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Stable recovery and the coordinate small-ball behaviour of

random vectors

Shahar Mendelson ∗ Grigoris Paouris †

Abstract

Recovery procedures in various application in Data Science are based on stable point
separation. In its simplest form, stable point separation implies that if f is “far away”
from 0, and one is given a random sample (f(Zi))

m
i=1

where a proportional number of the
sample points may be corrupted by noise, that information is still enough to exhibit that
f is far from 0.

Stable point separation is well understood in the context of iid sampling, and to explore
it for general sampling methods we introduce a new notion—the coordinate small-ball of
a random vector X . Roughly put, this feature captures the number of “relatively large
coordinates” of (| 〈TX, ui〉 |)mi=1

, where T : Rn → R
m is an arbitrary linear operator and

(ui)
m
i=1

is any fixed orthonormal basis of Rm.
We show that under the bare-minimum assumptions on X , and with high probability,

many of the values | 〈TX, ui〉 | are at least of the order ‖T ‖S2
/
√
m. As a result, the

“coordinate structure” of TX exhibits the typical Euclidean norm of TX and does so in
a stable way.

One outcome of our analysis is that random sub-sampled convolutions satisfy stable
point separation under minimal assumptions on the generating random vector—a fact
that was known previously only in a highly restrictive setup, namely, for random vectors
with iid subgaussian coordinates.

1 Introduction

One of the key questions in Data Science is to identify (or at least approximate) an unknown
function using partial information. In standard recovery problems the data one receives
consists of a finite sample of the unknown function and the sample points are assumed to be
independent. The sample is then used to construct a suitable ‘guess’ of the function and the
hope is that the guess is a good approximation in some appropriate sense.

Off-hand, the significance of having sample points that are selected independently is not
clear. A closer inspection shows that independence has a strong geometric impact: it leads
to point separation.
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Point separation and stable point separation

To explain what we mean by point separation, let us first consider it in its simplest form,
separation of a function from 0.

Given a function f on a probability space (Ω, µ), let Z be distributed according to µ and
consider a sample Z1, ..., Zm, consisting of independent points distributed as Z. The sample
(Z1, ..., Zm) naturally endows a random vector X ∈ R

m, whose coordinates are the given
measurements f(Zi), 1 ≤ i ≤ m; that is,

X = (f(Z1), ..., f(Zm)) .

Any hope of identifying f from the given data vector X is based on the belief that X captures
enough features of f ; for example, that f can be distinguished from 0 with only X as data.
Thus, one has to address the following question:

Question 1.1. If f is reasonably far away from 0, when is that fact exhibited by a typical
realization of X?

An obvious way of exhibiting separation between f and 0 is through the Euclidean norm
of X; specifically, by showing that, with high probability,

‖X‖22
m

=
1

m

m
∑

i=1

f2(Zi) ≥ κ‖f‖2L2
(1.1)

for a suitable constant κ and for any m ≥ m0. Independence proves to be extremely useful
in establishing (1.1). Indeed, under a weak small-ball assumption, that

P(|f(Z)| ≥ κ‖f‖L2) ≥ ρ, (1.2)

it is straightforward to verify that with probability at least 1 − 2 exp(−cρm),

|{i : |f(Zi)| ≥ κ‖f‖L2}| ≥
ρ

2
m. (1.3)

Thus, with very high probability, a proportion of the coordinates of X are large—of the order
of ‖f‖L2 .

While (1.3) clearly implies (1.1) and point separation, it says much more: under the
small-ball assumption (1.2), independent sampling leads to stable point separation: not only
is ‖X‖2 large, the reason that it is large is because many of its coordinates | 〈X, ei〉 | are
nontrivial—making point separation robust to noise. In particular, even if a (small) fraction
of the measurements f(Zi) are corrupted maliciously, the fact that f is far away from 0 is
still exhibited by the corrupted vector.

In a more geometric language, stable point separation is manifested by the fact that
(〈X, ei〉)Ni=1 is a well-spread vector, and obviously this significant additional information does
not come for free: stable point separation is much harder to prove than point separation.
At the same time, the importance of the notion is clear: intuitively, a sampling method
can be useful in statistical recovery problems, where being robust to noise is of the utmost
importance, only if it satisfies a uniform version of stable point separation. Indeed, at the
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heart of numerous statistical procedures is the fact that if F is a class of functions, then with
high probability, for every f, h ∈ F that are ‘far enough’

|{i : |(f − h)(Xi)| ≥ κ‖f − h‖L2}| ≥ c(ρ)m, (1.4)

which is a uniform version of stable point separation. It allows one to distinguish between
any two functions in the given class that are sufficiently far apart using a typical sample, even
when a proportional number of the given measurements are corrupted by noise.

Uniform stable point separation has played a central role in the recent progress on some
key questions in learning theory and statistics. For example, it has led to the introduction of
an optimal learning procedure in [14, 17]; to optimal vector mean estimation in [15, 13] and
to optimal covariance estimation in [16, 18] — all of which in heavy-tailed situations.

Unfortunately, stable point separation and its uniform counterpart are well understood
only for iid sampling, and the downside of iid sampling is that it leads to various computational
difficulties. For example, consider a relatively simple recovery problem, where the goal is to
identify an unknown t0 ∈ T ⊂ R

n using linear measurements (〈Zi, t0〉)mi=1 and Z1, ..., Zm are
independent copies of the standard Gaussian random vector in R

n. Procedures that aim
at recovering t0 are based on vector multiplications with the matrix Γ =

∑m
i=1 〈Zi, ·〉 ei, but

because Γ has independent Gaussian rows, vector multiplication is computationally expensive.
To address these and other computational difficulties of a similar nature, other sampling

methods are often used in recovery problems. However, once the iid framework is abandoned,
establishing the required point separation/stable point separation becomes a formidable task;
in fact, it is often far from obvious that either one of the properties is true when the sample
points are not independent.

Motivated by general sampling methods, the question we focus on is as follows: are point
separation and stable point separation really the outcome of independence? Rather informally,
the question we study is:

Question 1.2. Given a centred random vector X ∈ R
n,

(a) What conditions on X are needed to ensure that for an arbitrary linear operator T :
R
n → R

m and with high probability ‖TX‖2 is reasonably large?

(b) When is the fact that ‖TX‖2 is large exhibited by an arbitrary coordinate structure?
In other words, given an arbitrary orthonormal basis (ui)

m
i=1, are many of the values

| 〈TX, ui〉 | reasonably large?

Question 1.2 clearly extends the notions of point separation and stable point separation
from the iid setup, where m = n and X = (f(Zi))

m
i=1: in the general framework of Question

1.2 the coordinates of X need not be independent or identically distributed, and X is further
distorted by a linear operator T .

Let us illustrate how addressing the two parts of Question 1.2 can become unpleasant very
quickly once independence is left behind. The example we present here is the very popular
random sub-sampled convolutions scheme, which is used in numerous applications, such as
SAR radar imaging, optical imaging, channel estimation, etc. (see [26, 6] for more details on
these and other applications).
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Example 1.3. Let ξ be an isotropic random vector in R
n (that is, ξ is centred and for every

t ∈ R
n, E 〈ξ, t〉2 = ‖t‖22). Fix a ∈ R

n and let W = a⊛ ξ be the discrete convolution of a and
ξ; i.e., if j ⊖ i = j − i mod n and τi is the shift operator defined by (τix) = (xj⊖i)

n
j=1, then

a⊛ ξ = (〈a, τiξ〉)ni=1.

The measurements of the vector a one receives come from a selection of a random subset
of the coordinates of a ⊛ ξ: let δ1, ..., δn be independent, {0, 1}-valued random variables with
mean δ; set I = {i : δi = 1}; and define Z = (a⊛ ξ)i∈I .

Note that typically |I| ∼ δn and E‖Z‖22 = δn‖a‖22. Therefore, this sampling method
exhibits point separation of a and 0 if, with high probability,

1

δn

∑

i∈I
Z2
i ≥ c‖a‖22 (1.5)

for a suitable constant c (that should be independent of a and δ). And, it exhibits stable point
separation of a and 0 with respect to the standard basis (ei)

n
i=1 if with high probability,

∣

∣

{

i ∈ I : | 〈Z, ei〉 | ≥ c′‖a‖2
}∣

∣ ≥ c′′δn (1.6)

for suitable constants c′ and c′′. In particular, (1.6) means that the large Euclidean norm of Z
is exhibited by the fact that many of the coordinates of Z (with respect to the standard basis)
are large.

