hold true with probability polynomially close to 1 : For any $a>1$ one has

$$
\|\langle\cdot, \theta\rangle\|_{L_{\psi_{2}}(K)} \leqslant C(\log n)^{3 / 2} \max \{\sqrt{\log n}, \sqrt{a}\} L_{K}
$$

for all θ in a subset Θ_{a} of S^{n-1} with $\sigma\left(\Theta_{a}\right) \geqslant 1-n^{-a}$, where $C>0$ is an absolute constant.
Here, we consider the question if one can have an estimate of this type for all directions θ of a subspace $F \in G_{n, k}$ of dimension k increasing to infinity with n. We say that $F \in G_{n, k}$ is a sub-Gaussian subspace for K with constant $b>0$ if

$$
\begin{equation*}
\|\langle\cdot, \theta\rangle\|_{L_{\psi_{\alpha}}(K)} \leqslant b\|\langle\cdot, \theta\rangle\|_{2} \tag{1.28}
\end{equation*}
$$

for all $\theta \in S_{F}:=S^{n-1} \cap F$. In Section 5 we show that if K is isotropic then a random subspace of dimension $(\log n)^{4}$ is sub-Gaussian with constant $b \simeq(\log n)^{2}$. More precisely, we prove the following.

Theorem 1.5. Let K be an isotropic convex body in \mathbb{R}^{n}. If $k \simeq(\log n)^{4}$ then there exists a subset Γ of $G_{n, k}$ with $\nu_{n, k}(\Gamma) \geqslant 1-n^{-(\log n)^{3}}$ such that

$$
\begin{equation*}
\|\langle\cdot, \theta\rangle\|_{L_{\psi_{2}}(K)} \leqslant C(\log n)^{2} L_{K} \tag{1.29}
\end{equation*}
$$

for all $F \in \Gamma$ and all $\theta \in S_{F}$, where $C>0$ is an absolute constant.
An essential ingredient of the proof is the good estimates on the radius of random projections of the L_{q}-centroid bodies $Z_{q}(K)$ of K, which follow from E. Milman's sharp bounds on their mean width $w\left(Z_{q}(K)\right)$ (see Theorem 5.1).

2 Notation and preliminaries

We work in \mathbb{R}^{n}, which is equipped with a Euclidean structure $\langle\cdot, \cdot\rangle$. We denote the corresponding Euclidean norm by $\|\cdot\|_{2}$, and write B_{2}^{n} for the Euclidean unit ball, and S^{n-1} for the unit sphere. Volume is denoted by $|\cdot|$. We write ω_{n} for the volume of B_{2}^{n} and σ for the rotationally invariant probability measure on S^{n-1}. We also denote the Haar measure on $O(n)$ by ν. The Grassmann manifold $G_{n, k}$ of k-dimensional subspaces of \mathbb{R}^{n} is equipped with the Haar probability measure $\nu_{n, k}$. Let $k \leqslant n$ and $F \in G_{n, k}$. We will denote the orthogonal projection from \mathbb{R}^{n} onto F by P_{F}. We also define $B_{F}=B_{2}^{n} \cap F$ and $S_{F}=S^{n-1} \cap F$.

The letters $c, c^{\prime}, c_{1}, c_{2}$ etc. denote absolute positive constants whose value may change from line to line. Whenever we write $a \simeq b$, we mean that there exist absolute constants $c_{1}, c_{2}>0$ such that $c_{1} a \leqslant b \leqslant c_{2} a$. Also if $A, D \subseteq \mathbb{R}^{n}$ we will write $A \simeq D$ if there exist absolute constants $c_{1}, c_{2}>0$ such that $c_{1} A \subseteq D \subseteq c_{2} A$.
Convex bodies. A convex body in \mathbb{R}^{n} is a compact convex subset A of \mathbb{R}^{n} with nonempty interior. We say that A is symmetric if $A=-A$. We say that A is centered if the center of mass of A is at the origin, i.e. $\int_{A}\langle x, \theta\rangle d x=0$ for every $\theta \in S^{n-1}$.

The volume radius of A is the quantity $\operatorname{vrad}(A)=\left(|A| /\left|B_{2}^{n}\right|\right)^{1 / n}$. Integration in polar coordinates shows that if the origin is an interior point of A then the volume radius of A can be expressed as

$$
\begin{equation*}
\operatorname{vrad}(A)=\left(\int_{S^{n-1}}\|\theta\|_{A}^{-n} d \sigma(\theta)\right)^{1 / n} \tag{2.1}
\end{equation*}
$$

where $\|\theta\|_{A}=\min \{t>0: \theta \in t A\}$. The radial function of A is defined by $\rho_{A}(\theta)=\max \{t>0: t \theta \in A\}$, $\theta \in S^{n-1}$. The support function of A is defined by $h_{A}(y):=\max \{\langle x, y\rangle: x \in A\}$, and the mean width of A is the average

$$
\begin{equation*}
w(A):=\int_{S^{n-1}} h_{A}(\theta) d \sigma(\theta) \tag{2.2}
\end{equation*}
$$

of h_{A} on \underline{S}^{n-1}. The radius $R(A)$ of A is the smallest $R>0$ such that $A \subseteq R B_{2}^{n}$. For notational convenience we write \bar{A} for the homothetic image of volume 1 of a convex body $A \subseteq \mathbb{R}^{n}$, i.e. $\bar{A}:=|A|^{-1 / n} A$.

The polar body A° of a convex body A in \mathbb{R}^{n} with $0 \in \operatorname{int}(A)$ is defined by

$$
\begin{equation*}
A^{\circ}:=\left\{y \in \mathbb{R}^{n}:\langle x, y\rangle \leqslant 1 \text { for all } x \in A\right\} \tag{2.3}
\end{equation*}
$$

The Blaschke-Santaló inequality states that if A is centered then $|A|\left|A^{\circ}\right| \leqslant\left|B_{2}^{n}\right|^{2}$, with equality if and only if A is an ellipsoid. The reverse Santaló inequality of J. Bourgain and V. Milman [6] states that there exists an absolute constant $c>0$ such that

$$
\begin{equation*}
\left(|A|\left|A^{\circ}\right|\right)^{1 / n} \geqslant c / n \tag{2.4}
\end{equation*}
$$

whenever $0 \in \operatorname{int}(A)$.
For every centered convex body A of volume 1 in \mathbb{R}^{n} and for every $q \in(-n, \infty) \backslash\{0\}$ we define

$$
\begin{equation*}
I_{q}(A)=\left(\int_{A}\|x\|_{2}^{q} d x\right)^{1 / q} \tag{2.5}
\end{equation*}
$$

As a consequence of Borell's lemma (see [9, Chapter 1]) one has

$$
\begin{equation*}
I_{q}(A) \leqslant c_{1} q I_{2}(A) \tag{2.6}
\end{equation*}
$$

for all $q \geqslant 2$.
For basic facts from the Brunn-Minkowski theory and the asymptotic theory of convex bodies we refer to the books [33] and [2] respectively.

Log-concave probability measures. Let μ be a log-concave probability measure on \mathbb{R}^{n}. The density of μ is denoted by f_{μ}. We say that μ is centered and we $\operatorname{write} \operatorname{bar}(\mu)=0$ if, for all $\theta \in S^{n-1}$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\langle x, \theta\rangle d \mu(x)=\int_{\mathbb{R}^{n}}\langle x, \theta\rangle f_{\mu}(x) d x=0 . \tag{2.7}
\end{equation*}
$$

The isotropic constant of μ is defined by

$$
\begin{equation*}
L_{\mu}:=\left(\frac{\sup _{x \in \mathbb{R}^{n}} f_{\mu}(x)}{\int_{\mathbb{R}^{n}} f_{\mu}(x) d x}\right)^{\frac{1}{n}}[\operatorname{det} \operatorname{Cov}(\mu)]^{\frac{1}{2 n}}, \tag{2.8}
\end{equation*}
$$

where $\operatorname{Cov}(\mu)$ is the covariance matrix of μ with entries

$$
\begin{equation*}
\operatorname{Cov}(\mu)_{i j}:=\frac{\int_{\mathbb{R}^{n}} x_{i} x_{j} f_{\mu}(x) d x}{\int_{\mathbb{R}^{n}} f_{\mu}(x) d x}-\frac{\int_{\mathbb{R}^{n}} x_{i} f_{\mu}(x) d x}{\int_{\mathbb{R}^{n}} f_{\mu}(x) d x} \frac{\int_{\mathbb{R}^{n}} x_{j} f_{\mu}(x) d x}{\int_{\mathbb{R}^{n}} f_{\mu}(x) d x} . \tag{2.9}
\end{equation*}
$$

We say that a log-concave probability measure μ on \mathbb{R}^{n} is isotropic if $\operatorname{bar}(\mu)=0$ and $\operatorname{Cov}(\mu)$ is the identity matrix. Note that a centered convex body K of volume 1 in \mathbb{R}^{n} is isotropic, i.e. it satisfies (1.1), if and only if the log-concave probability measure μ_{K} with density $x \mapsto L_{K}^{n} \mathbf{1}_{K / L_{K}}(x)$ is isotropic. Note that for every log-concave measure μ on \mathbb{R}^{n} one has

$$
\begin{equation*}
L_{\mu} \leqslant \kappa L_{n}, \tag{2.10}
\end{equation*}
$$

where $\kappa>0$ is an absolute constant (a proof can be found in [9, Proposition 2.5.12]).
We will use the following sharp result on the growth of $I_{q}(K)$, where K is an isotropic convex body in \mathbb{R}^{n}, proved by Paouris in [29] and [30.

