
John's theorem for an arbitrary pair ofonvex bodiesA. Giannopoulos, I. Perissinaki and A. Tsolomitis
AbstratWe provide a generalization of John's representation of the identity forthe maximal volume position of L inside K, where K and L are arbitrarysmooth onvex bodies in Rn . From this representation we obtain Banah-Mazur distane and volume ratio estimates.1 IntrodutionThe de�nition of the Banah-Mazur distane between symmetri onvex bodies anbe extended to the non-symmetri ase as follows [Gr℄: Let K and L be two onvexbodies in Rn . Their geometri distane is de�ned by(1) ~d(K;L) = inffab : (1=b)L � K � aLg:If z1; z2 2 Rn , we onsider the translates K � z1 and L� z2 of K and L, and theirdistane with respet to z1; z2,(2) dz1;z2(K;L) = inff ~d(T (K � z1); L� z2)g;where the inf is taken over all invertible linear transformations T of Rn . Finally,we let z1; z2 vary and de�ne(3) d(K;L) = inffdz1;z2(K;L) : z1; z2 2 Rng:John's theorem [J℄ provides a �rst estimate for d(K;L). IfK is any onvex bodyin Rn and E is its maximal or minimal volume ellipsoid, then dz;z(K;E) � n, wherez is the enter of E. Atually, the distane between the simplex and the ball is equalto n, and the simplex is the only body with this property [P℄. It follows that thedistane between any two onvex bodies is at most n2. Rudelson [R℄ has reentlyproved that d(K;L) � n4=3 log� n for some absolute onstants ; � > 0 (see also1



reent work of Litvak and Tomzak-Jaegermann [LTJ℄). A well-known theorem ofGluskin [Gl℄ shows that d(K;L) an be of the order of n even for symmetri bodiesK and L.In this paper we study the maximal volume position of a body L inside K: wesay that L is of maximal volume in K if L � K and, for every w 2 Rn and everyvolume preserving linear transformation T of Rn , the aÆne image w + T (L) of Lis not ontained in the interior of K. A simple ompatness argument shows thatfor every pair of onvex bodies K and L there exists an aÆne image ~L of L whihis of maximal volume in K.Our main result is the following:Theorem. Let L be of maximal volume in K. If z 2 int(L), we an �nd ontatpoints v1; : : : ; vm of K � z and L� z, ontat points u1; : : : ; um of the polar bodies(K � z)Æ and (L � z)Æ, and positive reals �1; : : : ; �m, suh that: P�juj = o,huj ; vji = 1, and(4) Id = mXj=1 �juj 
 vj :We shall prove the above fat under the assumption that both K and L aresmooth enough. The theorem may be viewed as a generalization of John's rep-resentation of the identity even in the ase where L is the Eulidean unit ball.This generalization was observed by V.D. Milman in the ase where K and L areo-symmetri and z = o (see [TJ℄, Theorem 14.5).Using the theorem, we give a diret proof of the fat that d(K;L) � n whenboth K and L are symmetri, and we obtain the estimate d(K;L) � 2n� 1 whenL is symmetri and K is any onvex body (this was reently proved by Lassak [L℄).Note that the theorem holds true for any hoie of z 2 int(L). In Setion 3we prove an extension to the ase z 2 bd(L). Also, assuming that L is a polytopeand K has C2 boundary with stritly positive urvature, we show that the enterz may be hosen so that P�juj = o =P�jvj .Using the maximal volume position of L inside K, one an naturally extend thenotion of volume ratio to an arbitrary pair of onvex bodies. We de�ne(5) vr(K;L) = � jKjj~Lj � 1n ;where ~L is an aÆne image of L whih is of maximal volume in K (by j � j we denoten-dimensional volume). In Setion 4, we prove the following general estimate:Theorem. Let K and L be two onvex bodies in Rn . Then,(6) vr(K;L) � n:2



