
On some vetor balaning problemsA. GiannopoulosAbstratLet V be an origin symmetri onvex body in Rn , n � 2, of Gaussianmeasure n(V ) � 12 . It is proved that for every hoie u1; : : : ; un of vetorsin the Eulidean unit ball Bn, there exist signs "j 2 f�1; 1g with "1u1 +: : : + "nun 2  log n V . The method used an be modi�ed to give simpleproofs of several related results of J. Spener and E.D. Gluskin.1 IntrodutionLet Cn denote the lass of all origin symmetri onvex bodies in Rn, n � 2. Follow-ing W. Banaszzyk [2℄, for eah pair U; V 2 Cn we de�ne �(U; V ) as the smallestr > 0 satisfying the following ondition: given u1; : : : ; un 2 U , there exist signs"1; : : : ; "n 2 f�1; 1g suh that "1u1 + : : :+ "nun2 rV .Several \vetor balaning" results, proved by various authors for quite di�erentpurposes, an be desribed as estimates on �(U; V ) for spei� hoies of U , V , orboth of them:(a) W. Banaszzyk [2℄ established a general lower bound for �(U; V ) in termsof the volumes of U; V : for some absolute onstant  > 0, and for any U; V 2 Cn,one has �(U; V ) � pn(jU j=jV j)1=n:(b) I. B�ar�any and V.S. Grinberg [5℄ show that �(U;U) � 2n for every U 2 Cn.() The vetor form of a well-known result of J. Bek and T. Fiala [6℄ statesthat �(Bn1 ; Qn) � 2, where Bn1 is the unit ball of `n1 and Qn is the unit ube in Rn .(d) J. Spener [11℄ and E.D. Gluskin [7℄ have proved independently that�(Qn; Qn) � pn;where  > 0 is an absolute onstant.(e) We write Bn for the Eulidean unit ball in Rn. Suppose that E 2 Cnis an ellipsoid with prinipal semiaxes a1; : : : ; an. W. Banaszzyk [3℄ proves that�(Bn; E) = (a�21 + : : :+ a�2n )1=2. 1



A standard referene for many of these results, espeially those of them moti-vated by ombinatorial questions, is the book of J. Spener [13℄.J. Koml�os onjetures that the sequene �(Bn; Qn) is bounded. The best knownresult on this problem (J. Spener, [11℄) states that �(Bn; Qn) = O(log n) as n !1. Closely related to the Koml�os onjeture is reent work of W. Banaszzyk andS.J. Szarek [4℄. They de�ne and study the quantity(1:1) �(U; V ) = supL �(L; V )�n(L;U)where the supremum is taken over all latties L in Rn , �(L; V ) is the overingradius and �n(L;U) is the n-th suessive minimum of L with respet to V andU respetively. If n denotes the standard Gaussian measure on Rn with density(2�)�n=2e�jxj2=2, where jxj is the Eulidean norm of x, the main result in [4℄ statesthat(1:2) �(Bn; V ) � ��1;for every losed onvex set V in Rn with n(V ) � 12 , where � is an absolute onstantde�ned by the equation 1([��=2; �=2℄) = 12 . On the other hand, one an see that�(U; V ) � �(U; V ) for every U; V 2 Cn. This motivates the question if �(Bn; V )may be replaed by �(Bn; V ) in (1.2). More preisely, it is onjetured in [4℄ thatfor some funtion f : (0; 1)! R+ and for all V 2 Cn one has �(Bn; V ) � f(n(V )).This would imply in partiular that �(Bn; Qn) = O(plogn) as n!1.The purpose of this note is to disuss upper bounds for �(Bn; V ) when V is anarbitrary origin symmetri onvex body in Rn . In x2 we give a simple proof of thefollowing fat:Theorem 1. Let V 2 Cn, with n(V ) � 12 . Then, �(Bn; V ) � 6 logn:Theorem 1 