Theorem 2.1 (Paouris). There exists an absolute constant $\delta>0$ with the following property: if K is an isotropic convex body in \mathbb{R}^{n}, then

$$
\begin{equation*}
\frac{1}{\delta} \sqrt{n} L_{K}=\frac{1}{\delta} I_{2}(K) \leqslant I_{-q}(K) \leqslant I_{q}(K) \leqslant \delta I_{2}(K)=\delta \sqrt{n} L_{K} \tag{2.11}
\end{equation*}
$$

for every $1 \leqslant q \leqslant \sqrt{n}$.
For every $q \geqslant 1$ and every $y \in \mathbb{R}^{n}$ we set

$$
\begin{equation*}
h_{Z_{q}(\mu)}(y)=\left(\int_{\mathbb{R}^{n}}|\langle x, y\rangle|^{q} d \mu(x)\right)^{1 / q} . \tag{2.12}
\end{equation*}
$$

The L_{q}-centroid body $Z_{q}(\mu)$ of μ is the symmetric convex body with support function $h_{Z_{q}(\mu)}$. Note that μ is isotropic if and only if it is centered and $Z_{2}(\mu)=B_{2}^{n}$. If K is an isotropic convex body in \mathbb{R}^{n} we define $Z_{q}(K)=L_{K} Z_{q}\left(\mu_{K}\right)$. From Hölder's inequality it follows that $Z_{1}(K) \subseteq Z_{p}(K) \subseteq Z_{q}(K) \subseteq Z_{\infty}(K)$ for all $1 \leqslant p \leqslant q \leqslant \infty$, where $Z_{\infty}(K)=\operatorname{conv}\{K,-K\}$. Using Borell's lemma, one can check that

$$
\begin{equation*}
Z_{q}(K) \subseteq c_{1} \frac{q}{p} Z_{p}(K) \tag{2.13}
\end{equation*}
$$

for all $1 \leqslant p<q$. In particular, if K is isotropic, then $R\left(Z_{q}(K)\right) \leqslant c_{1} q L_{K}$. One can also check that if K is centered, then $Z_{q}(K) \supseteq c_{2} Z_{\infty}(K)$ for all $q \geqslant n$.

It was shown by Paouris [29] that if $1 \leqslant q \leqslant \sqrt{n}$ then

$$
\begin{equation*}
w\left(Z_{q}(\mu)\right) \simeq \sqrt{q}, \tag{2.14}
\end{equation*}
$$

and that for all $1 \leqslant q \leqslant n$,

$$
\begin{equation*}
\operatorname{vrad}\left(Z_{q}(\mu)\right) \leqslant c_{1} \sqrt{q} . \tag{2.15}
\end{equation*}
$$

Conversely, it was shown by B. Klartag and E. Milman in [21] that if $1 \leqslant q \leqslant \sqrt{n}$ then

$$
\begin{equation*}
\operatorname{vrad}\left(Z_{q}(\mu)\right) \geqslant c_{2} \sqrt{q} \tag{2.16}
\end{equation*}
$$

This determines the volume radius of $Z_{q}(\mu)$ for all $1 \leqslant q \leqslant \sqrt{n}$. For larger values of q one can still use the lower bound:

$$
\begin{equation*}
\operatorname{vrad}\left(Z_{q}(\mu)\right) \geqslant c_{2} \sqrt{q} L_{\mu}^{-1} \tag{2.17}
\end{equation*}
$$

obtained by Lutwak, Yang and Zhang in [25] for convex bodies and extended by Paouris and Pivovarov in [31 to the class of log-concave probability measures.

Let μ be a probability measure on \mathbb{R}^{n} with density f_{μ} with respect to the Lebesgue measure. For every $1 \leqslant k \leqslant n-1$ and every $E \in G_{n, k}$, the marginal of μ with respect to E is the probability measure $\pi_{E}(\mu)$ on E, with density

$$
\begin{equation*}
f_{\pi_{E}(\mu)}(x)=\int_{x+E^{\perp}} f_{\mu}(y) d y \tag{2.18}
\end{equation*}
$$

It is easily checked that if μ is centered, isotropic or log-concave, then $\pi_{E}(\mu)$ is also centered, isotropic or log-concave, respectively. A very useful observation is that:

$$
\begin{equation*}
P_{F}\left(Z_{q}(\mu)\right)=Z_{q}\left(\pi_{F}(\mu)\right) \tag{2.19}
\end{equation*}
$$

for every $1 \leqslant k \leqslant n-1$ and every $F \in G_{n, n-k}$.
If μ is a centered log-concave probability measure on \mathbb{R}^{n} then for every $p>0$ we define

$$
\begin{equation*}
K_{p}(\mu):=K_{p}\left(f_{\mu}\right)=\left\{x: \int_{0}^{\infty} r^{p-1} f_{\mu}(r x) d r \geqslant \frac{f_{\mu}(0)}{p}\right\} . \tag{2.20}
\end{equation*}
$$

From the definition it follows that $K_{p}(\mu)$ is a star body with radial function

$$
\begin{equation*}
\rho_{K_{p}(\mu)}(x)=\left(\frac{1}{f_{\mu}(0)} \int_{0}^{\infty} p r^{p-1} f_{\mu}(r x) d r\right)^{1 / p} \tag{2.21}
\end{equation*}
$$

for $x \neq 0$. The bodies $K_{p}(\mu)$ were introduced in [3] by K. Ball who showed that if μ is log-concave then, for every $p>0, K_{p}(\mu)$ is a convex body.

If K is isotropic then for every $1 \leqslant k \leqslant n-1$ and $F \in G_{n, n-k}$, the body $\overline{K_{k+1}}\left(\pi_{F^{\perp}}\left(\mu_{K}\right)\right)$ satisfies

$$
\begin{equation*}
|K \cap F|^{1 / k} \simeq \frac{L \overline{K_{k+1}}\left(\pi_{F} \perp\left(\mu_{K}\right)\right)}{L_{K}} \tag{2.22}
\end{equation*}
$$

For more information on isotropic convex bodies and log-concave measures see 9 .

3 Random sections of isotropic convex bodies

The proof of Theorem 1.2 is based on Lemma 3.1 and Lemma 3.2 below. They exploit some ideas of Klartag from [18].

Lemma 3.1. Let K be an isotropic convex body in \mathbb{R}^{n}. For every $1 \leqslant k \leqslant n-1$ there exists a subset $\mathcal{A}:=\mathcal{A}(n, k)$ of $G_{n, n-k}$ with $\nu_{n, n-k}(\mathcal{A}) \geqslant 1-e^{-\sqrt{n}}$ that has the following property: for every $F \in \mathcal{A}$,

$$
\begin{equation*}
\left|\left\{x \in K \cap F:\|x\|_{2} \geqslant c_{1} \sqrt{n} L_{K}\right\}\right| \leqslant e^{-(k+\sqrt{n})}|K \cap F| \tag{3.1}
\end{equation*}
$$

where $c_{1}>0$ is an absolute constant.