The advantage in using the random sub-sampled convolution scheme is that recovery can
be carried out rather efficiently: for instance, unlike matrices with iid rows, there is a fast
matrix–vector multiplication algorithm for partial circulant matrices (see, e.g., [7]).

Clearly, identifying when, or even if, (1.5) and (1.6) are true is considerably harder than
establishing (1.1) and (1.3). And if they are, it has nothing to do with independence.

A wildly optimistic conjecture is that both parts of Question 1.2 are (almost) universally
true under minimal assumptions on X. And deferring an accurate definition of what is meant
by “reasonably large”, the main result of this article is that this wildly optimistic conjecture
is, in fact, true:

• Under the bare-minimum assumptions on X, for an arbitrary linear operator T , TX has
a large Euclidean norm; moreover, that norm is exhibited by many large coordinates
with respect to an arbitrary orthonormal basis.

• Both facts hold with high probability and are simply generic properties of X that have
nothing to do with independence, nor with concentration of measure.

• In particular, almost any random vector TX exhibits both point separation and stable
point separation with respect to an arbitrary orthonormal basis.

We show in what follows that the reason why both parts of Question 1.2 are universally
true is a small-ball assumption which we now describe.
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1.1 The Small-ball assumption

To have some intuition on the sort of quantitative answers to Question 1.2 one can hope
for, assume for the time being that X is isotropic. Let F ⊂ R

n be a subspace of dimension
k, and set PF to be the orthogonal projection onto F . Thus, E‖PFX‖22 = k and at least
intuitively, saying that PFX has a “reasonably large Euclidean norm” can be taken to mean
that ‖PFX‖2 ≥ ε

√
k for some 0 < ε < 1. Moreover, a “reasonably large coordinate” of such

a k-dimensional vector should be at least of the order of (E‖PFX‖22)
1
2 /
√
k = 1.

Following the same path with a general linear operator T : Rn → R
m instead of PF , the

intuitive notion of being relatively large is that ‖TX‖2 is at least ε‖T‖S2 = ε(E‖TX‖22)
1
2 ,

where ‖T‖S2 denotes the Hilbert-Schmidt norm of T ; and given an orthonormal basis (ui)
m
i=1,

a “large coordinate” of TX satisfies that | 〈TX, ui〉 | & ‖T‖S2/
√
m.

Once the two notions are agreed upon, the answers to the two parts of Question 1.2 are
given in the form of small-ball estimates, that is, upper bounds on

P(‖TX‖2 ≤ y) for 0 < y ≤ ‖T‖S2

and coordinate small-ball estimates which are upper bounds on

P (|{i : | 〈TX, ui〉 | ≤ y}| ≥ ℓ) for 0 < y ≤ ‖T‖S2/
√
m.

Let us emphasize a fact, which at first glance, may be surprising:

Small-ball estimates and coordinate small-ball estimates have nothing to do with con-
centration.

Indeed, although the notions of small-ball estimates and coordinate small-ball estimates
may seem to be related to concentration of measure, they are actually based on a totally differ-
ent phenomenon that has nothing to do with the way the random variable ‖TX‖ concentrates
around its mean E‖TX‖—no matter what norm ‖ ‖ is considered.

There are several reasons for that: firstly, two-sided concentration estimates of the form

P (|‖TX‖ − E‖TX‖| ≥ y)

are a combination of the upper estimate—that with high probability, ‖TX‖ ≤ E‖TX‖ + y,
and the lower one, that ‖TX‖ ≥ E‖TX‖− y. By now it is well understood (see, for example,
the discussion in [19]) that the two estimates are totally different and are caused by unrelated
features of the random vector X. Moreover, the upper tail is almost always the bottleneck
in the two-sided estimate, while our interests lie in the lower one. Secondly, the scale one
is interested in when studying the small-ball behaviour of TX corresponds to the lower tail
with the choice of y = (1 − s)E‖TX‖, for s close to 0. That is very different from the lower
tail at the ‘concentration scale’ of y = sE‖TX‖ for s close to 0.

Remark 1.4. As we explain in what follows, the behaviour of P(‖TX‖2 ≤ y) is more subtle
than what this intuitive description may lead one to believe. In fact, P(‖TX‖2 ≤ ε‖T‖S2)
exhibits multiple phase transitions at different levels of ε in the small-ball regime.
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The minimal assumption that is required for establishing small-ball and coordinate small-
ball estimates is as follows:

Assumption 1.1. The random vector X satisfies a small ball assumption (denoted from
here on by SBA) with constant L if for every 1 ≤ k ≤ n − 1, every k dimensional subspace
F , every z ∈ R

n and every ε > 0,

P

(

‖PFX − z‖2 ≤ ε
√
k
)

≤ (Lε)k, (1.7)

where PF is the orthogonal projection onto the subspace F .

It is straightforward to verify (see, e.g., Proposition 2.2 in [27]) that X satisfies the SBA
with constant L if and only if for every 1 ≤ k ≤ n, the densities of all k-dimensional marginals
of X are bounded by Lk (assuming, of course, that X has a density, and in which case fX
denotes that density).

There are numerous examples of generic random vectors that satisfy the SBA with an
absolute constant; among them are vectors with iid coordinates that have a bounded density
([27] and [12] for the optimal constant) as well as various log-concave random vectors1. For
more details see Appendix A, where we list several examples of generic log-concave random
vectors that satisfy Assumption 1.1.

Although Assumption 1.1 requires that X has a density, this is not essential and our main
results remain true even under the following weaker assumption.

Assumption 1.2. Let L and θ be such that Lθ < 1. The random vector X satisfies the weak
small-ball assumption (denoted from here on by wSBA) with constants θ and L if for every
1 ≤ k ≤ n− 1, every k dimensional subspace F , and every z ∈ R

n,

P

(

‖PFX − z‖2 ≤ θ
√
k
)

≤ (Lθ)k. (1.8)

Clearly, if X satisfies the SBA with constant L then it satisfies the wSBA with constants
θ and L for every θ > 0. Moreover, it follows from [27] that if X has independent coordinates,
and if each coordinate satisfies the wSBA with constants θ and L, then X satisfies the wSBA
with constants Cθ and L, where C > 0 is an absolute constant.

Remark 1.5. Most of the results presented in what follows hold under the wSBA. However,
to simplify the presentation only one result is proved under that assumption—the coordinate
small-ball estimate (Theorem 1.17); the other results are formulated using the SBA which
leads to a proof that is less involved.

Before we formulate the main results, let us mention one of their outcomes: a stable point
separation bound for the random sub-sampled convolutions scheme.

1Recall that X is log-concave if it has a density fX that satisfies that for every x, y in the support of fX
and every 0 ≤ λ ≤ 1, fX((1− λ)x+ λy) ≥ f

(1−λ)
X (x)fλ

X(y).
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Example 1.3 revisited

As it happens, the existing state of the art on point separation/stable point separation of the
random sub-sampled convolutions scheme can be improved dramatically, as existing estimates
are based on severe restrictions on the random vector ξ. The reason for those restrictions is
a wasteful method of proof, as is explained in Section 5.1, and which leads to the following:

Theorem 1.6. [21] For every constant L ≥ 1 there exist constants c0, c1, c2, c3 and c4 that
depend only on L for which the following holds. Let x be a mean-zero, variance one, L-
subgaussian random variable2, and set ξ = (xi)

n
i=1, i.e., a vector whose coordinates are inde-

pendent copies of x. Let s ≤ c0n/ log4 n and consider a ∈ Sn−1 that is s-sparse with respect
to the standard basis (ei)

n
i=1. Then with probability at least 1 − 2 exp(−c1 min{n/s, δn}) with

respect to both ξ and (δi)
n
i=1,

∑

i∈I
〈a⊛ ξ, ei〉2 ≥ c2δn and |{i ∈ I : | 〈a⊛ ξ, ei〉 | ≥ c3}| ≥ c4δn. (1.9)

We show that one can replace the wasteful parts of Theorem 1.6, leading to a sharp point
separation and stable point separation that hold as long as ξ satisfies the SBA, and with a
much better probability estimate.

To formulate this fact, let F denote the un-normalized discrete Fourier matrix in R
n (in

particular, F is a matrix whose entries are either −1 or 1), and for a ∈ R
n, let â = Fa/

√
n

be the normalized discrete Fourier transform of a.

Theorem 1.7. Let ξ satisfies the SBA with constant L and consider a ∈ Sd−1 that is s-sparse
for s ≤ c0n/ log n. Then for any 0 < ε < 1 and q > 2, with probability at least

1 − (c1Lε)
c2

‖â‖
2q/(q−2)
q − exp(−c3δn),

∑

i∈I
〈a⊛ ξ, ei〉2 ≥ c4ε

2δn and |{i ∈ I : | 〈a⊛ ξ, ei〉 | ≥ ε}| ≥ c5δn;

here, c0, c1 and c2 are constants that depend on q and c3, c4, c5 are absolute constants.