and standard estimates involving Sid�ak's lemma ([10℄, see also [7℄)allow a reasonable upper bound for �(Bn; V ) when V is a body with few faes (inthe terminology of [1℄). As an example, onsider the ase of the intersetion of Nstrips de�ned by unit vetors in Rn :Theorem 2. Let V = fx 2 Rn : jhx; zjij � 1; j = 1; : : : ; Ng, where zj 2 Bn; j �N; are N vetors spanning Rn. Then,�(Bn; V ) � 9 lognplog(3N):When V = Qn, the estimate given by Theorem 2 is worse than Spener's. In x3we formulate a more preise version of Theorem 1, in whih �(Bn; V ) is boundedin terms of the quantities infH r(V \ H); r � n, where the inf is taken over allr-dimensional subspaes of Rn. Spener's logn-theorem is a onsequene of thisTheorem 3 and of the fat that infH r(Qn \H) is roughly \of the order" of 2�r.2



2 Proof of Theorems 1 and 2For the proof of Theorem 1 we shall make use of two well known fats:(I) If V 2 Cn and x 2 Rn , then n(x + V ) � e�jxj2=2n(V ): This is a simpleonsequene of the symmetry of V and the onvexity of the exponential funtion.(II) Consider the entropy funtion F (�) = �� log2 ��(1��) log2(1��), on (0; 12 ):If A is a subset of f�1; 1gr with ardinality jAj � 2rF ( 1��2 ); 0 < � < 1; then wean �nd "0; "00 2 A with jfj � r : "0j = "00j gj � �r (D. Kleitman, [9℄).Lemma 2.1. Let V 2 Cn, n � 7, with n(V ) � 12 ; and u1; : : : ; ur 2 Bn; 7 � r � n:There exists a subset � of f1; : : : ; rg with j�j � r2 , and signs "j 2 f�1; 1g; j 2 �,suh that Xj2� "juj 2 4V:Proof: For every " = ("1; : : : ; "r) 2 f�1; 1gr we write L(") = "1u1 + � � �+ "rur: Bythe parallelogram law,(2:1) Ave"jL(")j2 = rXj=1 juj j2 � r:Consider the sets L(")4 + V; " 2 f�1; 1gr: Using fat (I) and the arithmeti{geometri means inequality, we obtain(2:2) ZRn "X" �L(")4 +V (y)# n(dy) =X" n�L(")4 + V ��  X" e� jL(")j232 ! n(V ) � 2re�Ave"jL(")j232 n(V )� 2(1� 132 log 2� 17 )r � 2F ( 14 )r:It follows that for some subset A of f�1; 1gr with ardinality jAj � 2F ( 14 )r we musthave(2:3) \"2A�L(")4 + V � 6= ;:Using Kleitman's result we �nd a pair "0; "00 2 A for whih:jfj � r : "0j = "00j gj � r2 and L("0)� L("00)4 2 2V:Setting � = fj � r : "0j 6= "00j g and "j = "0j�"00j2 ; j 2 �, we onlude the proof. 23



Remark 2.2. Instead of Kleitman's result, in the �nal step of the proof of Lemma2.1, one may use the Sauer{Shelah lemma or an even simpler argument based onthe omputation of the ardinality of a neighborhood of a point in f�1; 1gr. Thiswould only a�et the value of the onstant in the statement.Proof of Theorem 1: We �rst observe that if n(V ) � 12 , and if �Bn is the largestorigin symmetri ball insribed in V , then V is ontained in a symmetri strip ofwidth 2�, hene 1([��; �℄) � n(V ) � 12 . It follows that � > 12 , that is, 12Bn � V .Case 1: If 2 � n � 6, then �(Bn; V ) � �(Bn; 12Bn) = 2pn < 6 logn.Case 2: If n � 7, we use an indutive argument. For the �rst step, set r0 = n andapply Lemma 2.1 to �nd �1 � f1; : : : ; ng with j�1j � n2 , and signs "j 2 f�1; 1g; j 2�1, so that Pj2�1 "juj 2 4V . Then, de�ne �1 = �1 and r1 = j�1j � r02 = n2 .If �k�1; rk�1 = j�k�1j have been de�ned for some k � 2 and if rk�1 � 7, then,using Lemma 2.1 again, we �nd �k � �k�1 with j�kj � rk�12 and "j 2 f�1; 1g; j 2�k , with Pj2�k "juj 2 4V . We de�ne �k = �k�1n�k; rk = j�k j � rk�12 � n2k , andontinue in the same way until, for some k0, rk0 < 7. The number of steps neededdoes not exeed log2(n6 ) + 1 : if rk > 6 then 2k < n6 . At this point we hoose"j ; j 2 �k0 , with Pj2�k0 "juj 2 prk0 Bn � 2p6 V .The hoie of signs Sk0k=1f"j : j 2 �kg [ f"j : j 2 �k0g satis�es(2:4) nXj=1 "juj 2 h4�log2(n6 ) + 1�+ 2p6i V � 6 logn V;and this ompletes the proof. 2Remark 2.3. Theorem 1 and a standard argument (see [11℄) show that if V 2 Cnwith n(V ) � 12 , and if u1; : : : ; um 2 Bn;m � n, then there exist signs "j 2 f�1; 1gsuh that "1u1 + : : :+ "mum 2 12 logn V .There is nothing speial about assuming that n(V ) � 12 . If n(V ) = � 2 (0; 1),one an �nd (�) suh that �(Bn; V ) � (�) logn. Moreover, the symmetry andthe ompatness of V are also not so important: if, say, V is any losed onvex setin Rn with n(V ) � 34 , then(2:5) �(Bn; V ) � �(Bn; V \ (�V )) �  logn:Remark 2.4. It is easy to see that if the vetors u1; : : : ; un 2 Bn are orthogonaland if V is a entered ube in Rn with n(V ) � 12 , then there exist signs "j for whih"1u1 + : : : + "nun 2 V . A areful examination of the proof of (1.2) in [4℄ showsthat the same is true for an arbitrary losed onvex set V in Rn with n(V ) � 12 .Remark 2.5. Let V be a symmetri onvex set in Rn ; n � 2. If x 2 R, we writeVx = f(x1; : : : ; xn�1) 2 Rn�1 : (x1; : : : ; xn�1; x) 2 V g:4



From the log-onavity of n�1 and the symmetry of V , one easily dedues thath(x) = n�1(Vx) is an even log-onave funtion on fx : n�1(Vx) > 0g, hene itattains its maximum value at 0. It follows that(2:6) n(V ) = ZRh(x)1(dx) � n�1(V \ e?n );where e?n = fx 2 Rn : xn = 0g. Indution and the rotational invariane of theGaussian measure show that whenever H;H1 are subspaes of Rn with H � H1,then H1(V \H1) � H(V \H) (by H we denote dimH on H).Another useful remark is that the set Is(h) = fx 2 R : h(x) � sg is a symmetriinterval in R (possibly the empty set) for every s > 0.Using these observations one an give a proof of Sid�ak's lemma starting fromthe following lemma:Lemma 2.6. Let K be a symmetri onvex set in Rn ; n � 1; and Vz = fx 2 Rn :jhx; zij � 1g; z 2 Rn . Thenn(K \ Vz) � n(K) n(Vz):Proof: If n = 1 the inequality is trivially true sine K \ Vz is either K or Vz, and1 is a probability measure. Let n � 2. By the rotational invariane of n we mayassume that z = 1�en; � > 0. Then,(2:7) n(K \ Vz) = Z ��� h(x)1(dx) = Z 10 1(Is(h) \ [��; �℄)ds� �Z 10 1(Is(h))ds� 1([��; �℄) = n(K) n(Vz): 2Let �(x) = q 2� R x0 e�t2=2dt; x � 0. A simple indutive argument based onLemma 2.6 provides a proof ofSid�ak's Lemma: Let zj 2 Rn ; j � N; and Vj = fx : jhx; zjij � 1g. Then,(2:8) n(\j�N Vj) � NYj=1 n(Vj) = NYj=1�(1=jzj j): 2We inlude this proof of Lemma 2.6 beause of its simpliity. The possibility ofdeduing Sid�ak's lemma in suh an easy way beame known to several people moreor less at the same time (see e.g [14℄ where a muh harder non-symmetri versionof Lemma 2.6 is proved). The onnetion of Sid�ak's lemma with �(Bn; V ) is lear:given any V 2 Cn, we solve the equation n(�V ) = 12 in �, and then apply Theorem1 to obtain �(Bn; V ) � � logn. If V is an intersetion of strips, we an easily �nd5