Proof. Integration in polar coordinates shows that for all $q>0$

$$
\begin{equation*}
\int_{G_{n, n-k}} \int_{K \cap F}\|x\|_{2}^{k+q} d x d \nu_{n, n-k}(F)=\frac{(n-k) \omega_{n-k}}{n \omega_{n}} \int_{K}\|x\|_{2}^{q} d x=\frac{(n-k) \omega_{n-k}}{n \omega_{n}} I_{q}^{q}(K) \tag{3.2}
\end{equation*}
$$

and an application of Markov's inequality shows that a random $F \in G_{n, n-k}$ satisfies

$$
\begin{equation*}
\int_{K \cap F}\|x\|_{2}^{k+q} d x \leqslant \frac{(n-k) \omega_{n-k}}{n \omega_{n}}\left(e I_{q}(K)\right)^{q} \tag{3.3}
\end{equation*}
$$

with probability greater than $1-e^{-q}$.
Fix a subspace $F \in G_{n, n-k}$ which satisfies (3.3). From 2.22 we have

$$
\begin{equation*}
|K \cap F|^{1 / k} \geqslant c_{2} \frac{L_{\overline{K_{k+1}}\left(\pi_{F \perp}\left(\mu_{K}\right)\right)}^{L_{K}} \geqslant \frac{c_{3}}{L_{K}}, \text { }}{1} \tag{3.4}
\end{equation*}
$$

where $c_{2}, c_{3}>0$ are absolute constants. A simple computation shows that

$$
\begin{equation*}
\frac{(n-k) \omega_{n-k}}{n \omega_{n}} \leqslant\left(c_{4} \sqrt{n}\right)^{k} \tag{3.5}
\end{equation*}
$$

for an absolute constant $c_{4}>0$. Using also 2.11 with $q=\sqrt{n}$ we get

$$
\begin{align*}
\frac{1}{|K \cap F|} \int_{K \cap F}\|x\|_{2}^{k+\sqrt{n}} d x & \leqslant \frac{1}{|K \cap F|} \frac{(n-k) \omega_{n-k}}{n \omega_{n}}\left(e I_{\sqrt{n}}(K)\right)^{\sqrt{n}} \tag{3.6}\\
& \leqslant\left(c_{5} L_{K}\right)^{k}\left(c_{4} \sqrt{n}\right)^{k}\left(e \delta \sqrt{n} L_{K}\right)^{\sqrt{n}} \leqslant\left(c_{6} \sqrt{n} L_{K}\right)^{k+\sqrt{n}}
\end{align*}
$$

where $c_{6}>0$ is an absolute constant. It follows that

$$
\begin{equation*}
\left|\left\{x \in K \cap F:\|x\|_{2} \geqslant e c_{6} \sqrt{n} L_{K}\right\}\right| \leqslant e^{-(k+\sqrt{n})}|K \cap F| \tag{3.7}
\end{equation*}
$$

and the lemma is proved with $c_{1}=e c_{6}$.
The next lemma comes from [18.
Lemma 3.2 (Klartag). Let A be a symmetric convex body in \mathbb{R}^{m}. Then, for any $0<\varepsilon<1$ we have

$$
\begin{equation*}
\left|\left\{x \in A:\|x\|_{2} \geqslant \varepsilon R(A)\right\}\right| \geqslant \frac{1}{2}(1-\varepsilon)^{m}|A| \tag{3.8}
\end{equation*}
$$

Proof. Let $x_{0} \in A$ such that $\left\|x_{0}\right\|_{2}=R(A)$ and define $v=x_{0} /\left\|x_{0}\right\|_{2}$. We consider the set A^{+}defined as

$$
\begin{equation*}
A^{+}:=\{x \in A:\langle x, v\rangle \geqslant 0\} \tag{3.9}
\end{equation*}
$$

Since A is symmetric, we have $\left|A^{+}\right|=|A| / 2$. Note that

$$
\begin{equation*}
\left\{x \in A:\|x\|_{2} \geqslant \varepsilon R(A)\right\} \supseteq \varepsilon x_{0}+(1-\varepsilon) A^{+} \tag{3.10}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\left|\left\{x \in A:\|x\|_{2} \geqslant \varepsilon R(A)\right\}\right| \geqslant\left|\varepsilon x_{0}+(1-\varepsilon) A^{+}\right|=(1-\varepsilon)^{m}\left|A^{+}\right|=\frac{1}{2}(1-\varepsilon)^{m}|A| \tag{3.11}
\end{equation*}
$$

as claimed.
Proof of Theorem 1.2, Let K be an isotropic symmetric convex body in \mathbb{R}^{n}. Applying Lemma 3.1 we find a subset \mathcal{A} of $G_{n, n-k}$ with $\nu_{n, n-k}(\mathcal{A}) \geqslant 1-e^{-\sqrt{n}}$ such that, for every $F \in \mathcal{A}$,

$$
\begin{equation*}
\left|\left\{x \in K \cap F:\|x\|_{2} \geqslant c_{1} \sqrt{n} L_{K}\right\}\right| \leqslant e^{-(k+\sqrt{n})}|K \cap F| \tag{3.12}
\end{equation*}
$$

We distinguish two cases:
Case 1. If $k>n / 3$ then choosing $\varepsilon_{0}=1-e^{-\frac{1}{3}}$ we get

$$
\begin{equation*}
\frac{1}{2}\left(1-\varepsilon_{0}\right)^{n-k}|K \cap F|=\frac{1}{2} e^{-\frac{n-k}{3}}|K \cap F|>e^{-\frac{n-k}{3}-1}|K \cap F|>e^{-(k+\sqrt{n})}|K \cap F| \tag{3.13}
\end{equation*}
$$

because $k+\sqrt{n}>\frac{n-k}{3}+1$. By Lemma 3.2 and 3.12 we get that

$$
\begin{equation*}
\left|\left\{x \in K \cap F:\|x\|_{2} \geqslant \varepsilon_{0} R(K \cap F)\right\}\right|>\left|\left\{x \in K \cap F:\|x\|_{2} \geqslant c_{1} \sqrt{n} L_{K}\right\}\right|, \tag{3.14}
\end{equation*}
$$

therefore

$$
\begin{equation*}
R(K \cap F)<c_{2} \sqrt{n} L_{K} \tag{3.15}
\end{equation*}
$$

where $c_{2}=\varepsilon_{0}^{-1} c_{1}>0$ is an absolute constant.
Case 2. If $k \leqslant n / 3$ then we choose $\varepsilon_{1}=\frac{k+\sqrt{n}}{6(n-k)}$. Note that $\varepsilon_{1}<1 / 2$. Using the inequality $1-t>e^{-2 t}$ on $(0,1 / 2)$ we get

$$
\begin{equation*}
\frac{1}{2}\left(1-\varepsilon_{1}\right)^{n-k}|K \cap F|=\frac{1}{2}\left(1-\frac{k+\sqrt{n}}{6(n-k)}\right)^{n-k}|K \cap F|>e^{-\frac{k+\sqrt{n}}{3}-1}|K \cap F|>e^{-(k+\sqrt{n})}|K \cap F| \tag{3.16}
\end{equation*}
$$

because $\frac{2(k+\sqrt{n})}{3}>1$. By Lemma 3.2 this implies that

$$
\begin{equation*}
\left|\left\{x \in K \cap F:\|x\|_{2} \geqslant \varepsilon_{1} R(K \cap F)\right\}\right|>\left|\left\{x \in K \cap F:\|x\|_{2} \geqslant c_{1} \sqrt{n} L_{K}\right\}\right| \tag{3.17}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\varepsilon_{1} R(K \cap F)<c_{1} \sqrt{n} L_{K} \tag{3.18}
\end{equation*}
$$

which, by the choice of ε_{1} becomes

$$
\begin{equation*}
R(K \cap F)<\frac{c_{3} n}{\max \{k, \sqrt{n}\}} \sqrt{n} L_{K} \tag{3.19}
\end{equation*}
$$

for some absolute constant $c_{3}>0$. This completes the proof of the theorem (with a probability estimate $1-e^{-\sqrt{n}}$ for all $1 \leqslant k \leqslant n-1$).
Remark 3.3. It is possible to improve the probability estimate $1-e^{-\sqrt{n}}$ in the range $k \geqslant \gamma n$, for any $\gamma \in(1 / \sqrt{n}, 1)$. This can be done with the help of known results that demonstrate the fact that the existence of one s-dimensional section with radius r implies that random m-dimensional sections, where $m<s$, have radius of "the same order". This was first observed in [12], [34] and, soon after, in [24]. Let us recall this last statement.

