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1 | INTRODUCTION AND MAIN RESULT

Let L and K be two convex bodies in R". The mean width ratio of L and K is defined by

w(TL)
w(K)

wr(L,K) :=inf { :TeGLn), K C T(L)}. (1.1)

(by w(K) we denote the mean width of a convex body K)

Boroczky and Schneider in [3] proved that the minimal mean width of all simplices circum-
scribed about a convex body of given mean width attains its maximum precisely if the body is
a ball, thus the mean width ratio of a simplex and a convex body has upper bound C\/ﬁ y/logn,
where ¢ > 0 is an absolute constant.

Schechtman and Schmuckenschlédger in [11] showed that among all convex symmetric convex
bodies C with maximal volume ellipsoid B the unit cube Q,, = [-1,1]" has the largest mean
width. It is straightforward to check that

wr(C,B!) < Vn.

© 2023 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.

Bull. London Math. Soc. 2023;1-10. wileyonlinelibrary.com/journal/blms | 1

@sUBD| SUOWILLIOD BAIRRID 3|edl|dde 3y Aq pauAob e S3joNe O ‘88N JO S3|nJ 10} AXeiq1 8UIIUO AB] 1 UO (SUOIIPUOD-PUR-SWIBIALI0D A3 1M ARe1q]1[BU1|UO//:Sd1Y) SUOTIPUOD PUe SWB | 34} 89S *[£202/T0/62] U0 ARigiTaullu0 AB|IM ‘SLauly JO AISRAIIN Aq 88.2T'SWIG/ZTTT OT/I0p/LI0D A3 1M ARe1q 1 [Bul|UO-D0SUFeLUpUO|//Sany Wo.y papeojumod ‘0 ‘02TZ69%T


mailto:lefteris128@yahoo.gr
https://wileyonlinelibrary.com/journal/blms
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fblms.12788&domain=pdf&date_stamp=2023-01-03

2 | MARKESINIS

In this note, we will discuss the following question: what is the upper bound for the mean width
ratio for every symmetric convex body L and K containing origin not necessarily symmetric convex
body in R"? Our main result provides an almost sharp affirmative answer.

Theorem 1.1. Let K be a convex body containing origin (not necessarily symmetric) and L be a
symmetric convex body in R". Then, we have

wr(L,K) < C\/Zlog(l +d;),

where ¢ > 0 is an absolute constant and d;, is the Banach-Mazur distance d(X,¢7). (See also
Section 2 for notation and background.)

The example of the ball and the cube shows that this estimate is optimal up to the
logarithmic term.

Our approach is presented in Section 3, the proof of the Theorem 1.1 is based on the method
of random orthogonal factorizations which was used for the first time by Jaegermann in [13] and
developed later by Benyamini and Gordon in [1] to estimate the Banach-Mazur distance between
two n-dimensional normed spaces. The cornerstone of the method is a special case of Chevet’s
inequality (see [14] §43) from Gaussian stochastic process theory.

In Section 4, we use additional information that one has when L is an ellipsoid or parallelepiped
(centrally symmetric), and we obtain the following results:

(i) Let & be an ellipsoid and K be a convex body in R". Then, we have

wr(&,K) < cy/n,

where ¢ > 0 is an absolute constant.
(ii) Let P be a parallelepiped and K be a convex body in R". Then, we have

wr(P,K) < cy/nlogn,

where ¢ > 0 is an absolute constant.

Background information is provided in Section 2.

2 | NOTATION AND PRELIMINARIES

We work in R", which is equipped with a Euclidean structure (-, -). We denote by || - ||, the corre-
sponding Euclidean norm, and write B} for the Euclidean unit ball and S"=1 for the unit sphere.
Volume is denoted by | - |. We write w, for the volume of B} and o for the rotationally invariant
probability measure on S"~!, and v for the Haar probability measure on the orthogonal group
O(n).

The letters ¢, ¢’, ¢, ¢, etc. denote absolute positive constants which may change from line to
line. Whenever we write a ~ b, we mean that there exist absolute constants c;,c, > 0 such that
cia<b<ca.

