
Low M �-estimates on oordinatesubspaesA. Giannopoulos and V.D. MilmanAbstratLet K be a symmetri onvex body in Rn . It is well-known that for every� 2 (0; 1) there exists a subspae F of Rn with dimF = [(1� �)n℄ suh that(�) PF (K) � p�MK Dn \ F;where PF denotes the orthogonal projetion onto F . Consider a �xed o-ordinate system in Rn . We study the question whether an analogue of (�)an be obtained when one is restrited to hoose F among the oordinatesubspaes R� ; � � f1; : : : ; ng, with j�j = [(1��)n℄. We prove several \oor-dinate versions" of (�) in terms of the otype-2 onstant, of the volume ratioand other parameters of K. The basi soure of our estimates is an exatoordinate analogue of (�) in the ellipsoidal ase. Appliations to the om-putation of the number of lattie points inside a onvex body are onsideredthroughout the paper.1 IntrodutionNotation. Our setting is Rn equipped with an inner produt h:; :i and the assoiatedEulidean norm de�ned by jxj = hx; xi1=2; x 2 Rn . We denote the Eulidean unitball and the unit sphere by Dn and Sn�1 respetively, and we write � for therotationally invariant probability measure on Sn�1.Let K be a symmetri onvex body in Rn . Then, K indues in a natural waya norm k:kK on Rn . In what follows we shall denote by XK the normed spae(Rn ; k:kK). As usual, Ko = fy 2 Rn : hy; xi � 1 for every x 2 Kg is the polar bodyof K, and XKo = (Rn ; k:kKo) is the dual spae of XK .Finally, we onsider the integral parametersM =MK = �ZSn�1 kxk2K �(dx)�1=2 ; M� =MKo = �ZSn�1 kxk2Ko �(dx)�1=2 ;1



whih are up to a onstant the mean widths of Ko and K respetively.Results. The following inequality of the seond named author plays an impor-tant role in developing a proportional theory of high-dimensional onvex bodies:Theorem A (Low M�-estimate). There exists a funtion f : (0; 1) ! R+ suhthat for every symmetri onvex body K in Rn and for every � 2 (0; 1) one an �nda subspae F of Rn with dimF = [(1� �)n℄ satisfying(1:1) kxkK � f(�)MKo jxj ; x 2 F:Theorem A was originally proved in [M1℄ and a seond proof using the isoperi-metri inequality on Sn�1 was given in [M2℄ where it was shown that (1.1) holdswith f(�) � � for some absolute onstant  > 0 (and with an estimate f(�) �� + o(1 � �) as � ! 1�). This was later improved to f(�) � p� in [PT℄, see also[M3℄ for a di�erent proof with this best possible p�-dependene. Finally, it wasproved in [Go℄ that one an have(1:2) f(�) � p�(1 +O( 1�n )):Moreover, if we �x some � 2 (0; 1) and onsider the Grassmannian manifoldGn;k of all k-dimensional subspaes of Rn , where k = k(�; n) = [(1��)n℄, equippedwith the Haar probability measure �n;k, then (1.1) holds true with f(�) � p� forall subspaes F in a subset An;k of Gn;k whih is of almost full measure �n;k(An;k)as n!1.Interhanging the roles of K and Ko, we may equivalently read Theorem A inthe following geometri form:(1:3) PF (K) � p�MK Dn \ F;where PF denotes the orthogonal projetion onto F . In this paper we will follow thetradition and ontinue alling an inlusion of the type (1.3) a \low M�-estimate"(for Ko).Among other appliations of (1.3), let us mention the quotient of subspaetheorem and the reverse Santal�o inequality [M1℄, [BM℄.Let fe1; : : : ; eng be an arbitrary but �xed orthonormal basis of Rn with respetto h:; :i. For a subset � � f1; : : : ; ng we naturally de�ne the oordinate subspaeR� = fx 2 Rn : hx; eji = 0 if j =2 �g. We write D� for Dn\R� and Q� for the unitube Qn \ R� = [�1; 1℄� in R� .Our purpose is to disuss \low M�-estimates" in the form (1.3) when one isrestrited to hoose F among the oordinate subspaes of Rn of a ertain dimensionm proportional to n. 2