Let A be a symmetric convex body in \mathbb{R}^{n} and let $1 \leqslant s<m \leqslant n-1$. If $R(A \cap F) \leqslant r$ for some $F \in G_{n, m}$ then a random subspace $E \in G_{n, s}$ satisfies

$$
\begin{equation*}
R(A \cap E) \leqslant r\left(\frac{c_{2} n}{n-m}\right)^{\frac{n-s}{2(m-s)}} \tag{3.20}
\end{equation*}
$$

with probability greater than $1-2 e^{-(n-s) / 2}$, where $c_{2}>0$ is an absolute constant.
We apply this result as follows. Let $k=\gamma n \geqslant \sqrt{n}$ and set $t=\delta n$, where $\delta \simeq \gamma / \log (1+1 / \gamma)$. From the proof of Theorem 1.2 we know that there exists $E \in G_{n, n-t}$ such that

$$
\begin{equation*}
R(K \cap E) \leqslant \frac{c_{1} n}{t} \sqrt{n} L_{K} \tag{3.21}
\end{equation*}
$$

where $c_{1}>0$ is an absolute constant. Applying 3.20 with $s=n-k$ and $m=n-t$ we see that a random subspace $F \in G_{n, n-k}$ satisfies

$$
\begin{equation*}
R(K \cap F) \leqslant\left(\frac{c_{2}}{\delta}\right)^{\frac{3}{2}} \quad R(K \cap E)=c_{3}(\gamma) \sqrt{n} L_{K} \tag{3.22}
\end{equation*}
$$

with probability greater than $1-2 e^{-k / 2}$, where $c_{3}(\gamma)=O\left(\left(\gamma^{-1} \log (1+1 / \gamma)\right)^{\frac{3}{2}}\right)$.
Remark 3.4. It is also possible to give lower bounds of the order of $\sqrt{n} L_{K}$ for the diameter of $(n-k)$ dimensional sections, provided that the codimension k is small. Integration in polar coordinates shows that

$$
\begin{equation*}
\int_{K}\|x\|_{2}^{-q} d x=\frac{n \omega_{n}}{(n-k) \omega_{n-k}} \int_{G_{n, n-k}} \int_{K \cap F}\|x\|_{2}^{k-q} d x d \nu_{n, n-k}(F) \tag{3.23}
\end{equation*}
$$

for every $1 \leqslant k \leqslant n-1$ and every $0<q<n$. It follows that

$$
\begin{equation*}
\int_{G_{n, n-k}} \int_{K \cap F}\|x\|_{2}^{k-q} d x d \nu_{n, n-k}(F)=\frac{(n-k) \omega_{n-k}}{n \omega_{n}} I_{-q}^{-q}(K) \tag{3.24}
\end{equation*}
$$

and an application of Markov's inequality shows that a random $F \in G_{n, n-k}$ satisfies

$$
\begin{equation*}
\int_{K \cap F}\|x\|_{2}^{k-q} d x \leqslant \frac{(n-k) \omega_{n-k}}{n \omega_{n}}\left(e / I_{-q}(K)\right)^{q} \tag{3.25}
\end{equation*}
$$

with probability greater than $1-e^{-q}$. Assuming that $q>k$, for any $F \in G_{n, n-k}$ satisfying (3.25) we have

$$
\begin{equation*}
|K \cap F| R(K \cap F)^{k-q} \leqslant \int_{K \cap F}\|x\|_{2}^{k-q} d x \leqslant \frac{(n-k) \omega_{n-k}}{n \omega_{n}}\left(e / I_{-q}(K)\right)^{q}, \tag{3.26}
\end{equation*}
$$

which implies

$$
\begin{equation*}
R(K \cap F) \geqslant\left(\frac{n \omega_{n}}{(n-k) \omega_{n-k}}\right)^{\frac{1}{q-k}}|K \cap F|^{\frac{1}{q-k}}\left(\frac{I_{-q}(K)}{e}\right)^{\frac{q}{q-k}} \geqslant\left(\frac{c_{1}}{\sqrt{n} L_{K}}\right)^{\frac{k}{q-k}}\left(c_{2} I_{-q}(K)\right)^{\frac{q}{q-k}} \tag{3.27}
\end{equation*}
$$

If $k \leqslant \sqrt{n}$ then we may choose $q=2 \sqrt{n}$ and use the fact that $I_{-2 \sqrt{n}}(K) \geqslant c_{3} \sqrt{n} L_{K}$ by Theorem 2.1, to get:
Proposition 3.5. Let K be an isotropic convex body in \mathbb{R}^{n}. For every $1 \leqslant k \leqslant \sqrt{n}$ there exists a subset \mathcal{A} of $G_{n, n-k}$ with $\nu_{n, n-k}(\mathcal{A}) \geqslant 1-e^{-\sqrt{n}}$ such that, for every $F \in \mathcal{A}$,

$$
\begin{equation*}
R(K \cap F) \geqslant c \sqrt{n} L_{K} \tag{3.28}
\end{equation*}
$$

where $c>0$ is an absolute constant.
Remark 3.6. Choosing $k=\lfloor n / 2\rfloor$ in Theorem 1.2 we see that if K is an isotropic symmetric convex body in \mathbb{R}^{n} then a subspace $F \in G_{n,\lceil n / 2\rceil}$ satisfies

$$
\begin{equation*}
R(K \cap F) \leqslant c_{1} \sqrt{n} L_{K} \tag{3.29}
\end{equation*}
$$

with probability greater than $1-2 \exp \left(-c_{2} n\right)$, where $c_{1}, c_{2}>0$ are absolute constants. A standard argument that goes back to Krivine (see [2, Proposition 8.6.2]) shows that there exists $U \in O(n)$ such that

$$
\begin{equation*}
K \cap U(K) \subseteq\left(c_{3} \sqrt{n} L_{K}\right) B_{2}^{n} \tag{3.30}
\end{equation*}
$$

where $c_{3}>0$ is an absolute constant. In fact, one can prove an analogue of 3.30 for a random $U \in O(n)$ using a result of Vershynin and Rudelson (see [34, Theorem 1.1]): There exist absolute constants $\gamma_{0} \in(0,1 / 2)$
and $c_{1}>0$ with the following property: if A and D are two symmetric convex bodies in \mathbb{R}^{n} which have sections of dimensions at least k and $n-2 \gamma_{0} k$ respectively whose radius is bounded by 1 , then a random $U \in O(n)$ satisfies

$$
\begin{equation*}
R(A \cap U(D)) \leqslant c_{1}^{n / k} \tag{3.31}
\end{equation*}
$$

with probability greater than $1-e^{-n}$. As an application, setting $D=A$ and $k=n / 2$ one has the following (see [8]). If

$$
\begin{equation*}
r_{A}:=\min \left\{R(A \cap F): \operatorname{dim}(F)=\left\lceil\left(1-\gamma_{0}\right) n\right\rceil\right\} \tag{3.32}
\end{equation*}
$$

then $R(A \cap U(A)) \leqslant c_{2} r_{A}$ with probability greater than $1-e^{-n}$ with respect to $U \in O(n)$.
Choosing $k=\left\lfloor\gamma_{0} n / 2\right\rfloor$ in Theorem 1.2 we see that if K is an isotropic symmetric convex body in \mathbb{R}^{n} then

$$
\begin{equation*}
r_{K} \leqslant c_{4} \sqrt{n} L_{K} \tag{3.33}
\end{equation*}
$$

for some absolute constant $c_{4}>0$. This gives that a random $U \in O(n)$ satisfies

$$
\begin{equation*}
K \cap U(K) \subseteq\left(c_{5} \sqrt{n} L_{K}\right) B_{2}^{n} \tag{3.34}
\end{equation*}
$$

with probability greater than $1-e^{-n}$, where $c_{5}>0$ is an absolute constant.

4 Minimal and random sections of the centroid bodies of isotropic log-concave measures

In this section we discuss the case of the L_{q}-centroid bodies $Z_{q}(\mu)$ of an isotropic log-concave probability measure μ on \mathbb{R}^{n}. Our method will be different from the one in the previous section.

In view of 3.20 we can give an upper bound for the radius of a random k-codimensional section of a symmetric convex body A in \mathbb{R}^{n} if we are able to give an upper bound for the radius of some t-codimensional section of A, where $t \ll k$. This leads us to the study of the Gelfand numbers $c_{t}(A)$, which are defined by

$$
\begin{equation*}
c_{t}(A)=\min \left\{R(A \cap F): F \in G_{n, n-t}\right\} \tag{4.1}
\end{equation*}
$$

for every $t=0, \ldots, n-1$. It was proved in 11 that if A is a symmetric convex body in \mathbb{R}^{n} then, for any $t=1, \ldots,\lfloor n / 2\rfloor$ there exists $F \in G_{n, n-2 t}$ such that

$$
\begin{equation*}
A \cap F \subseteq c_{1} \frac{n}{t} \log \left(e+\frac{n}{t}\right) w_{t}(A) B_{2}^{n} \cap F \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{t}(A):=\sup \left\{\operatorname{vrad}(A \cap E): E \in G_{n, t}\right\} \tag{4.3}
\end{equation*}
$$

In other words,

$$
\begin{equation*}
c_{2 t}(A) \leqslant c_{1} \frac{n}{t} \log \left(e+\frac{n}{t}\right) w_{t}(A) . \tag{4.4}
\end{equation*}
$$

This is a refinement of a result of V. Milman and G. Pisier from [27, where a similar estimate was obtained, with the parameter $w_{t}(A)$ replaced by (the larger one)

$$
\begin{equation*}
v_{t}(A):=\sup \left\{\operatorname{vrad}\left(P_{E}(A)\right): E \in G_{n, t}\right\} \tag{4.5}
\end{equation*}
$$