The same estimate an be given through K. Ball's result on vr(K;Dn) andvr(Dn;K), where Dn is the Eulidean unit ball. Ball [Ba℄ proved that bothvr(K;Dn) and vr(Dn;K) are maximal when K is the simplex Sn. It follows thatvr(K;L) � vr(K;Dn)vr(Dn; L) � vr(Sn; Dn)vr(Dn; Sn) = n:However, our proof is diret and might lead to a better estimate; it might be truethat vr(K;L) is always bounded by pn.Aknowledgements. This work was partially supported by a researh grant ofthe University of Crete. The �rst named author aknowledges the hospitality ofthe Erwin Shr�odinger International Institute for Mathematial Physis in Vienna.Finally, we thank J. Bast�ero and M. Romane for pointing out an error in an earlierversion of this paper: their remark pushed us to prove the results in Setion 3.2 The main theorem and distane estimatesWe assume that Rn is equipped with a Eulidean struture h�; �i, and denote theorresponding Eulidean norm by j � j. We write Dn for the Eulidean unit ball,and Sn�1 for the unit sphere.If W is a onvex body in Rn and z 2 int(W ), we de�ne the radial funtion�W (z; �) of W with respet to z by(1) �W (z; �) = maxf� > 0 : z + �� 2Wgfor � 2 Sn�1, and extend this de�nition to Rnnfzg by(2) �W (z; x) = 1t �W (z; �);where x = z + t�, t > 0 and � 2 Sn�1. If � 2 Sn�1, we will write �W (z; �) insteadof �W (z; z + �) (this will ause no onfusion).The polar body W z of W with respet to z 2 int(W ) is the body(3) W z = (W � z)Æ = fy 2 Rn : hy; x� zi � 1 for all x 2 Wg:Let o denote the origin. Sine �W (z; x) = �W�z(o; x� z), the support funtionhW z of W z satis�es(4) hW z (x� z) = 1�W (z; x)for all x 2 Rnnfzg. Note that the de�nition of the polar set W z makes sense forz 2 bd(W ), but then W z may be unbounded in some diretions.Reall that, if o 2 int(W ), W is stritly onvex and hW is ontinuously dif-ferentiable, then rhW (�) is the unique point on the boundary of W at whih theouter unit normal to W is �, and rhW (��) = rhW (�) for all � > 0.3



With these de�nitions, we have the following desription of the maximal volumeposition of L in K:2.1. Lemma. Let K and L be two onvex bodies in Rn , with L � K. Then, Lis of maximal volume in K if and only if, for every z 2 L, for every w 2 Rn andevery volume preserving T , there exists � 2 Sn�1 suh that(5) �K�z; z + w + T (�L(z; �)�)� � 1: 2We assume that K is smooth enough: we ask that it is stritly onvex and itssupport funtion hK is twie ontinuously di�erentiable. Under this assumption,we have that hKz is twie ontinuously di�erentiable for every z 2 int(K).2.2. Lemma. Let L be of maximal volume in K, and z 2 L \ int(K). Then,for every w 2 Rn and every S 2 L(Rn ;Rn ) we an �nd � 2 Sn�1 suh that�L(z; �) = �K(z; �) and(6) hKz�w + �K(z; �)S(�)� � trSn :Proof: We follow the argument of [GM℄. Let w 2 Rn and S 2 L(Rn ;Rn ). If " > 0is small enough, then T" = (I + "S)=[det(I + "S)℄1=n is volume preserving, hene,using (4) and Lemma 2.1 for T" and "w, we �nd �" 2 Sn�1 suh that(7) hKz�"w + T"(�L(z; �")�")� � 1:Sine [det(I + "S)℄1=n = 1 + " trSn +O("2), we get(8) hKz��L(z; �")�" + "w + "�L(z; �")S(�")� � 1 + " trSn +O("2):Sine L � K, we have hKz(�L(z; �")�") = �L(z; �")=�K(z; �") � 1, and the subad-ditivity of hKz gives(9) hKz�w + �L(z; �")S(�")� � trSn +O("):By ompatness, we an �nd "m ! 0 and � 2 Sn�1 suh that �"m ! �. Then,taking limits in (9) we get(10) hKz�w + �L(z; �)S(�)� � trSn ;and taking limits in (7) we see that hKz(�L(z; �)�) � 1, whih fores �L(z; �) =�K(z; �). 2Making one more step, we obtain the following ondition:4