In Setion 2 we study the ase of an ellipsoid E in Rn . It turns out that for anyorthonormal basis of Rn one has results analogous to (1.3) with almost the samep�-dependene on the parameter �:Theorem B (Coordinate low M�-estimate for ellipsoids). Let E be an ellipsoid inRn and � 2 (0; 1). Then, there exists � � f1; : : : ; ng; j�j � (1� �)n, withP�(E) � p�log1=2( 2� )ME D�;where P� denotes the orthogonal projetion onto R� , and  > 0 is an absoluteonstant.It is perhaps surprising that this type of geometri result about ellipsoids isnew and non-trivial. Note that our investigation of these questions was startedfrom a simpler fat of the same nature about a speial lass of ellipsoids, whih wasdisovered in [Gi℄.It an be heked that Theorem B is optimal apart from the logarithmi term(see Remark 2.5). A result of the same type an be proved for an ellipsoid E ofsmaller but suÆiently large dimension living in an arbitrary subspae F of Rn(Theorem 2.3). We also onsider the orresponding problem for setions (insteadof projetions) of E with oordinate subspaes (Theorem 2.4).Simple examples show that one annot ahieve the same strong estimate in fullgenerality: for an arbitrary symmetri onvex bodyK and an arbitrary orthonormalbasis in Rn . Consider e.g the ase of the unit ube Qn and the standard basis ofRn : observe that MQn ' plogn=n, while the radius of the largest Eulidean ballontained in any oordinate projetion of Qn is 1. In Setion 3 we give a generallow M�-estimate in terms of the otype-2 onstant CK of XK :Theorem C (M�-estimate in terms of CK). For an arbitrary symmetri onvexbody K in Rn and for any � 2 (0; 1), one an �nd � � f1; : : : ; ng, j�j � (1 � �)n,satisfying P�(K) � 1�log2( 2� )h(CK)MK D� ;where h(y) = y log 2y; y � 1, and 1 > 0 is an absolute onstant.Let us note that one an give a simpler argument, based on the isomorphiSauer-Shelah lemma of S.J. Szarek and M. Talagrand and a fatorization theoremof B. Maurey, whih results in a weaker estimate of the same type (we sketh it inRemark 3.6). We also obtain results of the same nature in whih MK is replaedby various other \volumi" parameters of K or Ko (see Remark 3.7).In Setion 4 we give a general low M�-estimate in terms of the volume ratiovr(K) of K:
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Theorem D (M�-estimate in terms of vr(K)). Let K be a symmetri onvex bodyin Rn . For every � 2 (0; 1), there exists � � f1; : : : ; ng; j�j � (1� �)n, suh thatP�(K) � 1[2vr(K)℄ 3 log( 2� )� MK D�;where 2; 3 > 0 are absolute onstants.In Setions 5 and 6 we give some further appliations of the low M�-estimatefor ellipsoids. We demonstrate an exat dependene between oordinate setions ofan ellipsoid and its polar in the spirit of [M5℄. We also apply Theorems 2.2 and 2.4to questions related to the number of integer or \almost integer" points inside anellipsoid.Reall that the otype-2 onstant CK of XK is the smallest onstant � > 0 forwhih 0�Ave"j=�1k mXj=1 "jxjk2K1A1=2 � 1� 0� mXj=1 kxjk2K1A1=2holds for all hoies of m 2 N and fxjgj�m in XK . We refer to [MS℄ and [TJ℄for basi fats about type, otype and p-summing operators whih are used below.The letter  will always denote an absolute positive onstant, not neessarily thesame in all its ourrenes. By j:j we denote the ardinality of a �nite set, volumeof appropriate dimension, and the Eulidean norm (this will ause no onfusion).Aknowledgement: This work was initiated while both authors were visitingthe Institute for Advaned Study and was ompleted at the Mathematial SienesResearh Institute.2 Ellipsoidal aseIn this Setion we onsider the ase of an arbitrary ellipsoid E in Rn . There existsa linear isomorphism T : Rn ! Rn suh that T (E) = Dn. It will be onvenient forus to write E in the form(2:1) E = fx = nXj=1 xjej 2 Rn : j nXj=1 xjuj j � 1g;where uj = T (ej); j = 1; : : : ; n. Writing E in this way, we an easily express MEin terms of the uj 's as follows:(2:2) ME = �ZSn�1 kxk2T�1(Dn) �(dx)�1=2 = 0�ZSn�1 j nXj=1 xjuj j2 �(dx)1A1=2
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= 0� 1n nXj=1 juj j21A1=2 :Under the extra assumption that juj j � 1; j = 1; : : : ; n, an estimate for oor-dinate projetions of E was given in [Gi℄ in onnetion with the problems of theBanah-Mazur distane to the ube and the proportional Dvoretzky-Rogers fa-torization. Its proof ombines the struture of the ellipsoid with the well-knownSauer-Shelah lemma and fatorization arguments analogous to the ones in [BT,Theorem 1.2℄:Lemma 2.1. Let E� = fx =Pj2� xjej 2 R� : jPj2� xjuj j � 1g, where uj 2 Rn ,j 2 � , with juj j � 1. Then, for every � 2 (0; 1) there exists � � �; j�j � (1� �)j� j,suh that P�(E� ) � p� D�;where  > 0 is an absolute onstant. 2One more step is needed in order to obtain a low M�-estimate for oordinatesubspaes in the ellipsoidal ase:Theorem 2.2. Let E be an ellipsoid in Rn . For every � 2 (0; 1) there exists asubset � of f1; : : : ; ng with j�j � (1� �)n, suh thatP�(E) � p�log1=2( 2� )ME D�;where  > 0 is an absolute onstant.Proof: We write E in the form (2.1) and assume as we may that ME = 1. If� = fj � n : juj j � p2=�g, then by (2.2) we have 2j�j=� �Pj�n juj j2 = n, henej�j � �n=2. Consider the sets of indies:�0 = fj � n : juj j � 1g,�k = fj � n : ek�1 < juj j � ekg; k � 1.If k0 = [log(p2=�)℄ + 1, we have jS0�k�k0 �k j � n� j�j � (1� �2 )n.We de�ne �k = �n2 ek=pj�kjPk ekpj�kj for all k � k0 with �k 6= ;, and onsider the setI = fk � k0 : �k 6= ; and �k < 1g. For eah k 2 I we an apply Lemma 2.1 for theellipsoid E�k = E \ R�k to �nd �k � �k with j�kj � (1� �k)j�kj suh that(2:3) P�k (E�k) � 1p�kek D�k ;where 1 is the onstant from Lemma 2.1. Finally, we set � = Sk2I �k. Note thatthe above hoie of �k's implies thatj k0[k=0 �kj � j�j � k0Xk=0 �kj�kj = �n2 ;5