We shall apply this method to the bodies $Z_{q}(\mu)$. The main additional ingredient is the next fact, which combines results of Paouris and Klartag (see [26] or [9, Chapter 5] for precise references):

Theorem 4.1. Let μ be a centered log-concave probability measure on \mathbb{R}^{n}. Then, for all $1 \leqslant t \leqslant n$ and $q \geqslant 1$ we have

$$
\begin{equation*}
v_{t}\left(Z_{q}(\mu)\right)=\sup \left\{\operatorname{vrad}\left(P_{E}\left(Z_{q}(\mu)\right)\right): E \in G_{n, t}\right\} \leqslant c_{0} \sqrt{\frac{q}{t}} \max \{\sqrt{q}, \sqrt{t}\} \max _{E \in G_{n, t}} \operatorname{det} \operatorname{Cov}\left(\pi_{E}(\mu)\right)^{\frac{1}{2 t}} \tag{4.6}
\end{equation*}
$$

where $c_{0}>0$ is an absolute constant.
We apply Theorem 4.1 as follows: for every $1 \leqslant t \leqslant n / 2$ and every $E \in G_{n, t}$ we have that $\pi_{E}(\mu)$ is isotropic, and hence det $\operatorname{Cov}\left(\pi_{E}(\mu)\right)^{\frac{1}{2 t}}=1$. Then,

$$
\begin{equation*}
w_{t}\left(Z_{q}(\mu)\right) \leqslant v_{t}\left(Z_{q}(\mu)\right) \leqslant c_{0} \sqrt{\frac{q}{t}} \max \{\sqrt{q}, \sqrt{t}\} . \tag{4.7}
\end{equation*}
$$

From (4.4) we get
Lemma 4.2. Let μ be an isotropic log-concave probability measure on \mathbb{R}^{n} and let $1 \leqslant t \leqslant\lfloor n / 2\rfloor$ and $1 \leqslant q \leqslant n$. Then,

$$
\begin{equation*}
c_{2 t}\left(Z_{q}(\mu)\right) \leqslant c_{2} \frac{n}{t} \log \left(e+\frac{n}{t}\right) \sqrt{\frac{q}{t}} \max \{\sqrt{q}, \sqrt{t}\} \tag{4.8}
\end{equation*}
$$

where $c_{2}>0$ is an absolute constant.
Let $k \geqslant 4$ and let $t<k / 2$. From Lemma 4.2 we know that there exists $E \in G_{n, n-2 t}$ such that

$$
\begin{equation*}
R\left(Z_{q}(\mu) \cap E\right) \leqslant c_{2} \frac{n}{t} \log \left(e+\frac{n}{t}\right) \sqrt{\frac{q}{t}} \max \{\sqrt{q}, \sqrt{t}\} \tag{4.9}
\end{equation*}
$$

where $c_{2}>0$ is an absolute constant. Applying (3.20) with $s=n-k$ and $m=n-2 t$ we see that a random subspace $F \in G_{n, n-k}$ satisfies

$$
\begin{equation*}
R\left(Z_{q}(\mu) \cap F\right) \leqslant\left(\frac{c_{2} n}{t}\right)^{\frac{k}{2(k-2 t)}} R\left(Z_{q}(\mu) \cap E\right) \leqslant\left(\frac{c_{3} n}{t}\right)^{\frac{3}{2}+\frac{t}{k-2 t}} \log \left(e+\frac{n}{t}\right) \sqrt{\frac{q}{t}} \max \{\sqrt{q}, \sqrt{k}\} \tag{4.10}
\end{equation*}
$$

with probability greater than $1-2 e^{-k / 2}$, where $c_{3}>0$ is an absolute constant. In particular, if $k=\gamma n$ we can choose $t=\gamma n / \log (c / \gamma)$, for $c>e^{2}$, to get the following.

Theorem 4.3. Let μ be an isotropic log-concave probability measure on \mathbb{R}^{n} and let $\gamma \in(0,1)$ and $1 \leqslant q \leqslant n$. If $k \geqslant \gamma n$ then a random subspace $F \in G_{n, n-k}$ satisfies

$$
\begin{equation*}
R\left(Z_{q}(\mu) \cap F\right) \leqslant c(\gamma) \sqrt{q} \tag{4.11}
\end{equation*}
$$

with probability greater than $1-2 e^{-\gamma n / 2}$, where $c(\gamma)=O\left(\gamma^{-2} \log ^{5 / 2}(c / \gamma)\right)$ is a positive constant depending only on γ.

Next, we apply (3.31): choosing $t=\gamma_{0} n / 2$ in 4.8 we see that

$$
\begin{equation*}
r_{Z_{q}(\mu)}=c_{\gamma_{0} n}\left(Z_{q}(\mu)\right) \leqslant c_{4} \sqrt{q} \tag{4.12}
\end{equation*}
$$

for every $1 \leqslant q \leqslant n$, where $c_{4}=c_{4}\left(\gamma_{0}\right)>0$ is an absolute constant. Therefore, we have:
Theorem 4.4. Let μ be an isotropic log-concave probability measure on \mathbb{R}^{n} and let $1 \leqslant q \leqslant n$. Then, a random $U \in O(n)$ satisfies

$$
\begin{equation*}
Z_{q}(\mu) \cap U\left(Z_{q}(\mu)\right) \subseteq(c \sqrt{q}) B_{2}^{n} \tag{4.13}
\end{equation*}
$$

with probability greater than $1-e^{-n}$, where $c>0$ is an absolute constant.

Note that Theorem 1.3 summarizes the contents of Theorem 4.3 and Theorem 4.4,
Remark 4.5. We can study the same question for the polar body $Z_{q}^{\circ}(\mu)$ of $Z_{q}(\mu)$. Note that

$$
\begin{equation*}
w_{t}\left(Z_{q}^{\circ}(\mu)\right):=\sup \left\{\operatorname{vrad}\left(Z_{q}^{\circ}(\mu) \cap E\right): E \in G_{n, t}\right\} \simeq\left[\inf \left\{\operatorname{vrad}\left(P_{E}\left(Z_{q}(\mu)\right)\right): E \in G_{n, t}\right\}\right]^{-1} \tag{4.14}
\end{equation*}
$$

by duality and by the Bourgain-Milman inequality. For any $1 \leqslant t \leqslant n-1$ and any symmetric convex body A in \mathbb{R}^{n} define

$$
\begin{equation*}
v_{t}^{-}(A)=\inf \left\{\operatorname{vrad}\left(P_{E}(A)\right): E \in G_{n, t}\right\} \tag{4.15}
\end{equation*}
$$

In the case $A=Z_{q}(\mu)$ this parameter has been studied in [11]:
Lemma 4.6. Let μ be an isotropic log-concave probability measure on \mathbb{R}^{n}. For any $q \geqslant 1$ and $1 \leqslant k \leqslant n-1$ we have:

$$
\begin{equation*}
v_{k}^{-}\left(Z_{q}(\mu)\right) \geqslant c_{1} \sqrt{\min (q, \sqrt{k})} \tag{4.16}
\end{equation*}
$$

If we assume that $\sup _{n} L_{n} \leqslant \alpha$ then we have

$$
\begin{equation*}
v_{k}^{-}\left(Z_{q}(\mu)\right) \geqslant \frac{c_{2}}{\alpha} \sqrt{\min (q, k)} \tag{4.17}
\end{equation*}
$$

These estimates are leading to the next bounds on the minimal radius of a k-codimensional section of $Z_{q}^{\circ}(\mu)$. The following theorem is also from [11].
Theorem 4.7. Let μ be an isotropic log-concave probability measure on \mathbb{R}^{n}. For any $q \geqslant 1$ and $1 \leqslant k \leqslant n-1$ we have:
(i) There exists $F \in G_{n, n-k}$ such that:

$$
\begin{equation*}
P_{F}\left(Z_{q}(\mu)\right) \supseteq \frac{1}{R_{k, q}} B_{2}^{n} \cap F \quad \text { and hence } \quad R\left(Z_{q}^{\circ}(\mu) \cap F\right) \leqslant R_{k, q} \tag{4.18}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{k, q}=\min \left\{1, c_{3} \frac{1}{\min \left(q^{1 / 2}, k^{1 / 4}\right)} \frac{n}{k} \log \left(e+\frac{n}{k}\right)\right\} \tag{4.19}
\end{equation*}
$$

(ii) If we assume that $\sup _{n} L_{n} \leqslant \alpha$ then there exists $F \in G_{n, n-k}$ such that:

$$
\begin{equation*}
P_{F}\left(Z_{q}(\mu)\right) \supseteq \frac{1}{R_{k, q, \alpha}} B_{2}^{n} \cap F \quad \text { and hence } \quad R\left(Z_{q}^{\circ}(\mu) \cap F\right) \leqslant R_{k, q, \alpha} \tag{4.20}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{k, q, \alpha}=\min \left\{1, c_{4} \alpha \frac{1}{\sqrt{\min (q, k)}} \frac{n}{k} \log \left(e+\frac{n}{k}\right)\right\} \tag{4.21}
\end{equation*}
$$