an upper bound for � using (2.8). As an example, let us see what happens if allthe strips have width 2:Proof of Theorem 2: Let � � 1. Using the standard estimate�(x) � 1� e�x2=2 � exp(�2e�x2=2) (x � 1);we obtain n(�V ) � [�(�)℄N � exp(�2Ne��2=2):It is lear that hoosing � =r2 log� 2Nlog 2�, we get n(�V ) � 12 . Therefore, Theo-rem 1 implies that�(Bn; V ) = ��(Bn; �V ) � 6p2 lognplog(3N): 2Finally, let us mention one slightly more deliate appliation of the method:Proposition 2.7. Let zj 2 Rn , j � N , with jzj j � 1=plog(j + 1). If V = fx :jhx; zjij � 1; j � Ng, then �(Bn; V ) �  logn;where  > 0 is an absolute onstant. 2Note that the statement is independent of N .3 A general upper bound for �(Bn; V )When V is a parallelepiped in Rn whih ontainsBn, the estimate given by Theorem2 is: �(Bn; V ) = O �(logn)3=2� as n ! 1. Spener's result for the ube an bereovered by a more preise version of Theorem 1 whih we now desribe:De�nition: If V 2 Cn;  2 (0; 1), and r 2 f1; : : : ; ng, we de�ne'(V; ; r) = minf� > 0 : infH r(�V \H) � 2�rg;where the inf is over all r-dimensional subspaes of Rn . Note that '(V; ; r) is wellde�ned sine, for every H , r(�V \H) � n(�V ).Our way to estimate �(Bn; V ) depends on an iteration sheme (similar to theone in the proof of Theorem 1), based on the following Lemma:Lemma 3.1. Let V 2 Cn; r � n, and u1; : : : ; ur 2 Bn. We an �nd a subset � off1; : : : ; rg with j�j � r2 , and signs "j 2 f�1; 1g; j 2 �, for whihXj2� "juj 2 4 '(V; 17 ; r)V:6



Proof: We may learly assume that u1; : : : ; ur are linearly independent. Considerthe subspae H = spanfu1; : : : ; urg and set � = '(V; 17 ; r); L(") = "1u1 + : : : +"rur; " 2 f�1; 1gr. We estimate(3:1) X" H �L(")4 + (�V \H)� � 2F ( 14 )r;and, exatly as in Lemma 2.1, we �nd � � f1; : : : ; rg; j�j � r2 , and a sequene ofsigns "j 2 f�1; 1g; j 2 �, with(3:2) Xj2� "juj 2 4�V \H: 2Theorem 3. Let V 2 Cn, and  l = � n2l � ; l = 0; 1; : : : Then,�(Bn; V ) � 8 [log2 n℄Xl=0 '(V; 121 ;  l):Proof: Suppose that u1; : : : ; un 2 Bn. We set �0 = f1; : : : ; ng; r0 = n; �0 = ;, andfollowing the proof of Theorem 1 (with Lemma 3.1 playing now the role of Lemma2.1), for k � 1 we hoose �k; �k; rk:(i) �k � �k�1; j�kj � j�k�1j2 , and there exist "j 2 f�1; 1g; j 2 �k , withXj2�k "juj 2 4 '(V; 17 ; rk�1)V(ii) �k = �k�1n�k; rk = j�k j.This proedure exhausts f1; : : : ; ng in a �nite number of steps: for some m �[log2 n℄ + 1, we will have rm = 0.Eah rk ; k = 0; : : : ;m�1, lies in an interval of the form ( l+1;  l℄ ; l = 0; : : : ; [log2 n℄,and at most two of them are in the same interval. If  l+1 < rk �  l, then it iseasy to see that '(V; 17 ; rk) � '(V; 121 ;  l): notie that if dimH = rk and H1 is any l-dimensional subspae of Rn with H � H1, then H1(�V \ H1) � 2� l21 impliesthat H(�V \H) � H1(�V \H1) � 2� l=37 � 2� rk7 . It follows that(3:3) mXk=0'(V; 17 ; rk) � 2 [log2 n℄Xl=0 '(V; 121 ;  l):Therefore, the sequene of signs "j hosen in our m steps satis�esnXj=1 "juj 2 248 [log2 n℄Xl=0 '(V; 121 ;  l)35V: 27