2.3. Lemma. Let L be of maximal volume in K, and z 2 L \ int(K). Then,for every w 2 Rn and every T 2 L(Rn ;Rn ) we an �nd � 2 Sn�1 suh that�L(z; �) = �K(z; �) and(11) hrhKz(�); w + �K(z; �)T (�)i � trTn :Proof: Let T 2 L(Rn ;Rn ), and de�ne S" = I + "T , " > 0. By Lemma 2.2, we an�nd �" 2 Sn�1 suh that �K(z; �") = �L(z; �") and(12) hKz ("w + �K(z; �")�" + "�K(z; �")T (�")) � tr(I + "T )n = 1 + " trTn :The left hand side is equal to(13) hKz(�K(z; �")�") + "hrhKz(�"); w + �K(z; �")T (�")i+O("2)= 1 + "hrhKz(�"); w + �K(z; �")T (�")i+O("2):Therefore,(14) hrhKz(�"); w + �K(z; �")T (�")i � trTn +O("):Choosing again "m ! 0 suh that �"m ! � 2 Sn�1, we see that �K(z; �) = �L(z; �)and � satis�es (11). 2Lemma 2.3 and a separation argument give us a generalization of John's rep-resentation of the identity:2.4. Theorem. Let K be smooth enough, L be of maximal volume in K, andz 2 L \ int(K). There exist m � n2 + n + 1 vetors �1; : : : ; �m 2 Sn�1 suh that�K(z; �j) = �L(z; �j) and �1; : : : ; �m > 0, suh that:(i) P�jrhKz(�j) = o,(ii) Id =P�j [(rhKz(�j))
 (�K(z; �j)�j)℄.Proof: We identify the aÆne transformations of Rn with points in Rn2+n, andonsider the set(15) C = on[rhKz(�) 
 �K(z; �)�℄ +rhKz (�) : � 2 Sn�1; �K(z; �) = �L(z; �)o:Then, C is a ompat onvex set with the Eulidean metri, and we laim thatId=n 2 C. If not, there exist w 2 Rn and T 2 L(Rn ;Rn ) suh that(16) hId=n; T + wi > D[rhKz(�)
 �K(z; �)�℄ +rhKz (�); T + wEwhenever �K(z; �) = �L(z; �). But, (16) is equivalent to(17) trTn > hrhKz (�); w + �K(z; �)T (�)i;5



and this ontradits Lemma 2.3.Carath�eodory's theorem shows that we an �nd m � n2 + n + 1 and positivereals �1; : : : ; �m suh that(18) Id = mXj=1 �j�[rhKz(�j)
 �K(z; �j)�j ℄ +rhKz(�j)�;for �1; : : : ; �m 2 Sn�1 with �K(z; �j) = �L(z; �j). This ompletes the proof. 2Remark. Assume that L is also smooth enough. Let � 2 Sn�1 be suh that�K(z; �) = �L(z; �). Observe that(19) hrhKz(�); �K(z; �)�i = �K(z; �)hKz(�) = 1:Also, x = rhLz(�) is the unique point of Lz for whih hx; �i = hLz(�) = hKz(�).Sine hrhKz (�); �i = hKz(�) and rhKz(�) 2 Kz � Lz, we must have(20) rhKz(�) = rhLz(�):Hene, the theorem an be stated in the following form:2.5. Theorem. Let K and L be smooth enough, and L be of maximal volume inK. For every z 2 int(L), we an �nd ontat points v1; : : : ; vm of K� z and L� z,ontat points u1; : : : ; um of Kz and Lz, and positive reals �1; : : : ; �m, suh that:P�juj = o, huj ; vji = 1, and(21) Id = mXj=1 �juj 
 vj : 2Remark. The analogue of the Dvoretzky-Rogers lemma [DR℄ in the ontext ofTheorem 2.5 is the following: If F is a k-dimensional subspae of Rn and PFdenotes the orthogonal projetion onto F , then there exists j 2 f1; : : : ;mg suhthat hPF (uj); PF (vj)i � kn:This an be easily heked, sinek = trPF = mXj=1 �jhPF (uj); PF (vj)i;and P�j = n.As an appliation of Theorem 2.4, we give a diret proof of the fat that thediameter of the Banah-Mazur ompatum is bounded by n:2.6. Proposition. Let K and L be symmetri onvex bodies in Rn . Then,d(K;L) � n. 6