A convex body in R" is a compact convex subset K of R” with non-empty interior. We say that
K is symmetric or centrally symmetric if x € K implies that —x € K. The support function of a

@sUBD| SUOILOD BAIRRID 3|edl|dde 3y Aq pauAob e S3joNe O ‘88N JO S3|nJ 10} AXeiq1 8UIIUO AB] 1 UO (SUOIPUOD-PUR-SWIBIALI0D A3 1M ARe1q]1[Bu|UO//:Sd1Y) SUOTIPUOD PUe SWB | 84} 89S *[£202/T0/62] U0 ARigITaullu0 AB|IM ‘Stauly JO AISRAIIN Aq 88.2T'SWIG/ZTTT OT/I0p/LI0D A3 1M AReJq 1 [Bul|UO-D0SUFeLUpUO|//Sany Wo.y papeojumod ‘0 ‘02TZ69%T



ON THE MEAN WIDTH RATIO OF CONVEX BODIES | 3

convex body K is defined by hy(y) = max{(x,y) : x € K}, and the mean width of X is given by

w(K) = /snl hg(uw)do(u).

The radius of X is the quantity R(K) = max{||x||, : x € K}, that is, the smallest R > 0 for which
K C RB!. We define the polar body K° of K by K° :={y € R" : (x,y) < 1forall x € K}.
Let K a symmetric convex body in R”, then the Minkowski functional

|x]|g =inf{d > 0 : x € AK}

is anorm on R" and X is the unit ball of the normed space (R", || - ||)-
If X and X; are two n-dimensional normed spaces their Banach-Mazur distance d(X, X, ) is
defined by

dXg, Xp) =inf ||T : X = X |- |IT7 0 X, = Xgll.

We write di for the Banach-Mazur distance d(Xg, ¢7}).
Uryshon’s inequality (see [10], p. 6) states that

<@>z < w(K)

with equality if and only if K is a ball.
The expectation of the norm of a convex body C (on the sphere S”~1) is denoted by M(C):

MO = [ Ixledo)

We write y, for the Gaussian measure in R"” which has the density function x —
(\/ﬁ)_” e IxIl3/ %, x € R" with respect to Lebesgue measure.

Let L(¢7, X ) denote the space of all linear operators from 7 to X. We define the #-norm of
an operator T € L(¢7,X) by

1/2
o =e,0) o= ([ meian)

where y,, is the standard Gaussian measure on R”. We also write £(T~(C)) := #(T, C).

We say that T(C) is in the Z-position if Z(T(C))Z((T(C))°) is minimal over all T € GL(n) and
is equivalent to say that T(C) is in the #-position if M(T(C))w((T(C))°) is minimal over all T €
GL(n) (see Lemma 3.1).

3 | PROOF OF THE THEOREM

Our first tool is a simple fact about the Z-functional L — #Z(L).
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Lemma 3.1. Let L be a symmetric convex body in R". Then

Lo < - 2(L 31
w(L®) Ve €9 (3.1)

Proof. We apply the Cauchy-Schwartz inequality to get

[ el < 0y

and then use integration in polar coordinates. O
Our second tool is Chevet’s inequality in the spirit of Benyamini and Gordon (see [1]).

Lemma 3.2. Let L and K be two symmetric convex bodies in R". Then,
/( : U : Xg = X1l dv(U) < ¢,(RKK)M(L) + R(L*)M(K®))
O(n

< S (RK)Z(L) + R(L°)Z(K)),
ﬁ(()() (L°)?C(K®))

where c,,c > 0 are absolute constants.
We will also use the following lemma:
Lemma 3.3. For any symmetric convex body K in R" , we have
R(K) < ¢;v/nw(K), (3.2)
where c; > 0 is an absolute constant.

Proof. Let x,, € K such that ||x,||, = R(K) and note that
w(K) = / max |(x,0)| do(©) > / (X0 8)] do(6)
sn—1 xXEK sn—1
= lxolly / e1,6)1 do(6).
N

Then, (3.2) follows from the fact that / |{e;,6)| do(6) ~ n~1/2. O
The first step for the proof of the Theorem 1.1 is the following proposition:
Proposition 3.4. Let L and K be two symmetric convex bodies in R". Then, we have
wr(L,K) < cy/nM(TL)w(TL),

where ¢ > 0 is an absolute constant and TL is in £-position.
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Proof. Recall that

w(TL)
w(K)

Let T € GL(n) such that TL is in #-position. We apply Lemma 3.2 with TL instead of L:

wr(L,K) := inf { : T €GL(n), K C T(L)}.