Assuming that $q \leqslant \sqrt{n}$ and choosing $k=\gamma_{0} n$ we see from 4.18) and 4.19) that

$$
\begin{equation*}
c_{\gamma_{0} n}\left(Z_{q}^{\circ}(\mu)\right) \leqslant c_{1}\left(\gamma_{0}\right) \frac{1}{\sqrt{q}} \tag{4.22}
\end{equation*}
$$

where $c_{1}\left(\gamma_{0}\right)>0$ is an absolute constant. Then, we apply 3.20 with $s=n / 2$ and $m=\left(1-\gamma_{0}\right) n$ to get that a random subspace $E \in G_{n, n / 2}$ satisfies

$$
\begin{equation*}
R\left(Z_{q}^{\circ}(\mu) \cap E\right) \leqslant c_{3} \cdot c_{\gamma_{0} n}\left(Z_{q}^{\circ}(\mu)\right) \leqslant c_{2}\left(\gamma_{0}\right) \frac{1}{\sqrt{q}} \tag{4.23}
\end{equation*}
$$

with probability greater than $1-2 e^{-n / 4}$, where $c_{2}\left(\gamma_{0}\right)>0$ is an absolute constant. As usual, this implies that a random $U \in O(n)$ satisfies

$$
\begin{equation*}
Z_{q}^{\circ}(\mu) \cap U\left(Z_{q}^{\circ}(\mu)\right) \subseteq \frac{c}{\sqrt{q}} B_{2}^{n} \tag{4.24}
\end{equation*}
$$

with probability greater than $1-e^{-n}$, where $c>0$ is an absolute constant. This estimate appears in [22] (and a second proof is given in [8]).

Assuming that $\sup _{n} L_{n} \leqslant \alpha$ we may apply the same reasoning for every $1 \leqslant q \leqslant n$: choosing $k=\gamma_{0} n$ we see from 4.20 and 4.21 that

$$
\begin{equation*}
c_{\gamma_{0} n}\left(Z_{q}^{\circ}(\mu)\right) \leqslant c_{1}\left(\gamma_{0}\right) \frac{\alpha}{\sqrt{q}}, \tag{4.25}
\end{equation*}
$$

where $c_{1}\left(\gamma_{0}\right)>0$ is an absolute constant. Then, we apply 3.20 with $s=n / 2$ and $m=\left(1-\gamma_{0}\right) n$ to get that a random subspace $E \in G_{n, n / 2}$ satisfies

$$
\begin{equation*}
R\left(Z_{q}^{\circ}(\mu) \cap E\right) \leqslant c_{3} \cdot c_{\gamma_{0} n}\left(Z_{q}^{\circ}(\mu)\right) \leqslant c_{2}\left(\gamma_{0}\right) \frac{\alpha}{\sqrt{q}} \tag{4.26}
\end{equation*}
$$

with probability greater than $1-2 e^{-n / 4}$, where $c_{2}\left(\gamma_{0}\right)>0$ is an absolute constant. Finally, this implies that a random $U \in O(n)$ satisfies

$$
\begin{equation*}
Z_{q}^{\circ}(\mu) \cap U\left(Z_{q}^{\circ}(\mu)\right) \subseteq \frac{c \alpha}{\sqrt{q}} B_{2}^{n} \tag{4.27}
\end{equation*}
$$

with probability greater than $1-e^{-n}$, where $c>0$ is an absolute constant.

4.1 Random sections of bodies with maximal isotropic constant

Starting with an isotropic symmetric convex body K in \mathbb{R}^{n} we can use the method of this section in order to estimate the quantities

$$
\begin{equation*}
c_{t}(K)=\min \left\{R(K \cap F): F \in G_{n, n-t}\right\} \tag{4.28}
\end{equation*}
$$

for every $t=0, \ldots, n-1$. From 2.22 we have

$$
\begin{equation*}
|K \cap E|^{\frac{1}{n-t}} \leqslant c_{2} \frac{L_{\overline{K_{k+1}}}\left(\pi_{E^{\perp}}\left(\mu_{K}\right)\right)}{L_{K}} \leqslant \frac{c_{3} L_{n-t}}{L_{K}} \tag{4.29}
\end{equation*}
$$

for every $E \in G_{n, t}$, therefore

$$
\begin{equation*}
w_{t}(K) \leqslant c_{4} \sqrt{t}\left(\frac{c_{3} L_{n-t}}{L_{K}}\right)^{\frac{n-t}{t}} \tag{4.30}
\end{equation*}
$$

Assume that K has maximal isotropic constant, i.e. $L_{K}=L_{n}^{\prime}$ (the same argument works if we assume that L_{K} is almost maximal, i.e. $L_{K} \geqslant \beta L_{n}^{\prime}$ for some absolute constant $\left.\beta \in(0,1)\right)$. It is known that $L_{n-t} \leqslant c_{1} L_{n} \leqslant c_{2} L_{n}^{\prime}$ for all $1 \leqslant t \leqslant n-1$, where $c_{1}, c_{2}>0$ are absolute constants. Therefore, we get:

Lemma 4.8. Let K be an isotropic symmetric convex body in \mathbb{R}^{n} such that $L_{K}=L_{n}^{\prime}$, and let $1 \leqslant t \leqslant\lfloor n / 2\rfloor$. Then,

$$
\begin{equation*}
c_{2 t}(K) \leqslant c_{1}^{\frac{n-t}{t}} \frac{n}{\sqrt{t}} \log \left(e+\frac{n}{t}\right) \tag{4.31}
\end{equation*}
$$

where $c>0$ is an absolute constant.

Then, we apply 3.20 with $s=n / 2$ and $m=\left(1-\gamma_{0}\right) n$ to get that a random subspace $E \in G_{n, n / 2}$ satisfies

$$
\begin{equation*}
R(K \cap E) \leqslant c_{3} \cdot c_{\gamma_{0} n}(K) \leqslant c_{1}\left(\gamma_{0}\right) \sqrt{n} \tag{4.32}
\end{equation*}
$$

with probability greater than $1-2 e^{-n / 4}$, where $c_{1}\left(\gamma_{0}\right)>0$ is an absolute constant.
Also, since $c_{\gamma_{0} n}(K) \leqslant c\left(\gamma_{0}\right) \sqrt{n}$, we may apply (3.31) to get:
Theorem 4.9. Let K be an isotropic symmetric convex body in \mathbb{R}^{n} with $L_{K}=L_{n}^{\prime}$. A random $U \in O(n)$ satisfies

$$
\begin{equation*}
K \cap U(K) \subseteq\left(c_{3} \sqrt{n}\right) B_{2}^{n} \tag{4.33}
\end{equation*}
$$

with probability greater than $1-e^{-n}$, where $c_{3}>0$ is an absolute constant.
We can also prove the local analogue of this fact: random proportional sections of a body with maximal isotropic constant have bounded isotropic constant.

Theorem 4.10. Let K be an isotropic symmetric convex body in \mathbb{R}^{n} with $L_{K}=L_{n}^{\prime}$. A random $F \in G_{n, n / 2}$ satisfies

$$
\begin{equation*}
L_{K \cap F} \leqslant c_{4} \tag{4.34}
\end{equation*}
$$

with probability greater than $1-e^{-c_{5} n}$, where $c_{4}, c_{5}>0$ are absolute constants.
Proof. It was proved in [10] (see also [9, Lemma 6.3.5]) that if $L_{K}=L_{n}^{\prime}$ then

$$
\begin{equation*}
|K \cap F|^{\frac{1}{n}} \geqslant c_{6} \tag{4.35}
\end{equation*}
$$

for every $G_{n, n / 2}$, where $c_{6}>0$ is an absolute constant. Since $R(K \cap F) \leqslant c_{3} \sqrt{n}$ for a random $F \in G_{n, n / 2}$, for all these F we get

$$
\begin{equation*}
\frac{n}{2} L_{K \cap F}^{2} \leqslant \frac{1}{|K \cap F|^{1+\frac{2}{n}}} \int_{K \cap F}\|x\|_{2}^{2} d x \leqslant \frac{1}{|K \cap F|^{\frac{2}{n}}} R^{2}(K \cap F) \leqslant c_{6}^{-2} c_{3}^{2} n \tag{4.36}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
L_{K \cap F} \leqslant c_{4} \tag{4.37}
\end{equation*}
$$

where $c_{4}=\sqrt{2} c_{6}^{-1} c_{3}$.