Proof: We may assume that K and L satisfy our smoothness hypotheses, and thatK is symmetri about o. Let L1 be an aÆne image of L whih is of maximal volumein K.Claim: L1 is also symmetri about o.[Let z be the enter of L1. Then L1 = 2z � L1 � K and the symmetry of Kshows that L1 � 2z � K. It follows that(22) ~L = L1 � z = L1 + (L1 � 2z)2 � K;and L1 � z is o-symmetri. If z 6= o, we obtain a ontradition as follows: wede�ne a linear map T whih leaves z? unhanged and sends z to (1 + �)z, where0 < � < jzj2=hL1�z(z). One an easily hek that T (L1�z) � o(L1; L1�2z) � Kand jT (L1 � z)j = (1 + �)jL1j > jL1j.℄We write L for L1. Let x 2 Rn and hoose z = w = o and T (y) = hrhLÆ(x); yixin Lemma 2.3. Then there exists � 2 Sn�1 suh that �K(o; �) = �L(o; �) and(23) DrhKÆ(�); hrhLÆ(x); �L(o; �)�ixE � hLÆ(x)n :But, rhLÆ(x) 2 LÆ and �L(o; �)� 2 L. Sine L is o-symmetri, we have(24) jhrhLÆ(x); �L(o; �)�ij � 1:Using now the o-symmetry of K and the fat that rhKÆ(�) 2 KÆ, from (23) and(24) we get(25) hKÆ(x) � hLÆ(x)n :Therefore, LÆ � nKÆ, and this shows that K � nL. 2We now assume that L is symmetri and K is any onvex body:2.7. Proposition. Let L be a symmetri onvex body and K be any onvex bodyin Rn . Then, d(K;L) � 2n� 1.Proof: We may assume that L is of maximal volume in K and L is symmetri abouto. Let d > 0 be the smallest positive real for whih hLÆ(y) � dhKÆ(y) for ally 2 Rn . Then, duality, the symmetry of L and the fat that L � K show thathK(�x) � dhL(�x) = dhL(x) � dhK(x) for every x 2 Rn .We de�ne T (y) = hnrhLÆ(x); yix and w = x, where  2 [0; n) is to bedetermined. From Lemma 2.3, there exists � 2 Sn�1 suh that �K(o; �) = �L(o; �)and(26) DrhKÆ(�); x+ nhrhLÆ(x); �L(o; �)�ixE � nhrhLÆ(x); xin = hLÆ(x):7



Sine rhLÆ(x) 2 LÆ, �L(o; �)� 2 L and L is o-symmetri, we havejhrhLÆ(x); �L(o; �)�ij � 1;therefore(27)  � n �  + nhrhLÆ(x); �L(o; �)�i �  + n:Let s = hrhLÆ(x); �L(o; �)�i. Sine rhKÆ(x) 2 KÆ, from (26) and (27) we get(28) hLÆ(x) � ( + n)hKÆ(x);if  + ns � 0, and(29) hLÆ(x) � (n� )dhKÆ(x);if  + ns < 0. It follows that(30) hLÆ(x) � maxf + n; (n� )dghKÆ(x):This shows that d � maxf + n; (n� )dg, and hoosing  = n(d � 1)=(d+ 1) weget d � 2n� 1. Hene, LÆ � (2n� 1)KÆ and the result follows. 23 Choie of the enterIn this setion we study the ase where L is a polytope with verties v1; : : : ; vN ,and K has C2 boundary with stritly positive urvature (K 2 C2+). Then, we anstrengthen Theorem 2.5 in the following sense:3.1. Theorem. Let L be of maximal volume in K. Then, there exists z 2Lnfv1; : : : ; vNg for whih we an �nd �1; : : : ; �N � 0, and u1; : : : ; uN 2 bd(Kz) sothat:1. P�juj = o; P �jn vj = z.2. huj ; vj � zi = 1 for all j = 1; : : : ; N .3. Id =PNj=1 �juj 
 vj .Proof: We may assume that o 2 int(L). By Theorem 2.4 and our hypotheses aboutK, for every z 2 L0 := L n fv1; : : : ; vNg there exist representations of the formId = NXj=1 �juj 
 vj ;where �j � 0, uj 2 bd(Kz) with huj ; vj�zi = 1, andPNj=1 �juj = o. Note that therepresentation of the identity follows from Theorem 2.4 beause of the onditionPNj=1 �juj = o. 8