and therefore, j�j � (1� �)n.Suppose that w 2 D�. If we write w =Pk2I wk, where wk = P�k(w), then by(2.3),(2:4) w 2 11 Xk2I jwkj ekp�k P�k(E \ R�k ) � 11  Xk2I jwkj ekp�k!P�(E);and sine w 2 D� was arbitrary, an appliation of the Cauhy-Shwartz inequalityshows that(2:5) D� � 11  Xk2I e2k�k !1=2 P�(E):Inserting our �k's in the sum above, we onlude that(2:6) D� � 12p�n  k0Xk=0 ekpj�k j!P�(E):It remains to give an upper bound for the sumPk�k0 ekpj�k j: to this end, notethat for k = 1; : : : ; k0, we have j�kje2k�2 � Pj2�k juj j2 � n and thus ekpj�kj �epn for k = 1; : : : ; k0 whih allows a �rst upper bound of the order of k0pn.We partition the set of indies f0; 1; : : : ; k0g setting'0 = fk � k0 : j�k j � 1k0 ne2k�2 g,'s = fk � k0 : es�1k0 ne2k�2 < j�kj � esk0 ne2k�2 g; s � 1:If s0 = [log k0℄+ 2, we have S0�s�s0 's = f0; 1; : : : ; k0g, and for every s = 1; : : : ; s0we easily hek thatj'sjes�1k0 ne2k�2 e2k�2 � Xk2's Xj2�k juj j2 � n;whih means that(2:7) j'sj � k0es�1 ;for all s � s0. By the de�nition of 's and by (2.7), we an now estimate the sumin (2.6) as follows:(2:8) k0Xk=0 ekpj�kj = s0Xs=0 Xk2's ekpj�kj � s0Xs=0 j'sjekes=2pnpk0ek�1� epnpk0 s0Xs=0 k0es�1 es=2 � e2( 1Xs=0 e�s=2)pnpk0 � 3pk0pn:6



Therefore, (2.6) beomes(2:9) D� � 14p�pk0P�(E);whih ompletes the proof, sine k0 ' log(2=�) and we had assumed that ME = 1.2 We proeed to prove an extension of Theorem 2.2 onerning the ase where Eis an ellipsoid of dimension m < n living in an arbitrary m-dimensional subspae Fof Rn . If m is proportional to n, with m=n suÆiently lose to 1, then we still haveoordinate projetions of E of large dimension ontaining large Eulidean balls.This result will be useful for our treatment of the general ase in Setions 3 and 4:Theorem 2.3. Let " 2 (0; 1) and F be a subspae of Rn with dimF = m � (1�")n.Then, for every non-degenerate ellipsoid E in F and for every � 2 [1" log( 2" ); 1)there exists � � f1; : : : ; ng with j�j � (1� �)n, suh thatP�(E) � p�2p2 log1=2( 2� )ME D� ;where  is the onstant from Theorem 2.2 and 1 = maxf 82 ; 1log 2g.Proof: Suppose that an ellipsoid E is given in F . We an �nd an orthonormalbasis fw1; : : : ; wmg of F and �1; : : : ; �m > 0 suh thatE = fx 2 F : mXj=1 hx;wji2�2j � 1g:We extend to an orthonormal basis fwjgj�n of Rn and onsider the ellipsoidE0 = fx 2 Rn : mXj=1 hx;wji2�2j + nXj=m+1 hx;wji2b2 � 1g;where b = p"=ME. It is easy to hek that(2:10) M2E0 = 1n 24 mXj=1 1�2j + n�mb2 35 = mM2E + (n�m)M2E="n � 2M2E:Let � 2 [1" log( 2" ); 1). Applying Theorem 2.2 for E0 and taking into aount(2.10), we �nd � � f1; : : : ; ng with j�j � (1� �)n for whih(2:11) P�(E0) � p�p2 log1=2(2=�)ME D�:7



Sine � � 1" log( 2" ) and the funtion �= log( 2� ) is inreasing on (0,1), one aneasily hek that(2:12) p�p2 log1=2( 2� ) � 2p":On the other hand, we learly have E0 � E+bDn and hene P�(E0) � P�(E)+bD�. Combining this with (2.11) and (2.12) we onlude that(2:13) p�p2 log1=2( 2� )ME D� � P�(E) + 12 p�p2 log1=2( 2� )ME D�:Claim: If A and B are onvex symmetri bodies in R� and A � B + 12A, thenA � 2B.[One easily heks that A � (1 + 12 + : : : + 12k )B + 12kA and the laim followsby letting k !1.℄Our laim and (2.13) imply thatP�(E) � 2p2 p�log1=2( 2� )ME D� ;and the proof of the theorem is omplete. 2Our next result onerns oordinate setions of ellipsoids: again, we are inter-ested in �nding large balls ontained in them. Using a result of [AM℄ whih wasreently improved in [T℄ (in our ase eah of them works equally well), we an givean essentially optimal answer to this question when the dimension of the oordinatesetions is small (of order roughly not exeeding pn):Theorem 2.4. Let E be an ellipsoid in Rn . For every m � pn we an �nd asubset � of f1; : : : ; ng of ardinality j�j = m, suh thatE \ R� � 0pmME D� :In the statement above,  and 0 are absolute positive onstants.Proof: We write E in the form (2.1). As a onsequene of (2.2), observe that forevery s � n the following identity holds:(2:14) Avej� j=sM2E\R� = ��n� 1s� 1�=�ns�� 1s nXj=1 juj j2 =M2E ;where the average is over all � � f1; : : : ; ng with j� j = s. This means in partiularthat for every s � n we an �nd � with j� j = s for whih ME\R� �ME.8