/0( | U : Xg = Xpp || dv(U) < c(RKK)M(TL) + R((TL)*)M(K®))

< e3V/n(WE)M(TL) + w((TL)*)M(K®)),

where we have also used (3.2). Taking into account the fact that w((TL)°) = M(TL) and M(K°) =
w(K), we get

/ U Xx — XTL” dv(U) < 203\/ZM(TL)LU(K).
Oo(n)

Thus, there exists U € O(n) such that U(K) C aT (L), where
a = 2¢,1/nM(TL)w(K).
Consider the operator S := aU~!T € GL(n). Then, we have K C S(L) and in addition

w(SL)  w(TL)
w(K) * w(K)

= ¢,A/nM(TL)w(TL).

wr(L,K) <

Our next step is to extend Proposition 3.4 in the nonsymmetric case for K. O

Proposition 3.5. Let K be a convex body containing origin (not necessarily symmetric) and L be a
symmetric convex body in R". Then we have

wr(L,K) < e/nM(TL)w(TL),
where ¢ > 0 is an absolute constant and TL is in £-position.

Proof. Let K be a convex body containing origin (not necessarily symmetric) and L be a symmetric
convex body in R". It is easy to check that w(K — K) = 2w(K). By Proposition 3.4, there exists
T, € GL(n) such that K — K C T,(L) and

w(T, (L))
—— < M(TL)w(TL 33
K S VrMTLw(TL) (3.3)
where TL is in #-position. Apparently, K C K — K C T,(L), therefore,

w(K = K) w(Ty (L))
w(K) w-K)

wr(L,K) < < 2¢/nM(TL)w(TL).
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In order to prove Theorem 1.1 by Proposition 3.5, we need an upper bound of the quantity
M(TL)w(TL) when TL is in #Z-position.
Figiel and Tomczak in [4] using a general result of Lewis [ 7] about trace dual norms of operators,
proved that for every C symmetric convex body there exists S € L(¢”, X-) such that
2(S(CNZ((S(C))°) < nK(Xo), (34)

where K(X) is the K-convexity constant of X~ (see [10], p. 20) on the other hand, an important
inequality of Pisier [9] states that

K(Xc) <clog(de +1) (3.5)

for every C, where c; is an absolute constant. An immediate outcome of (3.4) and (3.5) is the
following lemma:

Lemma 3.6. Let L be a symmetric convex body in R". There exists an invertible linear image S(L)
such that

£(SL)Z((S(L))°) < enlog(l +dy), (3.6)
where ¢ > 0 is an absolute constant.
Proof of Theorem 1.1. By Proposition 3.5, we have
wr(L,K) < e\/nM(TL)w(TL),

where ¢ > 01is an absolute constant and T'L is in #-position. Lemma 3.6 combined with Lemma 3.1
and the definition of #-position gives the following estimation

M(TL)w(TL) < M(SL)w(SL) < clog(1 + d,),
thus
wr(L,K) < cy/nlog(1 + dp). 0

Remark 3.7. For every symmetric convex body C in R", we have d < \/ﬁ by John’s Theorem [6],
therefore Theorem 1.1 implies that

wr(L,K) < C\/Zlog n.

Remark 3.8. An analogue of Theorem 1.1 for volume ratio was established in [5]: If K and L are
two convex bodies in R" then

vr(L,K) := inf <L>W < cy/nlogn, (3.7)
IT(K)|
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where the infimum is taken over all affine transformations T of R" for which T(K) C Landc > 0
is an absolute constant.

The width ratio as defined in (1.1) is not invariant under T € GL(n) as volume ratio in (3.7) (for
affine transformations); it depends on the position of K. We discuss an alternative definition for
the mean width ratio at the end of Section 4.