We de�ne a set-funtion � on L0, setting �(z) to be the set of all points(1=n)PNj=1 �jvj 2 L whih ome from suh representations (with respet to z).The set �(z) is learly non-empty, onvex and losed.Let s 2 (0; 1). We de�ne �s on L0 with �s(z) = s�(z), and gs : L0 ! R+ with(1) gs(z) = d(z; �s(z)) = inffjz � wj : w 2 �s(z)g:It is easily heked that �s is upper semi-ontinuous and gs is lower semi-ontinuous.3.2. Lemma. For every s 2 (0; 1), there exists z 2 sL suh that z 2 �s(z).Proof: Assume otherwise. Sine �s(z) � sL for all z 2 L0, this means that gs(z) > 0on L0. We set r = (1 + s)=2, and onsider the restrition of �s onto rL. Sinegs is lower-semiontinuous, there exists q = q(r; s) > 0 suh that gs(z) � q for allz 2 rL.On the other hand, �s is upper-semiontinuous, onvex-valued with boundedrange. Therefore, �s admits approximate ontinuous seletions: By a result of Beer[Be℄ (see also [RW℄, pp. 195), for every " > 0 there exists a ontinuous funtionh" : rL! Rn so that(2) d(h"(z); s�(z)) < ":Let  = (r; s) > 0 be suh that sL + Dn � rL. Letting " = (1=2)minfq; g we�nd ontinuous h : rL ! rL satisfying (2). Brower's theorem shows that h has a�xed point z 2 rL. But then,q � d(z; s�(z)) = d(h(z); s�(z)) < ";whih is a ontradition. This ompletes the proof. 2We apply Lemma 3.2 for a sequene sk 2 (0; 1) with sk ! 1. For eah k we�nd zk 2 skL and �(k)j � 0 suh that(3) Id = NXj=1 �(k)j u(k)j 
 vj ;where u(k)j 2 bd(Kzk) is uniquely determined by hu(k)j ; vj � zki = 1, and(4) zk = sk NXj=1 �(k)jn vj ; NXj=1 �(k)j u(k)j = o:Passing to a subsequene, we may assume that zk ! z 2 L. If z is not one of theverties of L, then u(k)j ! uj , where uj 2 bd(Kz) and huj ; vj � zi = 1. Passing tofurther subsequenes we may assume that �(k)j ! �j � 0. Sine sk ! 1, (3) and(4) imply(5) Id = NXj=1 �juj 
 vj ;9



and(6) z = NXj=1 �jn vj ; NXj=1 �juj = o:This is exatly the assertion of the Theorem, provided that we have proved thefollowing:3.3. Claim. Let sk 2 (0; 1) with sk ! 1, and zk 2 sk�(zk). If zk ! z, thenz =2 fv1; : : : ; vNg.Proof: We assume that zk satisfy (3) and (4) and zk ! v1. Our assumptionsabout K imply that Kv1 is unbounded only in the diretion of N(v1), where N(v1)is the unit normal vetor to K at v1. For large k, zk is away from v2; : : : ; vN ,therefore u(k)j ! uj , j = 2; : : : ; N , where uj is the unique point in bd(Kv1) forwhih huj ; vj � zi = 1.Sine (u(k)j ); j � 2 is bounded and PNj=1 �j = n, (4) shows thatj�(k)1 u(k)1 j = j NXj=2 �(k)j u(k)j jremains bounded. Hene, passing to a subsequene we may assume that �(k)1 u(k)1 !w1, and �(k)j ! �j for all j = 1; : : : ; N . This means that(7) Id = w1 
 v1 + NXj=2 �juj 
 vj ;and(8) v1 = NXj=1 �jn vj ; w1 + NXj=2 �juj = o:Sine v1 is a vertex of L, we must have �2 = : : : = �N = 0. Then, w1 = o, and (7)takes the form Id = 0, whih is a ontradition. 2Atually, the argument we used for the proof of Claim 3.3 shows the followingextension of Theorem 2.4:3.4. Proposition. Let K;L be smooth enough and assume that L is of maximalvolume inside K. For every z 2 bd(K) \ bd(L), there exist m0 � m � n2 + n+ 1,ontat points v1; : : : ; vm of K and L, ontat points u1; : : : ; um0 of Kz and Lz,and non-negative numbers �1; : : : ; �m0 , �m0+1; : : : ; �m so that:1. huj ; vj � zi = 1 for all j = 1; 2; : : : ;m0,2. h�jN(z); vj � zi = 0 for all j = m0 + 1; : : : ;m,10