Assume that m � pn is given, where  > 0 is an absolute onstant to behosen. We hoose s = [m22 ℄ and �nd � with j� j = s and ME\R� � ME. Observethat Ave"j=�1kXj2' "jejkE �pj� jME\R� �pj� jME :Hene, if  is small enough, the results of [AM℄ or [T℄ allow us to �nd ' � �with j'j = 2m suh that(2:15) kXj2' "jejkE � 1pj� jME ;for all ("j)j2' 2 f�1; 1g', where 1 is a positive absolute onstant. In other words,the oordinate setion of E by R' satis�es(2:16) E \ R' � 11pj� jME Q':This means that the identity operator id : `'1 ! XE \ R' has norm kidk �1pj� jME , and this implies that �2(id) � 1KGpj� jME whereKG is Grothendiek'sonstant. Applying Pieth's fatorization theorem we an �nd (�i)i2'; Pi2' �2i =1:(2:17) kXi2' tieikE � 1KGpj� jME 0�Xi2' �2i t2i1A1=2for every hoie of reals (ti)i2'. By Markov's inequality, we �nd �1 � ', j�1j �j'j=2 � m, suh that j�ij � p2pj'j for all i 2 �1. Then, for any (ti)i2�1 we have(2:18) kXi2�1 tieikE � 1KGpj� jME p2pj'j  Xi2�1 t2i!1=2 :The hoie of j� j and j'j shows that(2:19) E \ R�1 � 0pmME D�1 ;for some absolute onstant 0 > 0, and we onlude the proof by hoosing any� � �1 of ardinality j�j = m. 2Remark 2.5. An iteration of the argument above shows that one an extend therange ofm's for whih Theorem 2.4 holds to e.g the set f1; : : : ; [pn℄g, with some lossin the onstant 0. The dependene on m is sharp as it an be seen by the followingexample: onsider the ellipsoid E = f(tj)j�n 2 Rn : jP tjuj jn+1 � 1g; whereuj = ej + en+1; j = 1; : : : ; n, and fejgj�n+1 is the standard orthonormal basis in9



Rn+1 . Given any � � f1; : : : ; ng with j�j = m, we have that ( tpm ; : : : ; tpm ) 2 E\R�preisely when (1 +m)t2 � 1. In partiular, we must have jtj � 1pm . This meansthat the largest ball ontained in E \ R� annot have radius larger than 1pm . Onthe other hand, observe that ME = p2.The same example shows that the estimate in Theorem 2.2 is best possible apartfrom the log1=2( 2� ) term. By Lemma 2.1, this logarithmi term an be removed ifall the uj 's are of about the same Eulidean norm.3 General ase: estimate in terms of the otype-2onstantIn this Setion we study the general ase, that is K is an arbitrary symmetrionvex body in Rn , and fejgj�n is a �xed orthonormal basis. We shall make useof the maximal volume ellipsoid E of K and of the better information we have foroordinate projetions of ellipsoids. For this purpose we will also need an estimatefor the parametersAm(K) = supf(jK\F j=jE\F j)1=m : dimF = mg; m = 1; : : : ; n.It was proved in [BM℄ that the volume ratio vr(K) = (jKj=jEj)1=n of K isbounded by f(CK) = CK [logCK ℄4, with the power of logCK improved to 1 in[MiP℄. A third proof of the same fat is given in [M4℄, where it is also shown thatvr(K) � h(CK), where h(y) = y log 2y, y � 1, and  > 0 is an absolute onstant.Our �rst lemma is a modi�ation of the argument presented in [M4℄ whih providesan estimate for Am(K);m � n, in terms of CK :Lemma 3.1. Let K be a symmetri onvex body in Rn , and E be the maximalvolume ellipsoid of K. If F is an m-dimensional subspae of Rn , then� jK \ F jjE \ F j�1=m � h(pn=mCK);where h(y) = y log 2y, y � 1.Proof: We may learly assume that E = Dn. The proof will be based on aniteration sheme, analogous to the one in [M4℄.We set K0 = K, �0 = n, �0 = n, and for j = 1; 2; : : : we de�ne:(i) �j = log�j�1 = log(j) n, the j-iterated logarithm of n,(ii) �j = �jM(Kj�1\F )o ,(iii) Kj = K \ �jDn.Note that for every j the maximal volume ellipsoid of Kj is Dn. Also, CKj �2CK and d(XKj ; `n2 ) � �j . By Sudakov's inequality [Su℄, [P1℄ the overing numberof Kj�1 \ F by �jDn \ F an be estimated as follows:N(Kj�1 \ F; �jDn \ F ) = N � exp(1mM2(Kj�1\F )o=�2j ) = exp(1m=�2j );10



and sine, by Brunn's theorem, jKj�1\(x+�jDn\F )j � jKj�1\�jDn\F j; x 2 F;we have jKj�1 \ F j � N jKj \ F j and hene(3:1) jKj�1 \ F j1=m � exp( 1�2j ) jKj \ F j1=m:By well-known results of [DMT℄, [MP℄, and [P2℄ we have the string of inequal-itiesM(Kj\F )o � 2r nmMKoj � 3r nmT2(XKoj ) � 4r nmCKj log(2d(XKj ; `n2 ))and therefore M(Kj\F )o � 24r nmCK log(2�j):It follows that the sequene f�jgj�0 satis�es the relation(3:2) �j+1 � 24r nmCK�j log(2�j):We stop this proedure at the smallest t for whih �t < 64. Indution and(3.2) show that(3:3) �t � 3624r nmCK �log(r nmCK) + 64� � 0h(pn=mCK):By (3.1) we see that(3:4) jK \ F j1=m � jKt \ F j1=m exp(1[ 1�21 + : : :+ 1�2t ℄) � 00jKt \ F j1=m;sineP 1�2j is easily seen to be uniformly bounded. Taking into aount (3.3), (3.4)and the Blashke-Santal�o inequality we onlude that(3:5) � jK \ F jjDn \ F j�1=m � 00� jDn \ F jj(Kt \ F )oj�1=m � 00M(Kt\F )o� 2400r nmCK log(20h(pn=mCK)) � h(pn=mCK): 2Simple examples (see Remark 3.3) show that one annot ompareMK and MEeven if CK is small: the only estimate one an give is that ME � pnMK , whih isa diret onsequene of the fat that K � pnE by John's theorem. However, thereexist subspaes F of Rn of proportional dimension on whih we an ompare MKwith ME\F reasonably well: 11