We shall apply Theorem 3 in the ase where V = Qn:Lemma 3.2. For some absolute onstant  > 0, and for every r � n, one has'(Qn; 121 ; r) � .Proof: Let H be an r-dimensional subspae of Rn . Let also fw1; : : : ; wrg be anorthonormal basis of H , and W be the n� r matrix with olumns wj ; j � r. Then,for every  > 0,r(Qn \H) = r (fx 2 Rr : jhx;W �eiij � ; i = 1; : : : ; ng) ;where feigi�n is the standard orthonormal basis of Rn .Claim. If t1; : : : ; tn > 0, then(3:4) nYi=1�� 1ti� � 2�ÆPni=1 t2i ;where Æ > 0 is an absolute onstant.[Proof of the laim: We may assume that t1 � : : : � ts � 1 < ts+1 � : : : � tn.We set S = Pni=1 t2i ; and Aj = fi � n : 2j�1 < ti � 2jg; j = 1; 2; : : : Note thatjAj j � S22j�2 .We have the estimates:(3:5) sYi=1�� 1ti� � exp �2 sXi=1 e� 12t2i ! � exp �4 sXi=1 t2i! � e�4S:(3:6) Yi2Aj �� 1ti� � �p2=�e 12j�jAj j � ��p2=�e� 122j�2 2� j22j�2 �Sand hene(3:7) Yj Yi2Aj �� 1ti� � ��p�e=2��P1j=1 122j�2 2�P1j=1 j22j�2 �S :From (3.5) and (3.7) it follows thatnYi=1�� 1ti� = sYi=1�� 1ti� Yj Yi2Aj �� 1ti� � 2�ÆS ;for some absolute onstant Æ > 0.℄By Sid�ak's lemma we have r(Qn\H) �Qni=1 �� jW�eij�, and sinePni=1 jW �eij2 =Pri=1 jwj j2 = r, our laim provides the inequality(3:8) r(Qn \H) � 2�Æ r2 � 2� r218



if  = (Æ) > 0 has been hosen large enough (independent of n and r). 2As a onsequene of Theorem 3 and Lemma 3.2 one has Spener's estimate onthe Koml�os onjeture:Corollary 3.3. �(Bn; Qn) = O(log n) as n!1.Remark 3.4. J. Spener [11℄ and E.D. Gluskin [7℄ have proved that �(Qn; Qn) =O(pn) as n ! 1, whih is learly optimal. The basi step towards this theoremis to prove the following:Claim. If u1; : : : ; ur 2 Qn; r � n, then there exist a subset � of f1; : : : ; rg withardinality j�j � �r and a hoie of signs "j ; j 2 �, suh that(3:9) Xj2� "juj 2 prplog(2n=r) Qn;where � 2 (0; 1) and  > 0 are absolute onstants.A modi�ation of the proof of Lemma 2.1 gives a simple proof of this fat:de�ne K = fx 2 Rr : jhx;W �eiij � 1; i � ng where W is the n � r matrix witholumns uj ; j � r. Note that jW �eij � pr; i = 1; : : : ; r. Choosing an absoluteonstant  > 0 large enough and using Sid�ak's lemma one has the inequalityX" r("+ prplog(2n=r) K) � 2F ( �2 )r;where � = �() 2 (0; 1) is some other absolute onstant. The rest is as in Lemma2.1: we �nd " 2 f�1; 0; 1gr with jfj : "j 6= 0gj � �r, and " 2 prplog(2n=r) K.This is equivalent to the laim, and an indutive argument analogous to theone in [7℄, [11℄ leads to the Spener{Gluskin theorem. In this ase, our method maybe viewed as a (simpli�ed) variation of Gluskin's method where Sid�ak's lemma wasused for volume estimates and then ombined with Minkowski's theorem from thegeometry of numbers.Another modi�ation of Lemma 2.1, now ombined with the binary bloksdeomposition used by B.S. Kashin in [8℄, an give the following stronger result ofJ. Spener [12℄:\If u1; : : : ; un 2 Qn, then there exist signs "j 2 f�1; 1g for whihmaxt�n k tXj=1 "jujk1 � pnwhere  > 0 is an absolute onstant."Aknowledgement: The author gratefully aknowledges the hospitality of theInstitute for Advaned Study where this work was ompleted.9
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