3. Id =Pm0j=1 �juj 
 vj +N(z)
 (Pmj=m0+1 �jvj),where N(z) is the unit normal vetor of K at z.Sketh of the proof: Let z 2 bd(K) \ bd(L), and onsider a sequene zk 2 int(L)with zk ! z. Applying Theorem 2.4, for eah k we �nd �(k)j � 0, ontat pointsv(k)j of K and L, and ontat points u(k)j of Kzk and Lzk so thatPNj=1 �(k)j u(k)j = o,hu(k)j ; v(k)j � zki = 1 and Id = PNj=1 �(k)j u(k)j 
 v(k)j . We may assume that N =n2 + n+ 1 for all k.Passing to subsequenes we may assume that �(k)j ! �j and v(k)j ! vj ask !1, where �j � 0 and vj are ontat points of K and L. We may also assumethat there exists m0 � N suh that u(k)j ! uj if j � m0, and ju(k)j j ! 1 if j > m0.Let N(z) be the unit normal vetor to K at z. It is not hard to see that for allj > m0, the angle between u(k)j and N(z) tends to zero as k ! 1. Using the fatthat PNj=1 �(k)j u(k)j = o, we then see that for large k(9) maxj>m0 j�(k)j u(k)j j � j Xj>m0 �(k)j u(k)j j = j Xj�m0 �(k)j u(k)j j;and this quantity remains bounded, sine all �(k)j and u(k)j (j � m0) onverge.Therefore, we may also assume that �(k)j u(k)j ! �jN(z), j > m0.Passing to the limit we hek that huj ; vj � zi = 1, j � m0, and(10) Id = m0Xj=1 �juj 
 vj +N(z)
0� NXj=m0+1�jvj1A :Finally, h�jN(z); vj � zi = limk �(k)j hu(k)j ; v(k)j � zki = limk �(k)j = 0 for all j > m0,and Pm0j=1 �juj + (PNj=m0+1 �j)N(z) = o. Ignoring all j's for whih �j = 0, weonlude the proof. 24 Volume ratioIn this Setion we give an estimate for the volume ratio of two onvex bodies:4.1. Theorem. Let L be of maximal volume in K. Then, (jKj=jLj)1=n � n.Proof: Without loss of generality we may assume L is a polytope and K 2 C2+, andusing Theorem 3.1 we may assume that o 2 L \ int(K), and(1) Id = mXj=1 �juj 
 vj ;11



where �j > 0, u1; : : : ; um 2 bd(KÆ), v1; : : : ; vm are ontat points of K and L,huj ; vji = 1, and Pmj=1 �juj = o = Pmj=1 �jvj . This last ondition shows thatm � n+ 1.Sine uj 2 KÆ, j = 1; : : : ;m, we have the inlusion(2) K � U := fx : hx; uji � 1; j = 1; : : : ;mg:Observe that U is a onvex body, beauseP�juj = o. On the other hand, vj 2 L,j = 1; : : : ;m. Therefore,(3) L � V := ofv1; : : : ; vmg:It follows that(4) jKjjLj � jU jjV j :We de�ne ~vj 2 Rn+1 by(5) ~vj = nn+ 1(�vj ; 1) ; j = 1; : : : ;m:Then, we an estimate jV j using the reverse form of the Brasamp-Lieb inequality(see [Bar℄):4.2. Lemma. LetD~v = inf(det�Pmj=1 �j�jvj 
 vj�Qmj=1 ��jj : �j > 0; j = 1; 2; : : : ;m):Then, the volume of V satis�es the inequality(6) jV j � �n+ 1n �n+1 pD~vn! :Proof: LetNV (x) =8<: inf fPmi=1 �i : �i � 0 and x =Pmi=1 �i~vig , if suh �i exist+1 , otherwise.Let also C = of�v1;�v2; : : : ;�vmg.Claim: If x = (y; r) for some y 2 Rn and r 2 R, then(7) e�NV (x) � �fy2rCg�fr�0ge�n+1n r:12