Lemma 3.2. Let E be the maximal volume ellipsoid of K. For every " 2 (0; 1)there exists a subspae F of Rn with dimF = m � (1� ")n suh thatME\F � h(CK) log( 2" )p" MK ;where h(y) = y log 2y; y � 1, and  > 0 is an absolute onstant.Proof: Let fw1; : : : ; wng be an orthonormal basis of Rn and �1 � : : : � �n > 0suh that E = fx 2 Rn : nXj=1 hx;wji2�2j � 1g:For k = 1; : : : ; n, set Wk = spanfwk; : : : ; wng. By Lemma 3.1 we have(3:6) � jK \WkjjE \Wkj� 1n�k+1 � 1h(r nn� k + 1CK):Note that E \Wk � �k(Dn \Wk), and hene(3:7) � jK \WkjjE \Wkj� 1n�k+1 � 1�k � jK \Wk jjDn \Wkj� 1n�k+1� 1�kMK\Wk � 12�kq nn�k+1MK :Combining (3.6), (3.7) we obtain(3:8) 1�k � 12r nn� k + 1h(r nn� k + 1CK)MK ; k = 1; : : : ; n:Given " 2 (0; 1), let m = [(1� ")n℄ and set Fm = spanfw1; : : : ; wmg. By (3.8)we an estimate ME\Fm as follows:(3:9) ME\Fm =  1m mXk=1 1�2k!1=2� 12CKMK " mXk=1 n2m(n� k + 1)2 log2(2r nn� k + 1CK)#1=2� 12CK log(2r nn�mCK)r nn�mMK � h(CK) log( 2" )p" MK : 2Remark 3.3. The estimate (3.9) is essentially sharp, even if CK is small: tosee this, onsider the lass of bodies K = K(a; b; s) = fx 2 Rn : Pj�s jxjja +12



Pj>s jxjjb � 1g, where a; b are positive parameters and s 2 f0; 1; : : : ; n � 1g. Itis lear that the ellipsoid of maximal volume in K is E = E(a; b; s) = fx 2 Rn :Pj�s jxjj2a2 +Pj>s jxjj2b2 � 1g. It is also lear that both the otype-2 onstant andthe volume ratio of K are uniformly bounded (independently of n; s; a and b).Given " 2 (0; 1), hoose b = ap", s = m = (1 � ")n. Then, it is easy to hekthat MK ' pnp"=a, while ME\Fm ' pn=a.Also, we an have the ratio ME=MK as lose to pn as we like: hoose, forexample, s = n� 1 and b = an�1 . Then, MK ' 1=pnb while ME ' 1=b.Combining Theorem 2.3 and Lemma 3.2 we prove our M�-estimate in terms ofthe otype-2 onstant of XK :Theorem 3.4. Let K be a symmetri onvex body in Rn , and XK = (Rn ; k:kK).For every � 2 (0; 1) there exists � � f1; : : : ; ng; j�j � (1� �)n, suh thatP�(K) � �log2( 2� )h(CK)MK D� ;where h(y) = y log 2y; y � 1, and  > 0 is an absolute onstant.Proof: Let E be the maximal volume ellipsoid ofK, and set " = "(�) = �=2 log( 2� ),where 2 > 0 is a onstant to be hosen. By Lemma 3.2 we an �nd a subspae Fof Rn with dimF � (1� ")n suh that(3:10) ME\F � 3h(CK) log( 2" )p" MK :Observe that if 2 is large enough, then � � 1" log( 2" ) where 1 is the onstantin Theorem 2.3. Thus, we an apply Theorem 2.3 for E \ F to �nd � � f1; : : : ; ngwith j�j � (1� �)n for whih(3:11) P�(E \ F ) � p�2p2 log1=2( 2� )ME\F D� :Combining (3.10) with (3.11) we �nish the proof. 2Remark 3.5. It should be noted that the estimate given by Theorem 3.4 is exatnot only when CK is small (like e.g in the ellipsoidal ase), but in the whole range[1;pn℄ of possible values of CK i.e even if CK is extremely large. This an be easilyseen if one onsiders the ase of Bnp ; p > 2, the unit ball of `np , and the standardoordinate system in Rn . Fix for example � = 12 . Then, the radius of the largestEulidean ball insribed in any [n2 ℄-dimensional oordinate projetion of Bnp is 1,and the well-known estimates for CBnp and MBnp show that Theorem 3.4 is sharpapart from logarithmi terms. We do not know if the \almost linear" dependene13