The differences between Theorem 1.6 and Theorem 1.7 are substantial. Firstly, the esti-
mate in Theorem 1.7 holds for a random vector that satisfies the SBA rather than only for
vectors that have iid subgaussian coordinates. Secondly, note that for any a ∈ Sn−1 and any

q > 2, 1/‖â‖2q/(q−2)
q ≥ 1/‖â‖2∞; and for any a ∈ Sn−1 that is s-sparse, 1/‖â‖2∞ ≥ n/s. Thus,

the probability estimate in Theorem 1.7 is always better than in Theorem 1.6, and often the
gap between the two is significant.

Remark 1.8. It is possible to prove a version of Theorem 1.7 for X that satisfies the wSBA,
but for the sake of a simpler presentation we shall not do that.

1.2 Small-ball estimates

If one wants to highlight the crucial (and rather remarkable) feature of the small-ball estimate
presented here, it is the following:

2A centred random variable x is L-subgaussian if for every p ≥ 2, ‖x‖Lp
≤ L

√
p‖x‖L2

.
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A Gaussian random vector is not the best case; actually, it is the worst one.

To explain what we mean by this, let X be a random vector taking values in R
n and for

now assume that it satisfies the SBA with constant L. Set m ≤ n and let T : Rn → R
m be a

linear operator of full rank. Without loss of generality one may assume that T actually maps
R
n into R

n and denote by s1, · · · , sm its nonzero singular values.
Recall that the p-Schatten norm of T is

‖T‖Sp =

(

m
∑

i=1

spi

)1/p

,

and following [22], for 2 < q ≤ ∞, let

srankq(T ) =

(‖T‖S2

‖T‖Sq

)
2q
q−2

be the q-stable rank of T . Clearly srankq(T ) ≤ m = rank(T ) and the case q = ∞ corresponds
to the standard notion of the stable rank, i.e.,

srank(T ) =

( ‖T‖S2

‖T‖S∞

)2

.

The current state of the art as far as small-ball estimates are concerned is due to Rudelson
and Vershynin:

Theorem 1.9. [27] There are absolute constants c0 and c1 for which the following holds. If
X satisfies the SBA with constant L then for any ε > 0,

P (‖TX‖2 ≤ ε‖T‖S2) ≤ (cLε)c1srank(T ). (1.10)

Remark 1.10. Although Theorem 1.9 is not stated explicitly in [27], it follows from the
analysis presented there in a straightforward way. Previous estimates of the same flavour
have been derived for a centred random vector X that has independent subgaussian entries in
[11] and for an X that is isotropic, log-concave and subgaussian in [24].

One instance in which Theorem 1.9 can be applied is when T is an orthogonal projection of
rank k (and in which case, srank(T ) = k). On the other hand, it is straightforward to verify
that if (1.10) holds for any such orthogonal projection then X satisfies the SBA (though
perhaps with a slightly different constant). Despite this equivalence, Theorem 1.9 is far from
optimal — because of the loose probability estimate; it does not “see” phase transitions that
occur as ε decreases.

In contrast to Theorem 1.9, our first main result is a comparison theorem which shows
that the worst random vector in the context of small-ball estimates is actually the standard
Gaussian. Then, in Corollary 1.14 and Theorem 1.15 one uses the Gaussian case to establish
the right probability estimate at every scale.
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Theorem 1.11. Let X be an n-dimensional random vector that satisfies the SBA with con-
stant L, let T : Rn → R

m be a linear map and set G to be the standard Gaussian vector in
R
n. Then for every 1 ≤ k < m = rank(T ),

E

(

‖TX‖−k
2

)

≤ E

(

‖TG/(
√

2πL)‖−k
2

)

. (1.11)

The connection between small-ball estimates and negative moments is an immediate corol-
lary of Markov’s inequality, which, combined with Theorem 1.11, implies that

P (‖TX‖2 ≤ ε) = P

(

‖TX‖−k
2 ≥ ε−k

)

≤ εkE
(

‖TX‖−k
2

)

≤ εkE
(

‖TG/(
√

2πL)‖−k
2

)

.

Remark 1.12. It is natural to ask whether Theorem 1.11 is sharp, as potentially there could
be a significant gap between (E‖TX‖−k

2 )−
1
k and (E‖TG‖−k

2 )−
1
k . However, the two happen to

be equivalent for any centred log-concave measure (up to the SBA constant L). Indeed, one
can show that there is an absolute constant c0 such that for any centred log-concave random
vector X and 1 ≤ k ≤ rank(T ),

(

E‖TX‖−k
2

)− 1
k ≤ c0

(

E‖TG‖−k
2

)− 1
k
. (1.12)

A sketch of the proof of this fact is presented in Appendix B.

Theorem 1.11 is a clear indication that the small-ball behaviour of a random vector has
nothing to do with concentration or with tail estimates: to a certain extent, concentration
exhibited by Gaussian vectors is the best one can hope for, but when it comes to small-ball
estimates the situation is the complete opposite. Moreover, thanks to the lower bound from
Theorem 1.11, the worst case scenario is actually very good and can be controlled. Indeed, to
complement Theorem 1.11 one may estimate the negative moments of ‖TG‖2—which requires
the following definition:

Definition 1.13. Let T : Rn → R
m and rank(T ) = m. For 1 ≤ k ≤ m− 1 set,

ak(T ) =

(

∫

Gm,k

det−
1
2 [(PFT )(PFT )∗]dF

)− 1
k

(1.13)

where PF is the orthogonal projection onto the subspace F and the integration takes place on
the Grassmannian Gm,k with respect to the Haar measure. Also for k = m put

am(T ) = det
1

2m (TT ∗).

It is straightforward to verify that ak(T ) has strong ties to the negative moments of ‖TG‖2.
Indeed, as is shown in Section 2, for any linear operator T and 1 ≤ k < rank(T ) = m,

(

E‖TG‖−k
2

)− 1
k

= ak(T )
(

E‖Gm‖−k
2

)− 1
k ∼ ak(T )

√
m, (1.14)

where Gm is the standard Gaussian random vector in R
m.

That, combined with Theorem 1.11, leads to the accurate small-ball behaviour of TX:
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Corollary 1.14. There is an absolute constant c such that the following holds. If X satisfies
the SBA with constant L and T : Rn → R

m then for 1 ≤ k ≤ m = rank(T ) and every ε > 0,

P
(

‖TX‖2 ≤ ε
√
mak(T )

)

≤ (cLε)k.

As it happens, one can control ak(T ) in terms of ‖T‖S2 as long as the operator T does
not have a trivial q-stable rank:

Theorem 1.15. For every q > 2 there are constants cq and c′q that depend only on q, and
absolute constants c and c′ such that the following holds. Let X be a random vector in R

n

that satisfies the SBA with constant L and T : R
n → R

m with m = rank(T ). For every
k ≤ cqsrankq(T ),

(

E‖TG‖−k
2

)− 1
k ≥ c‖T‖S2 ;

in particular, for every ε > 0

P

(

‖TX‖2 ≤ ε

2eL‖T‖S2

)

≤ (c′ε)c
′
qsrankq(T ). (1.15)

The proofs of Theorem 1.11 and Theorem 1.15 are presented in Section 2.

1.3 Coordinate small ball

As we noted previously, the fact that the Euclidean norm ‖TX‖2 is likely to be large gives lim-
ited information on the geometry of the random vector TX. Most notably, it says nothing on
the crucial feature that leads to stable point separation—the number of large coordinates TX
has with respect to a fixed orthonormal basis (ui)

m
i=1. The coordinate small-ball estimate we

establish is based on the wSBA, and shows that indeed many of the coordinates (〈TX, ui〉)mi=1

are likely to be large. To see what sort of information on the coordinates (〈TX, ui〉)mi=1 one
can hope for, let us return to the Gaussian case (which, based on Theorem 1.11, is a likely
candidate to be the ‘worst’ random vector that satisfies the wSBA).