5 Sub-Gaussian subspaces

In this section we prove Theorem 1.5. We will use E. Milman's estimates [26] on the mean width $w\left(Z_{q}(K)\right)$ of the L_{q}-centroid bodies $Z_{q}(K)$ of an isotropic convex body K in \mathbb{R}^{n}.

Theorem 5.1 (E. Milman). Let K be an isotropic convex body in \mathbb{R}^{n}. Then, for all $q \geqslant 1$ one has

$$
\begin{equation*}
w\left(Z_{q}(K)\right) \leqslant c_{1} \log (1+q) \max \left\{\frac{q \log (1+q)}{\sqrt{n}}, \sqrt{q}\right\} L_{K} \tag{5.1}
\end{equation*}
$$

where $c_{1}>0$ is an absolute constant.
We also use the next fact on the diameter of k-dimensional projections of symmetric convex bodies (see [2. Proposition 5.7.1]).

Proposition 5.2. Let D be a symmetric convex body in \mathbb{R}^{n} and let $1 \leqslant k<n$ and $\alpha>1$. Then there exists a subset $\Gamma_{n, k} \subset G_{n, k}$ with measure $\nu_{n, k}\left(\Gamma_{n, k}\right) \geqslant 1-e^{-c_{2} \alpha^{2} k}$ such that the orthogonal projection of D onto any subspace $F \in \Gamma_{n, k}$ satisfies

$$
\begin{equation*}
R\left(P_{F}(D)\right) \leqslant c_{3} \alpha \max \{w(D), R(D) \sqrt{k / n}\} \tag{5.2}
\end{equation*}
$$

where $c_{2}>0, c_{3}>1$ are absolute constants.
Combining Proposition 5.2 with Theorem 5.1 and the fact that $R\left(Z_{q}(K)\right) \leqslant c q L_{K}$, we get:
Lemma 5.3. Let K be an isotropic convex body in \mathbb{R}^{n}. Given $1 \leqslant q \leqslant n$ define $k_{0}(q)$ by the equation

$$
\begin{equation*}
k_{0}(q)=\log ^{2}(1+q) \max \left\{\log ^{2}(1+q), n / q\right\} \tag{5.3}
\end{equation*}
$$

Then, for every $1 \leqslant k \leqslant k_{0}(q)$, a random $F \in G_{n, k}$ satisfies

$$
\begin{equation*}
R\left(P_{F}\left(Z_{q}(K)\right)\right) \leqslant c_{1} \alpha \log (1+q) \max \left\{\frac{q \log (1+q)}{\sqrt{n}}, \sqrt{q}\right\} L_{K} \tag{5.4}
\end{equation*}
$$

with probability greater than $1-e^{-c_{2} \alpha^{2} k_{0}(q)}$, where $c_{1}, c_{2}>0$ are absolute constants.
Proof. Since $R\left(Z_{q}(K)\right) \leqslant c q L_{K}$ we see that

$$
\begin{align*}
\frac{R\left(Z_{q}(K)\right) \sqrt{k_{0}(q)}}{\sqrt{n}} & \leqslant \frac{c q}{\sqrt{n}} \log (1+q) \max \left\{\log (1+q), \frac{\sqrt{n}}{\sqrt{q}}\right\} L_{K} \tag{5.5}\\
& =c \log (1+q) \max \left\{\frac{q \log (1+q)}{\sqrt{n}}, \sqrt{q}\right\} L_{K}
\end{align*}
$$

From Theorem 5.1 we have an upper bound of the same order for $w\left(Z_{q}(K)\right)$. Then, we apply Proposition 5.2 for $Z_{q}(K)$.

Remark 5.4. Note that if $1 \leqslant s \leqslant k$ then the conclusion of Proposition 5.2 continues to hold for a random $F \in G_{n, s}$ with the same probability on $G_{n, s}$; this is an immediate consequence of Fubini's theorem and of the fact that $R\left(P_{H}(D)\right) \leqslant R\left(P_{F}(D)\right)$ for every s-dimensional subspace H of a k-dimensional subspace F of \mathbb{R}^{n}.

Proof of Theorem 1.5. We define q_{0} by the equation

$$
\begin{equation*}
q_{0} \log ^{2}\left(1+q_{0}\right)=n \tag{5.6}
\end{equation*}
$$

Note that $q_{0} \simeq n /(\log n)^{2}$ and $\log \left(1+q_{0}\right) \simeq \log n$. For every $2 \leqslant q \leqslant q_{0}$ we have $q \log ^{2}(1+q) \leqslant n$, therefore

$$
\begin{equation*}
k_{0}(q)=\frac{n \log ^{2}(1+q)}{q} \geqslant \frac{c_{1} n \log ^{2}\left(1+q_{0}\right)}{q_{0}} \tag{5.7}
\end{equation*}
$$

for some absolute constant $c_{1}>0$, because $q \mapsto \log ^{2}(1+q) / q$ is decreasing for $q \geqslant 4$. It follows that

$$
\begin{equation*}
k_{0}(q) \geqslant c_{1} \log ^{4}\left(1+q_{0}\right) \geqslant c_{2}(\log n)^{4} \tag{5.8}
\end{equation*}
$$

for all $2 \leqslant q \leqslant q_{0}$.
Now, we fix $\alpha>1$ and define

$$
\begin{equation*}
k_{0}=c_{1} \log ^{4}\left(1+q_{0}\right) \tag{5.9}
\end{equation*}
$$

Using Lemma 5.3 and Remark 5.4, for every $q \leqslant q_{0}$ we can find a set $\Gamma_{q} \subseteq G_{n, k_{0}}$ with $\nu_{n, k_{0}}\left(\Gamma_{q}\right) \geqslant 1-e^{-c \alpha^{2} k_{0}}$ such that

$$
\begin{equation*}
R\left(P_{F}\left(Z_{q}(K)\right)\right) \leqslant c_{3} \alpha \log (1+q) \max \left\{\frac{q \log (1+q)}{\sqrt{n}}, \sqrt{q}\right\} L_{K} \leqslant c_{3} \alpha \sqrt{q} \log (1+q) L_{K} \tag{5.10}
\end{equation*}
$$

for all $F \in G_{n, k_{0}}$. If $\Gamma:=\bigcap_{s=1}^{\left\lfloor\log _{2} q_{0}\right\rfloor} \Gamma_{2^{s}}$, then

$$
\begin{equation*}
\nu_{n, k_{0}}\left(G_{n, k_{0}} \backslash \Gamma\right) \leqslant \nu_{n, k_{0}}\left(G_{n, k_{0}} \backslash \bigcap_{s=1}^{\left\lfloor\log _{2} n\right\rfloor} \Gamma_{2^{s}}\right) \leqslant c(\log n) e^{-c \alpha^{2} k_{0}} \leqslant \frac{1}{n^{\log ^{3} n}} \tag{5.11}
\end{equation*}
$$

if $\alpha \simeq 1$ is chosen large enough. Then for every $F \in \Gamma$, for all $\theta \in S_{F}$ and for every $1 \leqslant s \leqslant\left\lfloor\log _{2} q_{0}\right\rfloor$ we have

$$
\begin{equation*}
\frac{h_{Z_{2^{s}(K)}}(\theta)}{\sqrt{2^{s}}}=\frac{h_{P_{F}\left(Z_{\left.2^{s}(K)\right)}\right.}(\theta)}{\sqrt{2^{s}}} \leqslant c_{3} \alpha \log \left(1+2^{s}\right) L_{K} \leqslant c_{4} \alpha(\log n) L_{K} \tag{5.12}
\end{equation*}
$$