on � whih our method provides is optimal. However, the ellipsoidal ase showsthat p� dependene is the best one might hope for.Remark 3.6. One an give a weaker estimate, analogous to the one obtained inTheorem 3.4, using the isomorphi Sauer-Shelah lemma of Szarek-Talagrand [ST℄and a fatorization result of Maurey [Ma℄ (see also [TJ℄). Starting with the bodyK and the orthonormal basis fejgj�n, we have the inequalityAve"j=�1k nXj=1 "jejkK � pnMK ;and therefore, by Markov's inequality we an �nd A � f�1; 1gn of ardinalityjAj � 2n�1 suh that kP "jejkK � 2MKpn whenever " = ("1; : : : ; "n) 2 A. If weview A as a set of points in Rn , this means that A � 2MKpnK. On the otherhand, the isomorphi Sauer-Shelah lemma shows that for some absolute onstant1 > 0 and for every � 2 (0; 1) there exists � � f1; : : : ; ng, j�j � (1 � �2 )n, witho(P�(A) � 1 �2Q�, and heneP�(K) � 1�4MKpn Q�:It follows that if Y = (R�1 ; k:kKo), then id : `�11 ! Y � has norm kidk � 4MKpn1� ,and Maurey's theorem shows that�2(id) � 2MKpn� g(Y �);where g(Y �) = CY �p1 + log(CY �). Then, we an apply Pieth's fatorizationtheorem in the ontext of [BT, Theorem 1.2℄ to �nd � � �1 with j�j � (1� �2 )j�1j �(1� �)n for whih  Xi2� t2i!1=2 � 3MKg(Y �)�3=2 kXi2� tieikKois true for all (ti)i2� . Taking polars in R� and using the fat that CY � � 4CKkRadXKk,we onlude that P�(K) � �3=2f(K)MK D�;where  > 0 is an absolute onstant, and f(K) = CKkRadXKkp1 + log(CKkRadXKk).Remark 3.7. One an modify the proof of Theorem 3.6 to give analogous estimatesin whih MK is replaed by other \volumi" parameters of K or Ko.Consider e.g the sequene of volume numbers of Ko(3:12) vs(Ko) = maxf(jPF (Ko)j=jDn \ F j)1=s : dimF = sg;14



where s = 1; : : : ; n. As a onsequene of the Aleksandrov-Fenhel inequalities, onean easily see that fvs(Ko)gs�n is non inreasing (see [P1℄):(3:13) v1(Ko) � v2(Ko) � : : : � vn(Ko) = v:rad(Ko):Let K be a symmetri onvex body in Rn and let E be the ellipsoid of maximalvolume in K as in Lemma 3.4. Using the inverse Santal�o inequality in (3.6), (3.7)we get(3:14) 1�k � � jDn \Wk jjK \Wkj � 1n�k+1 � jK \WkjjE \Wkj� 1n�k+1� � jPWk (Ko)jjDn \Wkj� 1n�k+1 1h(r nn� k + 1CK)for k = 1; : : : ; n. By the de�nition (3.11) of vn�k+1(Ko) this means that(3:15) 1�k � 2h(CK)vn�k+1(Ko)r nn� k + 1 log(2r nn� k + 1):Inserting this estimate in (3.9) we obtain:(3:16) M2E\Fm = 1m mXk=1 1�2k � 22h2(CK) log2( 2nn�m+1)m mXk=1 nn� k + 1v2n�k+1(Ko):The monotoniity of volume numbers shows that vn�k+1(Ko) � vn�m+1(Ko); k =1; : : : ;m, and ombining with the fat thatmXk=1 nn� k + 1 � n log( nn�m )we arrive at(3:17) ME\Fm � nm h(CK)vn�m+1(Ko) log3=2( 2nn�m):Set m = [(1� �)n℄. Then, (3.17) an be rewritten asME\Fm � 0h(CK)v[�n℄(Ko) log3=2(2� );and, using Theorem 2.3 exatly as in the proof of Theorem 3.4, we an �nd � �f1; : : : ; ng with j�j � (1� 1� log( 2� ))n for whih(3:18) P�(K) � p�log3=2( 2� )v[�n℄(Ko)h(CK) D�:A similar argument shows that for some � of the same ardinality we have(3:19) P�(K) � p�w[�n℄(K)log3=2( 2� )h(CK) D�;where ws(K) = minf(jK \ F j=jDn \ F j)1=s : dimF = sg; s = 1; : : : ; n.15



4 General ase: estimate in terms of the volumeratioIn this Setion we use the volume ratio vr(K) of K instead of the otype-2 onstantof XK as a parameter for our lowM�-estimate. Let E be the maximal volume ellip-soid of K. We start with a lemma whih estimates the overing number N(K;E) interms of the volume ratio vr(K) = (jKj=jEj)1=n. Our proof is based on Lemma 4.4from [MS2℄, atually the argument given there leads to a stronger estimate, but weinlude a simple proof of what we need here for the sake of ompleteness. Reall thatN(K;L) is the smallest natural number N for whih there exist x1; : : : ; xN 2 Rnwith K � Si�N (xi + L):Lemma 4.1. Let K and L be two symmetri onvex bodies in Rn suh that L � K.Then, N(K;L) � n jKjjLj ;where  > 0 is an absolute onstant.Proof: Consider a set N of points in K suh that kx� x0kL � 1 for every x; x0 2N; x 6= x0, whih has the maximal possible ardinality. Observe that the sets23x + L3 ; x 2 N have disjoint interiors and, sine L � K, they are all ontained inK. We easily dedue that(4:1) jN j � 3n jKjjLj :Finally, it is lear that K � Sx2N (x+ L), whih ompletes the proof. 2Suppose that K is any symmetri onvex body in Rn and E is the ellipsoid ofmaximal volume in K. The analogue of Lemma 3.2 in the \volume ratio" formula-tion is the following:Lemma 4.2. Let E be the maximal volume ellipsoid of K. For every " 2 (0; 1)there exists a subspae F of Rn with dimF = m � (1� ")n, suh thatME\F � [ vr(K)℄1="MK ;where  > 0 is an absolute onstant.Proof: As in the proof of Lemma 3.2, letE = fx 2 Rn : nXj=1 hx;wji2�2j � 1g;where fw1; : : : ; wng is an orthonormal basis of Rn and �1 � : : : � �n > 0. Fixk 2 f1; : : : ; ng and onsider the subspae Wk = spanfwk; : : : ; wng. Aording to16