Example 1.16. Let n = m, set X = G = (gi)
m
i=1 and consider the identity operator T =

Id : Rm → R
m. Given any orthonormal basis (ui)

m
i=1 it follows from rotation invariance and

independence that

P (|{i : | 〈G,ui〉 | ≥ ε}| ≤ c1m) = P (|{i : |gi| ≥ ε}| ≤ c1m) ≤ (c2ε)
c3m

for absolute constants c1, c2 and c3.
Thus, the fact that ‖G‖2 is likely to be &

√
m is exhibited by a proportional number of the

coordinates (〈G,ui〉)mi=1 whose absolute values are larger than ε‖Id‖S2/
√
m = ε. However, in

general, obtaining a coordinate small-ball estimate is a nontrivial task even when X has iid
coordinates and T is the identity operator. Indeed, let n = m and set X = (xi)

m
i=1 where the

xi’s are independent copies of a mean-zero random variable x. When (ui)
m
i=1 is the standard

basis, one has that | 〈TX, ui〉 | = |xi|, and estimating

P

(

m
∑

i=1

1{|xi|≥ε} ≤ ℓ

)

is easy to do thanks to the independence of the x1, ..., xm. But when (ui)
m
i=1 is a different

orthonormal basis then the coordinates of (〈X,ui〉)mi=1 are likely to have strong dependencies
and the wanted estimate is far from obvious.

10



We present two coordinate small-ball estimates: Theorem 1.17, when the linear operator
T satisfies that ‖T ∗ui‖2 = 1 for every 1 ≤ i ≤ m, and Theorem 3.5 for more general operators
T .

Theorem 1.17. There exists an absolute constant c such that the following holds. Let X
satisfy the wSBA with constants θ and L, set (ui)

m
i=1 to be an orthonormal basis of Rm and

consider T : R
n → R

m such that ‖T ∗ui‖2 = 1 for every 1 ≤ i ≤ m. Let q > 2 and set
kq = srankq(T ). Then for s ∈ (0, 1)

P (|{i ≤ m : | 〈TX, ui〉 | ≥ θ}| ≤ (1 − s)m) ≤ 2

(

2

s

)
q

q−2 m

kq

(

cqLθ
s

)
1
2
(s/2)

q
q−2 kq

, (1.16)

where cq ≤ c(q/(q − 2))1/2.

To put Theorem 1.17 is some perspective, let us return to Example 1.16. Consider the
case where n = m and T = Id. Thus, k∞ = m and ‖T‖S2/

√
m = 1. If (ui)

m
i=1 is an arbitrary

orthonormal basis and s = 0.01, then by Theorem 1.17 one has that with probability at least
1 − 2 (c1Lε)c2m,

|{i : | 〈X,ui〉 | ≥ ε}| ≥ 0.99m. (1.17)

Recall that by [27], if x is a random variable that has a density that is bounded by L and
X = (xi)

m
i=1 has iid coordinates distributed according to x, then X satisfies the SBA with

constant cL; in particular, X satisfies the wSBA with constants θ and cL for any θ > 0. Thus,
with probability at least 1 − 2(c1Lε)c2m,

|{i : | 〈X,ui〉 | ≥ ε}| ≥ 0.99m,

which means that X exhibits the same coordinate small-ball behaviour with respect to an
arbitrary basis as it would with respect to the standard basis; moreover, that behaviour is at
least as good as that of the standard Gaussian vector.

Remark 1.18. The one place in which Theorem 1.17 is potentially loose is the factor m/kq.
It has an impact only in situations where the operator T is, in some sense, trivial—when the
q-stable rank of T is smaller than cq logm.

The main application of Theorem 1.17 is Theorem 1.7, showing that random sub-sampled
convolutions exhibit stable point separation. In addition to that, a further application of
Theorem 1.17 is an ℓp small-ball estimate.

Theorem 1.19. There exists absolute constants c1 and c2 such that the following holds. Let
X be a random vector in R

n that satisfies the SBA with constant L. Seta ∈ R
n and let

k = (c1‖a‖p/‖a‖∞)p. Then for any 0 < ε < 1,

P





∥

∥

∥

∥

∥

m
∑

i=1

aixiei

∥

∥

∥

∥

∥

p

≤ ε‖a‖p



 ≤ (c2εL)k. (1.18)

To see that (1.18) is truly a small-ball estimate with respect to the ℓp norm, observe that
by the SBA

E

∥

∥

∥

∥

∥

m
∑

i=1

aixiei

∥

∥

∥

∥

∥

p

p

=

m
∑

i=1

|ai|p · E|xi|p ≥ (cL)p‖a‖pp;

11



therefore, under a suitable moment assumption, ‖a‖p ∼ E ‖∑m
i=1 aixiei‖p.

There is no obvious way of obtaining an upper bound on (1.18). If X has iid coordinates
and satisfies the SBA with constant L = 1, one may invoke [25], where it is shown that for
any semi-norm ‖ ‖ and any u > 0,

P(‖X‖ ≤ u) ≤ P(‖Y ‖ ≤ u), (1.19)

and Y is the uniform measure on [−1
2 ,

1
2 ]m. However, similar comparison results of this kind

for a general random vector X—whose coordinates need not be independent—are not known.
The proof of Theorem 1.19 is presented in Section 4.2.

We end the introduction with some notation. Throughout, c, c1, c
′, etc., denote absolute

constants. Their value may change from line to line. cq and c(q) denote constants that depend
on the parameter q; a . b means that there is an absolute constant c such that a ≤ cb; and
a .q b implies that c depends on the parameter q. The corresponding two-sided estimates
are denoted by a ∼ b and a ∼q b respectively.

For a subspace F ⊂ R
n let PF be the orthogonal projection onto F ; (ei)

n
i=1 is the standard

basis of Rn and Pk is the orthogonal projection onto span(e1, ..., ek). The standard Gaussian
random vector in R

n is denoted by G, while Gm is the standard Gaussian random vector in
R
m. Finally, if fX is the density of a random vector X, the density of PFX is denoted by

fPFX .

2 Proofs: small ball estimates

The starting point of the proof of Theorem 1.11 is the following equality (see [24], Proposition
4.6):

Proposition 2.1. For every random vector W in R
m with bounded density and 1 ≤ k ≤ m−1,

(

E‖W‖−k
2

)− 1
k

(

E‖Gm‖−k
2

)− 1
k

=
1√
2π

(

∫

Gm,k

fPFW (0)dF

)− 1
k

, (2.1)

with integration taking place with respect to the Haar measure on the Grassman manifold
Gm,k.

Proposition 2.1 indicates the path the proof of Theorem 1.11 follows: one obtains suitable
lower bounds on the L∞ norms the densities of typical projections of TX. This requires two
straightforward volumetric observations that also explain the role of the Gaussian parameters
ak(T ).

Lemma 2.2. Let X be a random vector with a density. Consider S : Rn → R
k for k ≤ n

and with rank(S) = k, and let UDPkV be the singular value decomposition of S. Then, for
any compact subset K ⊂ R

k

P (SX ∈ K) = P
(

PEX ∈ V ∗D−1U∗K
)

, (2.2)

where E = V ∗(Rk).

12



Moreover,

P (SX ∈ K) ≤ det(D−1)vol(K)‖fPEX‖L∞ =
vol(K)

√

det(SS∗)
‖fPEX‖L∞ . (2.3)

Proof. Since S = UDPkV and PkV = V PE , it follows that

P (SX ∈ K) =P (UDPkV X ∈ K) = P
(

PkV X ∈ D−1U∗K
)

=P
(

V PEX ∈ D−1U∗K
)

= P
(

PEX ∈ V ∗D−1U∗K
)

= (∗);

and by a volumetric estimate,

(∗) =

∫

V ∗D−1U∗K
fPEX(x)dx ≤ vol(V ∗D−1U∗K)‖fPEX‖∞ = det(D−1)vol(K)‖fPEX‖∞.

The second observation yields an estimate on the L∞ norm of the density of a projection
of the random vector TX.

Lemma 2.3. Let X be a random vector, set 1 ≤ k ≤ m − 1 ≤ n − 1 and assume that for
every E ∈ Gn,k,

‖fPEX‖L∞ ≤ Lk. (2.4)

Then, for every F ∈ Gm,k and T : Rn → R
m,

‖fPFTX‖L∞ ≤ Lk

(det[(PFT )(PFT )∗])
1
2

. (2.5)

Proof. Fix F ∈ Gm,k and observe that for every compact set K ⊂ F ,

1

vol(K)

∫

K
fPF TX(x)dx =

1

vol(K)
P (PFTX ∈ K) .

By (2.3) and the uniform estimate on ‖fPEX‖L∞ it follows that

P (PFTX ∈ K) ≤ vol(K) · max
E∈Gn,k

‖fPEX‖L∞

(det[(PFT )(PFT )∗])
1
2

≤ vol(K) · Lk

(det[(PFT )(PFT )∗])
1
2

.