4 | SPECIAL CASES OF THE MEAN WIDTH RATIO

In this section, we study some special cases for the mean width ratio and we examine the
sharpness of Propositions 3.4, 3.5, and Theorem 1.1.

4.1 | Mean width ratio when L = £ is an ellipsoid

We deduce from Proposition 3.5 the following consequence:

Corollary 4.0.1. Let € be an ellipsoid (centrally symmetric) and K be convex body in R" containing
the origin. Then, we have

wr(€,K) < cy/n,
where ¢ > 0 is an absolute constant.
Proof. By Proposition 3.5, we have
wr(&,K) < c\/nM(TE)w(TE), (4.1)

where ¢ > 0 is an absolute constant and TE is the Z-position of the ellipsoid &£, thus by the
definition of the Z-position note that

M(TE)w(TE) < M (BY)w(B}) =1. (4.2)
(4.1) and (4.2) show that
wr(&,K) < C\/E. m

Remark 4.1. The example of the inscribed regular simplex A, in the Euclidean unit ball B’} shows
that this estimate is optimal up to the y/logn. According to Bordczky in [2], we have w(A,,) ~

4 2logn
w(BY)
wr(BY,A,) < —2 <oy [ 2,
w(A,) logn

—-asn— o and hence,
where ¢ > 0 is an absolute constant. Note that if we replace A, with B the inscribed regular
cross-polytope in the Euclidean unit ball B) we get the same upper bound.
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8 | MARKESINIS

4.2 | Mean width ratio when L = P is a parallelepiped

Let P be a parallelepiped (centrally symmetric) and K be a convex body in R" containing origin.
Theorem 1.1 yields that

wr(P,K) < cy/nlog(1 + dp) < cy/nlogn, (4.3)
where ¢ > 0 is an absolute constant.

Remark 4.2. We can easily prove that the upper bound is optimal up to the logarithmic in the
dimension term. It can actually be seen that wr(Q,, B})) =~ \/ﬁ where Q,, = [-1,1]" is the unit
cube. It is straightforward to check that wr(Q,, B}) < \/ﬁ For the lower bound note that for any
T € GL(n) such that B C T(Q,,), Uryshon’s inequality gives

w(TQ,) <|Ton

| 1/n
v () 2w

The result follows from the fact that

: ITQ, 1\ /"
vr(Q,) :=inf ( B ) : T € GL(n), T(Q,) 2 B! =~ v/n.
2

Note that by Proposition 3.5, we get the following corollary which improves (4.3) by a \/@.
Corollary 4.2.1. Let P be a parallelepiped and K be a convex body in R". Then, we have
wr(P,K) < C\/Wgn,
where ¢ > 0 is an absolute constant.
Proof. By Proposition 3.5, we have
wr(P,K) < c\/nM(TP)w(TP), (4.4)

where ¢ > 0 is an absolute constant and TP is the Z-position of the parallelepiped P, thus by the
definition of the #-position, we get

M(TPw(TP) < M(Q,)w(Q,) < cylogn. (4.5)

By (4.4) and (4.5) follows that

wr(P,K) < C\/Z\/logn. m
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Remark 4.3. The width ratio as defined in (1.1) is not invariant under T € GL(n); it depends on
the position of K. An alternative definition would be to set

of { w(TC)

wr'(C,K) = w(SK)

:T,S € GL(n), S(K) C T(C)}

However, one can easily check that then the definition is not interesting since
wr'(Q,,B}) ~ 1.

To see this, we first check that for every T € GL(n) one has

n 1/2
w(TB}) = (% Y ||T<e,~)||§> ,
j=1
while
w(TQ,) ~ \if X IT@ll

We define a diagonal operator T = diag(a;,...,a,) € SL(n) witha; =1/nforalli=1,..,n—1
and a,, = n"~. Then,

" - " 1/2
j; ITCepll, = i 1/2(2 ITCe; >||2>

((n —1)/n? + n2(n-1)

n 1/2
<(1+ 1_1)<2||T<e]->||§) :
j=1

It follows that wr’ (Qn,BY) < c for an absolute constant ¢ > 0.
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