[If r < 0 then NV (x) = +1 and the inequality is true. Otherwise, let �i � 0be suh that x = Pmi=1 �i~vi and Pmi=1 �i = NV (x). Then, it is immediate thatNV (x) = n+1n r � 0 and y = nn+1Pmi=1 �i(�vi) 2 rC. From this (7) follows.℄Integrating the inequality (7) we getZRn+1 e�NV (x) dx � n!� nn+ 1�n+1 jV j:We now set dj = n+1n �j and apply the reverse form of the Brasamp-Liebinequality to the left hand side integral:ZRn+1 e�NV (x) dx = ZRn+1 sup�j�0x=Pmj=1 �j ~vj mYj=1 e��j dx= ZRn+1 supx=Pmj=1 �j ~vj mYj=1�e��j=dj�f�j�0g�dj� pD~v mYj=1�Z 10 e�t dt�dj =pD~v:From this (6) follows. 2We now turn to �nd an upper bound for jU j: as above, let dj = n+1n �j and set~uj = ��uj ; 1n� for j = 1; : : : ;m.4.3. Lemma. The volume of U satis�es the inequality(8) jU j � 1pD~u (n+ 1)n+1n!n ;where(9) D~u = inf�det(P dj�j ~uj 
 ~uj)Q�djj ;�j > 0�:Proof: We apply the Brasamp-Lieb inequality [BL℄ (see also [Bar℄) in the spirit ofK. Ball's proof of the fat that among all onvex bodies having the Eulidean unitball as their ellipsoid of maximal volume, the regular simplex has maximal volume[Ba℄.For eah j = 1; : : : ;m, de�ne fj : R ! [0;1) by fj(t) = e�t�[0;1)(t), and set(10) F (x) = mYj=1 fj(h~uj ; xi)dj ; x 2 Rn+1 :13



The Brasamp-Lieb inequality gives(11) ZRn+1 F (x)dx � 1pD~u mYj=1�ZRfj�dj = 1pD~u :As in [Ba℄, writing x = (y; r) 2 Rn �R, we see that F (x) = 0 if r < 0. When r � 0,we have F (x) 6= 0 preisely when y 2 (r=n)U , and then, taking into aount thefats that P�juj = o and P dj = n + 1, we see that F is independent of y andequal to(12) F (x) = exp(�r(n+ 1)=n):It follows from (11) that(13) 1pD~u � Z 10 exp(�r(n+ 1)=n)� rn�n jU jdr = jU j n!n(n+ 1)n+1 : 2Combining the two lemmata, we get(14) jKjjLj � nnpD~uD~v :Observe that ~uj , ~vj and dj satisfy h~uj ; ~vji = 1, j = 1; : : : ;m. Using the fat thatPmj=1 �juj = o =Pmj=1 �jvj , we hek thatId = mXj=1 dj ~uj 
 ~vj :Thus, in order to �nish the proof of Theorem 4.1 it suÆes to prove the followingproposition.4.4. Proposition. Let �1; : : : ; �m > 0, u1; : : : um and v1; : : : ; vm be vetors satis-fying huj ; vji = 1 for all j = 1; : : :m and(15) Id = mXj=1 �juj 
 vj :Then DuDv � 1.Proof: For I � f1; 2; : : : ;mg we use the notation �I = Qi2I �i, �I =Qi2I �i, andfor I 's with ardinality n, we write UI = det (ui : i 2 I) and VI = det (vi : i 2 I).Moreover, we write (�U)I for det (�iui : i 2 I).Applying the Cauhy-Binet formula we have(16) det0� mXj=1 �j�juj 
 vj1A = XjIj=nI�f1;2;:::;mg �I(p�U)I(p�V )I :14



But P(p�U)I(p�V )I = det�Pmj=1 �juj 
 vj� = det(Id) = 1. Hene, applyingthe arithmeti-geometri means inequality to the right side of (16) we dedue thatXjIj=nI�f1;2;:::;mg �I(p�U)I(p�V )I � YjIj=nI�f1;2;:::;mg �(p�U)I (p�V )II= mYj=1�Pj2I;jIj=n(p�U)I(p�V )Ij :Observe now that the exponent of �j in the above produt equals �j :Xj2I; jIj=n(p�U)I(p�V )I = XjIj=n(p�U)I(p�V )I �Xj 62I; jIj=n(p�U)I (p�V )I= det0� mXj=1 �juj 
 vj1A� det(I � �juj 
 vj)= �j ;sine huj ; vji = 1. Thus, we have shown that(17) det0� mXj=1 �j�juj 
 vj1A � mYj=1��jj :Now, for any j ; Æj > 0 we havedet0� mXj=1 �jjuj 
 uj1A det0� mXj=1 �jÆjvj 
 vj1A= XjIj=n I (p�U)2I XjIj=n ÆI(p�V )2I :By the Cauhy-Shwarz inequality this is greater than0�XjIj=n�IpIÆIUIVI1A2 :Apply now (17) to getdet�Pmj=1 �jjuj 
 uj�Qmj=1 �jj det �Pmj=1 �jÆjvj 
 vj�Qmj=1 Æ�jj � 1;ompleting the proof. 215