Therefore,
1

vol(K)

∫

K
fPFTX(x)dx ≤ Lk

(det[(PFT )(PFT )∗])
1
2

,

and since the R.H.S. is independent of K the claim follows.

Proof of Theorem 1.11. Recall that G is the standard Gaussian random vector in R
n

and Gm is the standard Gaussian random vector in R
m. The proof follows by invoking

Proposition 2.1 twice: it is used to compare negative moments of TG and Gm, and then to
compare negative moments of Gm and TX.

Let F ∈ Gm,k. Since PFTG is also a centred Gaussian vector, it standard to verify that

f
1
k
PFTG(0) =

1√
2π

(

1

det[(PFT )(PFT )∗]

) 1
2k

. (2.6)

13



Hence, by (2.1) and the definition of ak(T ),

(

E‖TG‖−k
2

)− 1
k

(

E‖Gm‖−k
2

)− 1
k

=
1√
2π

(

∫

Gm,k

fPFTG(0)dF

)− 1
k

=

(

∫

Gm,k

det−
1
2 [(PFT )(PFT )∗]dF

)− 1
k

=ak(T ). (2.7)

On the other hand,

(

E‖TX‖−k
2

)− 1
k

(

E‖Gm‖−k
2

)− 1
k

=
1√
2π

(

∫

Gm,k

fPFTX(0)dF

)− 1
k

;

by Lemma 2.3, for every F ∈ Gn,k,

fPFTX(0) ≤ ‖fPFTX‖L∞ ≤ Lk

(det[(PFT )(PFT )∗])
1
2

,

implying that

1√
2π

(

∫

Gm,k

fPFTX(0)dF

)− 1
k

≥ 1√
2πL

(

∫

Gm,k

det−
1
2 [(PFT )(PFT )∗]dF

)− 1
k

=
ak(T )√

2πL
.

Therefore,
(

E‖TX‖−k
2

)− 1
k

(

E‖TG/(
√

2πL)‖−k
2

)− 1
k

≥ 1,

as claimed.

Note that (2.1) and (2.6) imply that
(

E‖TG‖−k
2

)− 1
k

= ak(T )
(

E‖Gm‖−k
2

)− 1
k

as claimed

in (1.14).

2.1 Proof of Theorem 1.15

Thanks to Theorem 1.11, it suffices to obtain a suitable lower bound on (E‖TG‖−k
2 )−

1
k for

k . srankq(T ) and q > 2.

Lemma 2.4. There exists an absolute constant c for which the following holds. Let 0 < θ < 1
and q > 2, and set

m = (cθ)2q/(q−2)srankq(T ).

If (si)
r
i=1 are the non-zero singular values of T arranged in a non-increasing order and

s̃i = min{si, ‖T‖S2/
√
m}

then
r
∑

i=1

s̃2i ≥ (1 − θ2)‖T‖2S2
.
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Proof. Let 0 < θ < 1 and observe that for every 1 ≤ i ≤ m, si ≤ ‖T‖Sq/i
1/q. Therefore,

∑

i≤m

s2i ≤ ‖T‖2Sq

∑

i≤m

1

i2/q
≤ cq

q − 2
‖T‖2Sq

m1−2/q ≤ θ2‖T‖2S2

provided that
m ≤ (cθ)2q/(q−2)srankq(T ).

At the same time, sm+1 ≤ ‖T‖S2/
√
m + 1, implying that

|{i : si ≥ ‖T‖S2/
√
m}| ≤ m.

Thus,
r
∑

i=1

min
{

‖T‖S2/
√
m, si

}2 ≥
r
∑

i=m+1

s2i ≥ (1 − θ2)‖T‖S2 ,

and the claim follows.

The proof of Theorem 1.15 is based on the following outcome of the so-called “B-Theorem”
(see [5] for the proof of the “B-Theorem”) and requires some additional notation.

For a ∈ R
n let Ga = 〈G, a〉, and for A ⊂ R

n set

d∗(A) =

(

E supa∈A Ga

supa∈A(EG2
a)1/2

)2

.

Theorem 2.5. [9, 10]. There are absolute constants c1 and c2 such that for any A ⊂ R
n and

any 0 < s < 1,

P

(

sup
a∈A

Ga ≤ sE sup
a∈A

Ga

)

≤ (c1s)c2d∗(A).

Proof of Theorem 1.15. Let (si)
r
i=1 be the non-zero singular values of T and set (s̃i)

r
i=1 to

be as in the proof of Lemma 2.4. Using the notation of the lemma, let θ2 = 3/4. Note that if
D is a diagonal operator that satisfies dii = si for i ≤ r and 0 otherwise, and D̃ is a diagonal
operator whose non-zero diagonal entries are dii = s̃i for i ≤ r, then

D̃Bn
2 ⊂ DBn

2 , ‖D̃‖S∞ ≤ ‖T‖S2√
m

, and ‖D̃‖S2 ≥ ‖T‖S2

2
.

By rotation invariance, for every k, E‖TG‖−k
2 = E‖DG‖−k

2 , and for every x ∈ R
n, ‖D̃x‖2 ≤

‖Dx‖2. Hence,

(E‖TG‖−k
2 )−

1
k = (E‖DG‖−k

2 )−
1
k ≥ (E‖D̃G‖−k

2 )−
1
k .

Let A = D̃Bn
2 and observe that for t ∈ R

n,

sup
a∈A

〈a, t〉 = sup
x∈Bn

2

〈

x, D̃t
〉

= ‖D̃t‖2;

therefore,

E sup
a∈A

〈a,G〉 = E‖D̃G‖2 ≥ ‖D̃‖S2 ≥ ‖T‖S2

2
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and

sup
a∈A

E 〈a,G〉2 ≤ max
i

dii ≤
‖T‖S2√

m
.

Finally, by Theorem 2.5, for every 0 < u < 1,

P(‖D̃G‖2 ≤ c1u‖T‖S2) ≤ (u/2)c2m,

where c1 and c2 are suitable absolute constants. A straightforward tail integration argument
shows that for k ≤ c3m

(E‖D̃G‖−k
2 )−

1
k ≥ c4‖T‖S2 ,

as required.

3 Proofs: Coordinate small-ball estimates

Let us turn to the proof of Theorem 1.17. Recall that X is an n-dimensional random vector
that satisfies the wSBA with constants θ and L, let (ui)

m
i=1 be an orthonormal basis of Rm

and set T : Rn → R
m to be a linear operator which satisfy that for 1 ≤ i ≤ m

‖T ∗ui‖2 = 1. (3.1)

The key component of the proof of Theorem 1.17 is a decomposition lemma. To formulate
it, let σ ⊂ {1, ...,m} and denote by Pσ : Rm → R

σ the orthogonal projection onto span(ui)i∈σ .
Thus, P ∗

σ : Rσ → R
m is the formal identity operator with respect to the basis (ui)

m
i=1.

Lemma 3.1. Let q > 2 and set cq ∼ (q/(q − 2))1/2. Assume that for every 1 ≤ i ≤ m,
‖T ∗ui‖2 = 1 and set kq = srankq(T ). Then for any λ ∈ (0, 1) there are disjoint subsets
σ1, ..., σℓ ⊂ {1, ...,m} such that

• For 1 ≤ j ≤ ℓ, |σj | ≥ λ
q

q−2 kq/2 and
∑ℓ

j=1 |σj | ≥ (1 − λ)m; and

• ‖(T ∗P ∗
σj

)−1‖S∞ ≤ cq.

The proof of Lemma 3.1 is based on the idea of restricted invertibility. The version used
here is Theorem 8 from [22]:

Theorem 3.2. For q > 2 set cq ∼ (q/(q − 2))1/2. If A : R
m → R

n is a linear operator
then there exists σ ⊂ {1, ...,m} of cardinality at least |σ| ≥ srankq(A)/2 such that the map
(AP ∗

σ )−1 is well defined and

‖(AP ∗
σ )−1‖S∞ ≤ cq

√
m

‖A‖S2

. (3.2)

Proof of Lemma 3.1. The construction of the subsets (σj)
ℓ
j=1 is performed inductively.

First, let kq = srankq(T ) and apply Theorem 3.2 to A = T ∗. Thus, noting that ‖T ∗‖S2 =
√
m,

there is σ1 ⊂ {1, ...,m} such that

|σ1| ≥
kq
2

and ‖(T ∗P ∗
σ1

)−1‖S∞ .