Lemma 4.1, we an �nd x1; : : : ; xN 2 K suh that N = N(K;E) � [1vr(K)℄n andK � S(xi +E). Projet all the (xi +E)'s onto Wk. Then,(4:2) K \Wk � PWk (K) � [j�N PWk (xj +E) = [j�N(PWk (xi) +E \Wk);and hene, N(K \Wk; E \Wk) � N(K;E). Thus, we an estimate the ratio of thevolumes of K \Wk and E \Wk using (4.2):(4:3) � jK \WkjjE \Wkj� 1n�k+1 � [N(K;E)℄ 1n�k+1 � [1vr(K)℄ nn�k+1 :Combining with (3.7) we get(4:4) 1�k � 2r nn� k + 1 [1vr(K)℄ nn�k+1MK ; k = 1; : : : ; n:We ontinue as in Lemma 3.2: Given any " 2 (0; 1), we onsider the �rst m forwhih m � (1 � ")n and set Fm = spanfw1; : : : ; wmg. In view of (4.5) we anompare ME\Fm with MK as follows:(4:5) ME\Fm =  1m mXk=1 1�2k! 12� 2MK  mXk=1 nm(n� k + 1) [1vr(K)℄ 2nn�k+1! 12�MK [3vr(K)℄ nn�m+1r nm log1=2( nn�m);and the lemma follows with the observation that log(1=")1�" ! 1 as "! 1�. 2Remark 4.3. By well-known results of S.J. Szarek and N. Tomzak-Jaegermann(see [Sz℄, [STJ℄) whih were extending previous work of Kashin, if E is the maximalvolume ellipsoid of K, then for every k = 1; : : : ; n � 1 there exist k-dimensionalsubspaes F of Rn for whih E\F � K\F � ( vr(K)) nn�kE\F , and this obviouslyimplies that ME\F � [ vr(K)℄ nn�kMK\F . This leads to the same estimate as inLemma 4.2 above, atually if E = Dn this is true for all subspaes F in a subsetA of Gn;k with almost full measure �n;k(A) > 1� 2�n. The argument provided byLemmata 4.1 and 4.2 gives a onrete example of a subspae on whih the weaker\ME\F and MK\F " omparison is true: it an be hosen as the k-dimensionalsubspae whih is oordinate with respet to E and orresponds to the k largestsemiaxes of E. If E = Dn, then this weak omparison is true for all F 2 Gn;k.Combining Lemma 4.2 with Theorem 2.3 we prove our volume-ratio result:17



Theorem 4.4. Let K be a symmetri onvex body in Rn . For every � 2 (0; 1)there exists � � f1; : : : ; ng; j�j � (1� �)n, suh thatP�(K) � 1[1vr(K)℄ 2 log( 2� )� MK D�;where 1; 2 are absolute positive onstants.Proof: Let E be the maximal volume ellipsoid of K, and set " = "(�) = �2 log( 2� ) ,where 2 > 0 is a onstant to be hosen. Using Lemma 4.2 we �nd a subspae F ofRn with dimF � (1� ")n suh that(4:6) ME\F � [4vr(K)℄1="MK :If 2 is large enough, we easily hek that � � 1" log( 2" ) where 1 is the onstant inTheorem 2.3. We an therefore apply Theorem 2.3 for E \F to �nd � � f1; : : : ; ngwith j�j � (1� �)n, suh that(4:7) P�(E \ F ) � p�2p2 log1=2( 2� )ME\F D� :Combining (4.6) with (4.7) we onlude the proof. 2For lasses of spaes with uniformly bounded volume ratio, Theorem 4.3 givesan optimal answer as long as, say, � � 12 . The estimate obtained \explodes" ifvr(K) is large or if � is needed to be lose to 0.5 Linear duality relations for oordinate setionsof ellipsoidsLetK be a symmetri onvex body in Rn . We introdue the integer valued funtionst; t : R+ ! N de�ned byt(r) = t(K; r) = maxfk � n : there exists a subspae Ewith dimE = k; suh that1r jxj � kxk for every x 2 Egand t(r) = t(K; r) = maxfk � n : there exists a oordinate subspae Ewith dimE = k suh that 1r jxj � kxk for every x 2 Eg:18