Taking into account the fact that if $2^{s} \leqslant q<2^{s+1}$ then

$$
\begin{equation*}
\frac{h_{Z_{q}(K)}(y)}{\sqrt{q}} \leqslant \frac{h_{Z_{2^{s+1}}(K)}(y)}{2^{s / 2}}=\sqrt{2} \frac{h_{Z_{2^{s+1}}(K)}(y)}{2^{(s+1) / 2}} \tag{5.13}
\end{equation*}
$$

we see that

$$
\begin{equation*}
\frac{h_{Z_{q}(K)}(y)}{\sqrt{q}} \leqslant c_{5} \alpha(\log n) L_{K} \tag{5.14}
\end{equation*}
$$

for every $F \in \Gamma$, for all $\theta \in S_{F}$ and for every $2 \leqslant q \leqslant q_{0}$.
Next, observe that if $q_{0} \leqslant q \leqslant n$ then we may write

$$
\begin{align*}
\frac{h_{Z_{q}(K)}(y)}{\sqrt{q}} & \leqslant \frac{c_{6} q}{q_{0}} \frac{h_{Z_{q_{0}}(K)}(y)}{\sqrt{q}}=\frac{c_{6} \sqrt{q}}{\sqrt{q_{0}}} \frac{h_{Z_{q_{0}}(K)}(y)}{\sqrt{q_{0}}} \leqslant \frac{c_{6} \sqrt{n}}{\sqrt{q_{0}}} \frac{h_{Z_{q_{0}}(K)}(y)}{\sqrt{q_{0}}} \tag{5.15}\\
& =c_{6} \log \left(1+q_{0}\right) \frac{h_{Z_{q_{0}}(K)}(y)}{\sqrt{q_{0}}} \leqslant c_{7}(\log n) \frac{h_{Z_{q_{0}}(K)}(y)}{\sqrt{q_{0}}}
\end{align*}
$$

and hence

$$
\begin{equation*}
\frac{h_{Z_{q}(K)}(y)}{\sqrt{q}} \leqslant c_{7} \alpha(\log n)^{2} L_{K} \tag{5.16}
\end{equation*}
$$

for every $F \in \Gamma$, for all $\theta \in S_{F}$ and for every $q_{0} \leqslant q \leqslant n$.
Recall that $\Psi_{2}(K)$ is the convex body with support function $h_{\Psi_{2}(K)}(y)=\|\langle\cdot, y\rangle\|_{L_{\psi_{2}}(K)}$. One also has

$$
\begin{equation*}
h_{\Psi_{2}(K)}(y) \simeq \sup _{q \geqslant 2} \frac{h_{Z_{q}(K)}(y)}{\sqrt{q}} \simeq \sup _{2 \leqslant q \leqslant n} \frac{h_{Z_{q}(K)}(y)}{\sqrt{q}} \tag{5.17}
\end{equation*}
$$

because $h_{Z_{q}(K)}(y) \simeq h_{Z_{n}(K)}(y)$ for all $q \geqslant n$. Then, 5.14) and 5.16) and the fact that $\alpha \simeq 1$ show that

$$
\begin{equation*}
\|\langle\cdot, \theta\rangle\|_{L_{\psi_{2}}(K)} \leqslant C(\log n)^{2} L_{K} \tag{5.18}
\end{equation*}
$$

for every $F \in \Gamma$ and for all $\theta \in S_{F}$, where $C>0$ is an absolute constant.

References

[1] D. Alonso-Gutiérrez, J. Bastero, J. Bernués and G. Paouris, High dimensional random sections of isotropic convex bodies, J. Math. Appl. 361 (2010), 431-439.
[2] S. Artstein-Avidan, A. Giannopoulos and V. D. Milman, Asymptotic Geometric Analysis, Vol. I, Mathematical Surveys and Monographs 202, Amer. Math. Society (2015).
[3] K. M. Ball, Logarithmically concave functions and sections of convex sets in \mathbb{R}^{n}, Studia Math. 88 (1988), 69-84.
[4] C. Borell, Convex measures on locally convex spaces, Ark. Mat. 12 (1974), 239-252.
[5] J. Bourgain, On the distribution of polynomials on high dimensional convex sets, in Geom. Aspects of Funct. Analysis, Lecture Notes in Mathematics 1469, Springer, Berlin (1991), 127-137.
[6] J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in \mathbb{R}^{n}, Invent. Math. 88 (1987), 319-340.
[7] S. Brazitikos and L. Hioni, Sub-Gaussian directions of isotropic convex bodies, J. of Math. Anal. and Applications 425 (2015), 919-927.
[8] S. Brazitikos and P. Stavrakakis, On the intersection of random rotations of a symmetric convex body, Math. Proc. Cambridge Philos. Soc. 157 (2014), 13-30.
[9] S. Brazitikos, A. Giannopoulos, P. Valettas and B-H. Vritsiou, Geometry of isotropic convex bodies, Mathematical Surveys and Monographs 196, Amer. Math. Society (2014).
[10] N. Dafnis and G. Paouris, Small ball probability estimates, ψ_{2}-behavior and the hyperplane conjecture, J. Funct. Anal. 258 (2010), 1933-1964.
[11] A. Giannopoulos and E. Milman, M-estimates for isotropic convex bodies and their L_{q}-centroid bodies, in Geom. Aspects of Funct. Analysis, Lecture Notes in Mathematics 2116 (2014), 159-182.
[12] A. Giannopoulos, V. D. Milman and A. Tsolomitis, Asymptotic formulas for the diameter of sections of symmetric convex bodies, Journal of Functional Analysis 223 (2005), 86-108.
[13] A. Giannopoulos, A. Pajor and G. Paouris, A note on subgaussian estimates for linear functionals on convex bodies, Proc. Amer. Math. Soc. 135 (2007), 2599-2606.
[14] A. Giannopoulos, G. Paouris and P. Valettas, On the existence of subgaussian directions for log-concave measures, Contemporary Mathematics 545 (2011), 103-122.
[15] A. Giannopoulos, G. Paouris and P. Valettas, On the distribution of the ψ_{2}-norm of linear functionals on isotropic convex bodies, in Geom. Aspects of Funct. Analysis, Lecture Notes in Mathematics 2050 (2012), 227-254.
[16] M. Hartzoulaki, Probabilistic methods in the theory of convex bodies, Ph.D. Thesis (March 2003), University of Crete.
[17] R. Kannan, L. Lovász and M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom. 13 (1995), 541-559.
[18] B. Klartag, A geometric inequality and a low M-estimate, Proc. Amer. Math. Soc. 132 (2004), 2619-2628.
[19] B. Klartag, On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal. 16 (2006), 12741290.
[20] B. Klartag, Uniform almost sub-Gaussian estimates for linear functionals on convex sets, Algebra i Analiz 19 (2007), 109-148.
[21] B. Klartag and E. Milman, Centroid Bodies and the Logarithmic Laplace Transform - A Unified Approach, J. Funct. Anal. 262 (2012), 10-34.
[22] B. Klartag and E. Milman, Inner regularization of log-concave measures and small-ball estimates, in Geom. Aspects of Funct. Analysis (Klartag-Mendelson-Milman eds.), Lecture Notes in Math. 2050 (2012), 267-278.
[23] A. E. Litvak, V. D. Milman and A. Pajor, Covering numbers and "low M^{*}-estimate" for quasi-convex bodies, Proc. Amer. Math. Soc. 127 (1999), 1499-1507.
[24] A. E. Litvak, A. Pajor and N. Tomczak-Jaegermann, Diameters of Sections and Coverings of Convex Bodies, J. Funct. Anal. 231 (2006), 438-457.
[25] E. Lutwak, D. Yang and G. Zhang, L^{p} affine isoperimetric inequalities, J. Differential Geom. 56 (2000), 111-132.
[26] E. Milman, On the mean width of isotropic convex bodies and their associated L_{p}-centroid bodies, Int. Math. Res. Not. IMRN (2015), no. 11, 3408-3423.
[27] V. D. Milman and G. Pisier, Gaussian processes and mixed volumes, Annals of Probability 15 (1987), 292-304.
[28] A. Pajor and N. Tomczak-Jaegermann, Subspaces of small codimension of finite dimensional Banach spaces, Proc. Amer. Math. Soc. 97 (1986), 637-642.
[29] G. Paouris, Concentration of mass in convex bodies, Geometric and Functional Analysis 16 (2006), 1021-1049.
[30] G. Paouris, Small ball probability estimates for log-concave measures, Trans. Amer. Math. Soc. 364 (2012), 287-308.
[31] G. Paouris and P. Pivovarov, A probabilistic take on isoperimetric-type inequalities, Adv. Math. 230 (2012), 1402-1422.
[32] P. Pivovarov, On the volume of caps and bounding the mean-width of an isotropic convex body, Math. Proc. Cambridge Philos. Soc. 149 (2010), 317-331.
[33] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Second expanded edition. Encyclopedia of Mathematics and Its Applications 151, Cambridge University Press, Cambridge, 2014.
[34] R. Vershynin, Isoperimetry of waists and local versus global asymptotic convex geometries (with an appendix by M. Rudelson and R. Vershynin), Duke Mathematical Journal 131 (2006), 1-16.

Keywords: Convex bodies, isotropic position, log-concave measures, centroid bodies, diameter of random sections, sub-Gaussian estimates.
2010 MSC: Primary 52A23; Secondary 46B06, 52A40, 60D05.

Apostolos Giannopoulos: Department of Mathematics, University of Athens, Panepistimioupolis 157-84, Athens, Greece.
E-mail: apgiannop@math.uoa.gr
Labrini Hioni: Department of Mathematics, University of Athens, Panepistimioupolis 157-84, Athens, Greece. E-mail: lamchioni@math.uoa.gr

Antonis Tsolomitis: Department of Mathematics, University of the Aegean, Karlovassi 83200, Samos, Greece. E-mail: atsol@aegean.gr