(

q

q − 2

)1/2

. (3.3)

If |σ1| ≥ (1−λ)m the lemma is proved. Otherwise, let m1 = m−|σ1| and set T1 = Pσc
1
T :

R
n → R

m1 . Since ‖T ∗
1 ui‖2 = 1 for all i ∈ {1, ...,m} \ σ1, it is evident that ‖T1‖2S2

≥ λm, and
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because Pσc
1

is a contraction one has that ‖T1‖Sq = ‖Pσc
1
T‖Sq ≤ ‖T‖Sq . Set k

(1)
q = srankq(T1);

thus,

k(1)q =

(‖T1‖S2

‖T1‖Sq

)
2q
q−2

≥ λ
q

q−2

(‖T‖S2

‖T‖Sq

)
2q
q−2

= λ
q

q−2 kq.

Invoking Theorem 3.2 again, this time for A = T ∗
1 , there is σ2 ⊂ {1, ...,m} \ σ1, such that

|σ2| ≥
k
(1)
q

2
≥ 1

2
λ

q
q−2 kq and ‖(T ∗P ∗

σ )−1‖S∞ .

(

q

q − 2

)1/2

.

Again, if |σ1| + |σ2| ≥ (1 − λ)m the lemma is proved, and if not one may continue in the
same way, constructing operators Tj and sets σj inductively until

∑ℓ
j=1 |σj | ≥ (1 − λ)m.

The fact that ‖(T ∗P ∗
σ )−1‖S∞ ≤ γ implies that the ellipsoid PσT (Bn

2 ) contains the Eu-
clidean ball γ−1Bσ

2 , which leads to a small-ball estimate.

Lemma 3.3. There is an absolute constant c for which the following holds. Let σ ⊂ {1, ...,m}
such that ‖(T ∗P ∗

σ )−1‖S∞ ≤ γ, and set γ0 = max{1, γ}. If X satisfies the wSBA with constants
θ and L, then for any τ ⊂ σ,

P(‖PτT‖2 ≤ θ
√

|τ |) ≤ (cγ0θL)|τ |.

An observation one needs for the proof of Lemma 3.3 is a monotonicity property for the
wSBA. Its proof can be found in Proposition 2.1 in [27] and is based on a simple covering
argument.

Lemma 3.4. Let X satisfy the wSBA with constants θ and L. Then for every M > 1, X
also satisfies the wSBA with constants Mθ and 3L.

Proof of Lemma 3.3. Let r = |τ | and note that B = PτPσT : R
n → R

r is a linear
operator of rank r. As noted previously, there are |σ| non-zero singular values of PσT , all
of which are at least γ−1; and since τ ⊂ σ, it follows that si(B) ≥ γ−1 for 1 ≤ i ≤ r.
By the singular value decomposition theorem there are U ∈ Or, V ∈ On and a diagonal
matrix D = diag(s1(B), · · · , sr(B)) such that B = UDPrV , where, as always, Pr denotes the
orthogonal projection onto {e1, ..., er}. Setting F = V ∗(Rr) one has that PrV = V PF .

Since X satisfies the wSBA with constants θ and L, and all the entries in the diagonal of
D are at least γ−1, invoking Lemma 3.4 it is evident that

P

(

‖PτTX‖2 ≤ θ
√

|τ |
)

=P

(

‖UDV PFX‖2 ≤ θ
√

|τ |
)

≤ P

(

‖PFX‖2 ≤ γθ
√

|τ |
)

≤ (θγ0L)|τ | ,

and the claim follows.

Proof of Theorem 1.17. Let (σj)
ℓ
j=1 be the collection of subsets as in Lemma 3.1 and set

σ =
⋃

j≤ℓ

σj.
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In particular, for 1 ≤ j ≤ ℓ,

|σj| ≥ λ
q

q−2 kq/2.

Recall that (ui)
m
i=1 is an orthonormal basis of Rm and for τ ⊂ {1, ...,m} set

Qτ = {x ∈ R
m : max

i∈τ
| 〈x, ui〉 | ≤ 1}.

For 1 ≤ i ≤ m consider the random variables

ηi = 1{z:|〈Tz,ui〉|≥θ}(X) and ζi = 1{z:|〈Tz,ui〉|<θ}(X). (3.4)

Thus, for 0 < α < 1 and 1 ≤ j ≤ ℓ,

P





∑

i∈σj

ζi ≥ α|σj |



 ≤
∑

τ⊂σj , |τ |=α|σj |
P





⋂

i∈σj

{| 〈TX, ui〉 | < θ}





≤
( e

α

)α|σj |
max

τ⊂σj , |τ |=α|σj |
P (PτTX ∈ θQτ ) ≤

( e

α

)α|σj |
max

τ⊂σj , |τ |=α|σj |
P

(

‖PτTX‖2 < θ
√

|τ |
)

,

where the last inequality holds because Qτ ⊂
√

|τ |Bτ
2 =

√

|τ |Bm
2 ⊂ R

τ . Since X satisfies the
wSBA with constants θ and L it follows from Lemma 3.3 that

max
τ⊂σj , |τ |=α|σj |

P

(

‖PτTX‖2 < θ
√

|τ |
)

≤ (cqLθ)α|σj |

and cq ∼ (q/(q − 2))1/2; therefore,

P





∑

i∈σj

ηi ≤ (1 − α)|σj |



 ≤
(

ecqLθ
α

)α|σj |
. (3.5)

Now set 0 < s < 1, let λ = s/2 and recall that |σ| ≥ (1 − λ)m. Set 1 − α = (1 − s)/(1 − λ)
and note that α ≥ s/2. With this choice of λ, the union bound and (3.5),

P

(

m
∑

i=1

ηi ≤ (1 − s)m

)

= P

(

∑

i∈σ
ηi ≤ (1 − s) · |σ|

1 − λ

)

≤P





∑

j≤ℓ

∑

i∈σℓ

ηi ≤ (1 − α)
∑

j≤ℓ

|σj |



 ≤
∑

j≤ℓ

P





∑

i∈σj

ηi ≤ (1 − α)|σj |





≤
∑

j≤ℓ

P





∑

i∈σj

ηi ≤
(

1 − s

2

)

|σj |



 ≤
∑

j≤ℓ

(

ecqLθ
s/2

)|σj |/(s/2)
= (∗).

Finally, since

|σj | ≥ c1λ
q

q−2 kq ∼ sq/(q−2)kq,

it is evident that ℓ . s−q/(q/2)m/kq and the claim follows.
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3.1 Coordinate small-ball for general operators

The assumption that ‖T ∗ui‖2 = 1 for every 1 ≤ i ≤ m is not essential and can be replaced
by a considerably weaker condition. If instead one assumes that there are constants δ1 > 0
and δ2 ≥ 1 such that

(

1

m

m
∑

i=1

‖T ∗ui‖2+δ1
2

) 1
2+δ1

≤ δ2
‖T‖S2√

m
, (3.6)

then the following version of Theorem 1.17 can be established:

Theorem 3.5. Let X satisfy the SBA with constant L. Consider T : Rn → R
m, an orthonor-

mal basis (ui)
m
i=1 of Rm such that (3.6) is satisfied, and for q > 2 set kq = srankq(T ). Then,

for any ε ∈ (0, 1) one has that

P

(∣

∣

∣

∣

{

i ≤ m : | 〈TX, ui〉 | ≥ ε
‖T‖S2√

m

}∣

∣

∣

∣

≤ c0m

)

≤ c1
m

kq
(c2Lε)c3kq (3.7)

where c0 = c0(δ1, δ2),

c1 = 5
q

q−2 , c2 ∼
(

q

q − 2

)1/2

and c3 =

(

1

2δ2

)

2+δ1
δ1 ∈ (0, 1).

Because the proof of Theorem 3.5 follows a similar path to that of Theorem 1.17 we will
only outline the necessary modifications.

Sketch of proof. Note that (3.6) and the Paley-Zygmound inequality imply that
∣

∣

∣

∣

{

i ≤ m : ‖T ∗ui‖2 ≥ ‖T‖S2

2
√
m

}∣

∣

∣

∣

≥ c0(δ1, δ2)m, (3.8)

and without loss of generality one may assume that c0m is an integer. In particular, let
σ0 ⊂ {1, ...,m} to be of cardinality c0m and for every i ∈ σ0,

‖T ∗ui‖2 ≥
‖T‖S2

2
√
m

.

We may assume that σ0 = {1, ..., c0m} and let T0 = Pσ0T where Pσ0 is the orthogonal
projection onto span(ui)i∈σ0 . Therefore,

‖T‖S2 ≥ ‖T0‖S2 ≥
√
c0
2

‖T‖S2 ,

and for any σ ⊂ σ0,

‖PσT0‖S2 ≥ 1

2

√

|σ|
m

‖T‖S2 ≥
√
c0
2

√

|σ|
|σ0|

‖T0‖S2 .