Remark. A di�erent argument shows that vr(K;Sn) � pn for every onvex bodyK in Rn , where  > 0 is an absolute onstant.Without loss of generality we may assume that K is of maximal volume in Dn.Then, John's theorem gives us �1; : : : ; �m > 0 and ontat points u1; : : : ; um of Kand Dn suh that Id = mXj=1 �juj 
 uj :The Dvoretzky-Rogers lemma [DR℄ shows that we an hoose u1; : : : ; un among theuj 's so that jPspanfus:s<ig?uij � �n� i+ 1n �1=2 ; i = 2; : : : ; n:Therefore, the simplex S = ofo; u1; : : : ; ung has volumejSj � 1n! nYi=2�n� i+ 1n �1=2 = 1(n!nn)1=2 ;and S � K � Dn. It follows thatvr(K;Sn) � � jDnjjSj �1=n � (n!)1=2npnp�[�(n2 + 1)℄1=n� pn:This supports the question if vr(K;L) is always bounded by pn.Referenes[Ba℄ K.M. Ball, Volume ratios and a reverse isoperimetri inequality, J. London Math.So. (2) 44 (1991), 351-359.[Bar℄ F. Barthe, In�egalit�es de Brasamp-Lieb et onvexit�e, C. R. Aad. Si. Paris 324(1997), 885-888.[Be℄ G. Beer, Approximate seletions for upper semiontinuous onvex valued multifun-tions, J. Appr. Theory 39 (1983), 172-184.[BL℄ H.J. Brasamp and E.H. Lieb, Best onstants in Young's inequality, its onverse andits generalization to more than three funtions, Adv. in Math. 20 (1976), 151-173.[DR℄ A. Dvoretzky and C.A. Rogers, Absolute and unonditional onvergene in normedlinear spaes, Pro. Nat. Aad. Si. USA 36 (1950), 192-197.[Gl℄ E.D. Gluskin, The diameter of the Minkowski ompatum is approximately equalto n, Funt. Anal. Appl. 15 (1981), 72-73.16



[Gr℄ B. Gr�unbaum, Measures of symmetry for onvex sets, Proeedings of Symposia inPure Mathematis, Convexity VII (1963), 233-270.[GM℄ A.A. Giannopoulos and V.D. Milman, Extremal problems and isotropi positionsof onvex bodies, Israel J. Math. (to appear) .[J℄ F. John, Extremum problems with inequalities as subsidiary onditions, CourantAnniversary Volume, New York, 1948, pp. 187-204.[L℄ M. Lassak, Approximation of onvex bodies by entrally symmetri bodies, Geom.Dediata 72 (1998), 63-68.[LTJ℄ A. Litvak and N. Tomzak-Jaegermann, Random aspets of the behavior of high-dimensional onvex bodies, Preprint.[P℄ O. Palmon, The only onvex body with extremal distane from the ball is thesimplex, Israel J. of Math. 80 (1992), 337-349.[R℄ M. Rudelson, Distanes between non-symmetri onvex bodies and the MM�-estimate, Preprint.[RW℄ R.T. Rokafellar and R.J-B. Wets, Variational Analysis, Grundlehren der mathe-matishen Wissenshaften 317, Springer (1998).[TJ℄ N. Tomzak-Jaegermann, Banah-Mazur Distanes and Finite Dimensional Opera-tor Ideals, Pitman Monographs 38 (1989), Pitman, London.A.A. Giannopoulos: Department of Mathematis, University of Crete, Irak-lion, Greee. E-mail: apostolo�myrtia.math.uh.grI. Perissinaki: Department of Mathematis, University of Crete, Iraklion,Greee. E-mail: irinip�itia.math.uh.grA. Tsolomitis: Department of Mathematis, University of the Aegean, Samos,Greee. E-mail: atsol�iris.math.aegean.gr

17