Let δ =
√
c0/2 and set

kq,0 = srankq(T0) ≥
(c0

4

)
q

q−2
kq.

Following the argument used in the proof of Lemma 3.1, it is evident that there are disjoint
subsets σ1, ..., σℓ ⊂ {1, ..., c0m} such that
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• For 1 ≤ j ≤ ℓ, |σj | ≥ (δ2λ)
q

q−2 kq,0/2 and
∑ℓ

j=1 |σj | ≥ (1 − λ)|σ0| = (1 − λ)c0m; and

• ‖(T ∗P ∗
σj

)−1‖S∞ ≤ c0
δ2 .

From here on the proof is identical to that of Theorem 1.17 with the choice of λ = 1/2; the
details are omitted.

Remark. A version of Theorem 3.5 holds true under the wSBA as well. We leave the
details of the proof to the reader.

Theorem 1.17 and Theorem 3.5 imply that under mild assumptions on T , the coordinate
small-ball estimate exhibits the standard small-ball one. Indeed, as an example, set s = 1/2,
let k4 denote the q stable rank for q = 4 and observe that if ‖T ∗ei‖2 = 1 for every 1 ≤ i ≤ m
then ‖T‖S2 =

√
m. Hence,

∣

∣

∣

∣

{

i : | 〈TX, ui〉 | ≥ (θ/
√

2)
‖T‖S2√

m

}∣

∣

∣

∣

≥ m

2

with probability at least
1 − (m/k4) · (cθL)c

′k4

where c and c′ are absolute constants. Therefore, if k4 & logm and θ . 1/L,

P

(

‖TX‖2 ≤ θ

8
‖T‖S2

)

≤ (c′′θL)c
′k4/2,

which recovers the small-ball estimate (and obviously similar bounds hold for any q > 2 at
the price of modified constants).

At the same time, the difference between the two estimates cannot be overstated: Theorem
1.17 implies that for any choice of a coordinate basis (ui)

m
i=1, a typical realization of the vector

(〈TX, ui〉)mi=1 will have ∼ m large coordinates, which is a significantly stronger statement than
the standard small-ball estimate. Indeed, there are many examples in which the coordinate
structure dictated by the orthonormal basis is a feature of the problem, and a small-ball
estimate is simply not good enough. The case of random sub-sampled convolutions, which
we now turn to, is one such example.

4 Proofs: applications

Here we present the proofs of the applications that follow from Theorem 1.17, starting with
point separation and stable point separation for random sub-sampled convolutions.

4.1 Random sub-sampled convolutions and stable point separation

Recall that ξ is an isotropic random vector in R
n and that (δi)

n
i=1 are independent {0, 1}-

valued random variables with mean δ. If I = {i : δi = 1}, the question of point separation is
whether with high probability

1

δn

∑

i∈I
(a⊛ ξ)2i ≥ c0‖a‖22 (4.1)
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for a suitable constant c0 that is independent of a and of δ; and, as far as stable point
separation is concerned, whether

|{i ∈ I : (a⊛ ξ)i ≥ c1‖a‖2}| ≥ c2δn. (4.2)

To analyze (4.1) and (4.2), let us first examine the convolution a⊛ ξ. Recall that F is the
discrete Fourier matrix and observe that

a⊛ ξ = F−1F(a⊛ ξ) = F−1 ((Fa)i · (Fξ)i)
n
i=1 = F−1DFaFξ,

where DFa is a diagonal matrix whose diagonal entries are dii = (Fa)i. Setting U = F−1/
√
n,

W = F/
√
n and O = F/

√
n, it follows that

a⊛ ξ =
√
nUDWaOξ ≡ Γaξ, (4.3)

where U,W and O are Hadamard matrices.
Note that ξ satisfies the SBA with constant L; that â = Fa√

n
= Wa; and that O and U are

orthogonal matrices. Hence, for every q > 2,

‖Γa‖Sq =
√
n‖UDWaO‖Sq =

√
n‖DWa‖Sq =

√
n‖â‖q.

Therefore, if ‖a‖2 = 1,

srankq(Γa) =

(‖â‖2
‖â‖q

)
2q
q−2

=

(

1

‖â‖q

)
2q
q−2

.

By Theorem 1.17 for (ui)
n
i=1 = (ei)

n
i=1, there is an event A of probability at least

1 − 2 (c1)
q

q−2
n

kq
(c2(q)Lε)c

q
q−2
3 kq = (∗)

with respect to ξ, on which

|{i : | 〈Γaξ, ei〉 | ≥ ε}| ≥ 0.99n.

To control the probability estimate, let W1, ...,Wn be the rows of the matrix W and note that

max
1≤i≤n

‖Wi‖∞ =
1√
n
.

If a is s-sparse with respect to the standard basis then

‖â‖qq =
n
∑

i=1

| 〈Wi, a〉 |q ≤ n ·
( s

n

)q/2
=

sq/2

n(q−2)/2
,

implying that

(∗) ≥ 1 − (c4(q)εL)c5(q)/‖â‖
2q/(q−2)
q

as long as s ≤ c6(q)n/ log n and ε ≤ c7(q).
Finally, for every realization of ξ in the event A, with probability at least 1−2 exp(−c8δn)

with respect to (δi)
n
i=1 one has that

|{i ∈ I : | 〈Γaξ, ei〉 | ≥ ε}| ≥ 0.98δn,

and in particular,
∑

i∈I
| 〈Γaξ, ei〉 |2 ≥ 0.98ε2δn.

A Fubini argument completes the proof.
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4.2 Small-ball estimates for the ℓp-norm

Let X = (xi)
n
i=1 satisfy the SBA with constant L and fix a ∈ R

n. The goal here is to use
Theorem 1.17 and the information it provides on the distribution of the coordinates of a
random vector X to control the probability

P





∥

∥

∥

∥

∥

n
∑

i=1

aixiei

∥

∥

∥

∥

∥

p

≥ ε‖a‖p



 ;

here, as always, (ei)
n
i=1 denotes the standard basis in R

n and ‖ ‖p is the ℓp norm.
Without loss of generality assume that a1 ≥ a2.... ≥ 0 and set

Ij =

{

i :
1

2j+1
<

ai
a1

≤ 1

2j

}

. (4.4)

For every integer ℓ let
Λℓ = {j : |Ij | = ℓ} (4.5)

and note that it is possible that some of the sets Λℓ’s are empty. For every ℓ define

j(ℓ) = min Λℓ (4.6)

and if Λℓ is empty let j(ℓ) = 0.

The idea behind this decomposition of {1, ..., n} to the union of the sets Ij is that if Λℓ 6= ∅
then the contribution to ‖a‖p that comes from

⋃

j∈Λℓ
Ij is equivalent to the contribution of

Ij(ℓ). Indeed, for any Ij ,

1

2p
|Ij |

ap1
2jp

<
∑

i∈Ij
api ≤ |Ij |

ap1
2jp

(4.7)

and by comparing the sum to an appropriate geometric progression, there are absolute con-
stants c1 and c2 such that

cp1
∑

i∈Ij(ℓ)
api ≤

∑

j∈Λℓ

∑

i∈Ij
api ≤ cp2

∑

i∈Ij(ℓ)
api .

As a result, there are disjoint coordinate blocks, each one of different cardinality, such that

‖a‖pp ∼
∑

{ℓ≥1:Λℓ 6=∅}

∑

i∈Ij(ℓ)
api .

Fix an index ℓ such that Λℓ 6= ∅ and consider j = j(ℓ). One has that

{

i ∈ Ij : |xiai| ≤ ε
a1

2j+1

}

⊂ {i ∈ Ij : |xi| ≤ ε} ,

and by Theorem 1.17 for the orthogonal projection onto span(ei : i ∈ Ij), denoted in what
follows by PIj , there are absolute constants c3 and c4 such that

P

(

∣

∣

{

i ∈ Ij(ℓ) : |xi| ≤ ε
}∣

∣ ≤ ℓ

2

)

≤ (c3Lε)c4ℓ.
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Hence, with probability at least 1− (c3Lε)c4ℓ, there are at least ℓ/2 indices i ∈ Ij(ℓ) such that

|xiai| ≥ ε
a1

2j+1
,

and in particular,
∑

i∈Ij(ℓ)
|xiai|p ≥ cp5ε

pℓ
ap1
2jp

≥ cp6ε
p
∑

i∈Ij(ℓ)
api .

Set
φp(k) =

∑

{ℓ≥k,Λℓ 6=∅}

∑

i∈Ij(ℓ)
api ,

note that
(c7‖a‖p)p ≤ φp(1) ≤ ‖a‖pp

and that by the union bound, for every integer k, with probability at least 1 − (c8Lε)c9k,

∥

∥

∥

∥

∥

n
∑

i=1

aixiei

∥

∥

∥

∥

∥

p

≥





∑

{ℓ≥k,Λℓ 6=∅}

∑

i∈Ij(ℓ)
|aixi|p





1/p

≥ c6εφ(k).

All that is left to show is that for a well chosen absolute constant c and for k = (c‖a‖p/‖a‖∞)p

one has that φ(k) & ‖a‖pp. To that end, and because φp(1) ≥ cp7‖a‖
p
p, the claim follows if

∑

ℓ≤k

∑

i∈Ij(ℓ)
api ≤

cp7
2
‖a‖pp.

By the exponential decay of ‖PIja‖∞,

∑

{ℓ<k,Λℓ 6=∅}

∑

i∈Ij(ℓ)
api ≤

∑

{ℓ<k,Λℓ 6=∅}
|Ij(ℓ)|‖PIj(ℓ)a‖p∞

=
∑

{ℓ<k,Λℓ 6=∅}
|ℓ|‖PIj(ℓ)a‖p∞ ≤ cp10k‖a‖p∞

from which the wanted estimate follows immediately for our choice of k.

5 Concluding Remarks

Finally, let us describe how coordinate small-ball estimates should not be established. Unfortu-
nately, up to this point, the only known way of obtaining such estimates was this (suboptimal)
way.

5.1 The wrong way

The standard way in which coordinate small-ball estimates have been established was based
on the following simple observation. Consider a vector x ∈ R

n that satisfies ‖x‖2 ≥ α
√
n

for some α > 0 and for the sake of simplicity assume that x1 ≥ x2 ≥ ... ≥ xn ≥ 0. Clearly,
having any estimate on ‖x‖2 says nothing about the number of large coordinates that x has;
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however, if the contribution to ‖x‖2 made by the k = βn largest coordinates of x is smaller
than α

√
n/2 then x is “well spread”. Indeed, on the one hand

n
∑

i=k+1

x2i ≥
3

4
α2n,

and on the other

x2k ≤ α2n

4k
.

Therefore, by a Paley-Zygmund type argument, a proportional number (∼α,β n) of the xi’s
are at least c(α, β).

Obtaining a coordinate small-ball estimate in this way is particularly appealing in light
of Theorem 1.11: because we know that ‖TX‖2 is likely to be large, it seems like half the
job is already done. However, there are two crucial reasons why, despite the appeal, this is
the wrong approach. Firstly, it gives no flexibility: one has no control on the proportion of
nontrivial coordinates that the vector has, nor on the lower bound on the absolute values of
these coordinates; in particular, there is no hope of proving Theorem 1.17 using this type of
argument. Secondly, while lower bounds are, in some sense, universal, upper bounds—which
play an integral part in the argument and are based on tail estimates—are clearly not. In this
case, given an orthonormal basis (ui)

m
i=1 the necessary upper bound is on ‖(〈TX, ui〉)mi=1‖[k],

where we set

‖x‖[k] = max
|I|=k

(

∑

i∈I
x2i

)
1
2

.

Upper estimates of this kind hold with reasonable probability only in very special cases.
In fact, even when X is a Gaussian vector, the resulting probability estimate is weaker
than, say, the one in Theorem 1.17; and for more heavy-tailed random vectors estimates
on ‖(〈TX, ui〉)‖[k] are completely useless.

As a general principle,

It is wrong to try to establish coordinate small-ball estimates (which are lower bounds)
using an argument that is based on “large deviations”. Such a method may lead to
nontrivial bounds only for very nice random vectors, and the bounds will be suboptimal
even in those cases.
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A Examples of vectors that satisfy the SBA

Here we give examples of several generic random vectors that satisfy the SBA. This is far
from being an exhaustive list and should be viewed only as an indication to the fact that the
SBA is a property shared by many natural random vectors.

(1) Let X = (ξ1, · · · , ξn) where the ξi’s are independent random variables with densities
bounded by L. It was shown in [27] that X satisfies the SBA with constant cL, where
c > 0 is an absolute constant.

This fact was further extended in [12, 25]; most notably, it was shown in [25] that if the
coordinates of X = (ξi)

n
i=1 are independent random variables with densities bounded

by 1 and the coordinates of Y = (ηi)
n
i=1 are uniformly distributed in [−1

2 ,
1
2 ], then for

every semi-norm ‖ · ‖ and t > 0,

P(‖X‖ ≤ t) ≤ P(‖Y ‖ ≤ t). (A.1)

In particular, among all such vectors the ‘worse’ small-ball behaviour—with respect to
any semi-norm—is exhibited by the uniform measure on the cube [−1

2 ,
1
2 ]n.

Observe that for the Euclidean norm, the small-ball behaviour of Y and of the standard
Gaussian vector G is the same up to absolute constants.

(2) Perturbations: It is standard to verify that if X satisfies the SBA with a constant L and
W is an arbitrary random vector that is independent of X, then W + δX satisfies SBA
with a constant depending on δ and L.

(3) The question of whether there is a constant L such that any isotropic log-concave ran-
dom vector satisfies the SBA with constant L is equivalent to Bourgain’s celebrated
Hyperplane Conjecture (see [2] and the discussion in [8] and [4])).

Thanks to the extensive study of log-concave measures and the connection the SBA has
with the Hyperplane conjecture for such measures, there are some important examples
of isotropic, log-concave random vectors that are known to satisfy the SBA with an
absolute constant:

• If X is also 1-unconditional (see [20], section 8.2);

• If X is also subgaussian ([2, 3]);

• If X is also supergaussian (this follows from results of [23]).

B Proof of Remark 1.12

The proof requires some additional notation. Let X be a random vector in R
n and let p ≥ 1.

The Zp body of X is defined as the (centrally-symmetric) convex body whose support function
is

hZp(X)(θ) = (E| 〈X, θ〉 |p)
1
p , θ ∈ Sn−1. (B.1)

It is straightforward to verify that if T : Rn → R
m is a linear operator then

Zp(TX) = TZp(X). (B.2)
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Lemma B.1. There are absolute constants c1 and c2 for which the following holds. Let X be
a centred log-concave random vector in R

n that satisfies the SBA with constant L. For any
T ∈ GLn and F ∈ Gn,k one has

c1

|det[(PFT )(PFT )∗]| 1
2k

≤ f
1
k
PFTX(0) ≤ c2L

(det[(PFT )(PFT )∗])
1
2k

, (B.3)

where the left-hand side holds true under the additional assumption that X is isotropic.

The proof of Lemma B.1 is based on two facts. The first is a standard observation from
linear algebra: let T : Rn → R

k, set E = ker(T )⊥ = im(T ∗) and denote by T |E the restriction
of T to E. Then for any compact set K ⊂ R

n,

vol(TK) = det(TT ∗) · vol(PEK). (B.4)

The second observation is Proposition 3.7 from [24]: If X is a centred, log-concave random
vector then

f
1
n
X (0) ∼ vol−

1
n (Zn(X)). (B.5)

Proof of Lemma B.1. By the Prekopá-Leindler inequality, for every linear operator S, the
random vector SX is also log-concave and centred. Hence, using (B.2), (B.5) and (B.4), it is
evident that

f
1
k
PFTX(0) ∼ (vol(Zk(PFTX)))−

1
k ∼ (vol(PFTZk(X)))−

1
k

∼ 1

(det[(PFT )(PFT )∗])
1
2k

(vol(PEZk(X)))−
1
k ∼ 1

(det[(PFT )(PFT )∗])
1
2k

(vol(Zk(PEX)))−
1
k

∼
f

1
k
PEX(0)

(det[(PFT )(PFT )∗])
1
2k

.

Clearly, f
1
k
PEX(0) ≤ L, which proved the right-hand side inequality in (B.3). Moreover if X is

an isotropic log-concave random vector in R
n then f

1
n
X (0) ≥ c, where c is an absolute constant

(see, e.g. [1]). And since PFX is also isotropic when X is, the left-hand side inequality in
(B.3) follows.

Combining (B.3) and (2.1) it is evident that:

Proposition B.2. There are absolute constants c1 and c2 for which the following holds. Let
X be an isotropic log-concave random vector in R

n that satisfies the SBA with constant L
and let T : Rn → R

m be a linear operator. Then

(

E‖TG/(c2L)‖−k
2

)− 1
k ≤

(

E‖TX‖−k
2

)− 1
k ≤

(

E‖TG/c1‖−k
2

)− 1
k
. (B.6)
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