It is easy to see that if K is an ellipsoid in Rn , then t(K; r) + t(Ko; 1r ) � n. In[M5℄ it is proved that for every body K, for every r > 0, and for every � 2 (0; 1),one has a similar duality relation:(5:1) t(K; r) + t(Ko; 1�r ) � (1� �)n� C;where C > 0 is a universal onstant. The proof of this fat is based on the strongform (1.2) of the low M�-estimate and on the \distane lemma": if 1a jxj � kxk �bjxj for every x 2 Rn and if (MK=b)2 + (MKo=a)2 = s > 1, then ab � 1s�1 .In this Setion we establish a oordinate version of (5.1) in the ellipsoidal ase.Our estimate depends on how lose the ellipsoid is to being in M-position:De�nition: For a symmetri onvex body K in Rn we denote by �K its volumeradius: �K = (jKj=jDj)1=n. We also write NK for N(K;�KD) and say that K isin MÆ-position if Æ � 1n logNK .Our �rst lemma provides some simple estimates whih show that this positionis \stable" under the operations of taking intersetion or onvex hull with a ball:Lemma 5.1. Let K be a symmetri onvex body in Rn , and let r; r1 > 0 be given.De�ne Kr = K \ rD and Kr1 = o(K [ r1D). Then,(i) NKr � maxf3nN2K ; 9nNKg.(ii) NKr1 � 5nNK .Proof: (i) From the Brunn-Minkowski inequality it easily follows that jK \ rDj �jK\(x+rD)j; x 2 Rn . This implies that jKj � N(K; rD)jK\rDj or, equivalently,(5:2) �nK � N(K; rD)�nKr :We distinguish two ases:(1) If �K < r, then N(K; rD) � NK and, by (5.2), �nK � NK�nKr . It followsthat NKr � N(K;�KrD) � NKN(D; �Kr�K D) � NKN(D; 1NKD) � 3nN2K :(2) If �K > r, then N(K; rD) � N(K;�KD)N(D; r�KD) � NK3n(�Kr )n andhene, by (5.2), ( r�Kr )n � 3nNK . It follows thatNKr � N(rD; �KrD) � 3n( r�Kr )n � 9nNK :(ii) We obviously have �Kr1 � maxf�K ; r1g. Also, Kr1 � K + r1D, whih givesNKr1 � N(Kr1 ; 2�Kr1D)N(D; 12D) � 5nN(K + r1D; (�K + r1)D) � 5nNK : 2For an arbitrary symmetri onvex body K, one has in general the information�KMK � 1 as a onsequene of the polar oordinates formula for volume. Our19



next lemma provides an \inverse" inequality in terms of the parameters NKo andb = supfkxk : x 2 Sn�1g:Lemma 5.2. Let K be a symmetri onvex body in Rn , and assume that kxk � bjxjfor all x 2 Rn . Then, MK � �KN t=nKowhere  > 0 is an absolute onstant, and t � C( bMK )2.Proof: Using Theorem 6 from [BLM℄ (to be more preise, using an argumentidential to the one given there and the observation that what is really used is theratio b=MK), one an �nd orthogonal transformations u1; : : : ; ut 2 O(n) suh that(5:4) MK2 D � T = 1t tXi=1 ui(Ko) � 2MKD;with t � C( bMK )2, where C > 0 is an absolute onstant.On observing that N(T; �KoD) � [(N(Ko; �KoD)℄t = N tKo , we an estimateMK by (5.4) as follows:(5:5) MK � 2( jT jjDj )1=n � 2�KoN t=nKo :Finally, the Blashke-Santal�o inequality implies that �K�Ko � 1, and hene theproof of the Lemma is omplete. 2We an now pass to the proof of the main result of this setion:Theorem 5.3. Let E be an ellipsoid in Rn , and assume that both E and Eo arein MÆ-position. For every r > 0 and every � 2 (0; 1) we havet(E; r) + t(Eo; u(�; Æ)r ) � (1� �)n;where u(�; Æ) =  log( 2� )p� e Æ log2( 2� )� , and  > 0 is an absolute onstant.Proof: Let r > 0 and � 2 (0; 1) be given. Consider the body Er = E \ rD. SineEr is p2-isomorphi to an ellipsoid, one an easily hek that Theorem 2.2 holdsfor Er: for every � 2 (0; 1) we an �nd � � f1; : : : ; ng with j�j � (1 � �)n suhthat P�(Eor ) � [g(�)=M(Eor )℄D�, where g(�) = p�=2plog(2=�) and  is the sameonstant as in Theorem 2.2.We distinguish three ases:Case 1: M(Eor )r 2 [g(�); g(1)).In this ase, onsider any � 2 (�; 1℄ with 1rM(Eor ) < g(�). We an �nd �1 �f1; : : : ; ng with j�1j � (1� �)n suh thatP�1(Eor ) � g(�)M(Eor )D�1 ;20



and it is easy to hek that, for every x 2 R�1 , maxfkxk; 1r jxjg = kxkEr > 1r jxj,whih means that 1r jxj � kxk, i.e(5:6) t(E; r) � (1� �)n:Taking the in�mum of all �'s for whih M(Eor )r < g(�), we onlude that (5.6) alsoholds for the solution in � of the equation M(Eor ) = rg(�).Now, hoose � 2 (0; 1) suh that (1��)+(1��) = 1� � , and r1 > 0 satisfyingM((Er)r1)r1 < g(�) (this is always possible sine the left hand side is dereasingin r1 and tends to zero as r1 ! 1). Sine (Er)r1 is 2-isomorphi to an ellipsoid,we an �nd �2 � f1; : : : ; ng, j�2j � (1� �)n, withP�2((Er)r1) � g(�)M((Er)r1)D�2 ;thus maxfr1jxj; kxkEorg = kxk[(Er)r1 ℄o � g(�)M((Er)r1 ) jxj > r1jxj, i.e kxkEo � kxkEor >r1jxj on R�2 , whih means that(5:7) t(Eo; 1r1 ) � (1� �)n:Again, we may take r1 to be the solution of the equation M((Er)r1)r1 = g(�) inr1. Combining (5.6) with (5.7) we obtain(5:8) t(E; r) + t(Eo; 1r1 ) � (1� �)n;and it remains to ompare r with r1. Let us write W for the body (Er)r1 . By theway W has been onstruted, it is easily heked that the following are satis�ed:(i) M(W )r1 = g(�) and M(W o) �M(Eor ) = rg(�).(ii)kxkW � 1r1 jxj and kxkW o � rjxj, x 2 Rn .(iii) N1=nW � 1N2=nE and N1=nW o � 1N2=nEo , where 1; 2 > 0 are absoluteonstants. This is a simple onsequene of Lemma 5.1, sine both W and W o areformed from E and Eo with two suessive operations of taking intersetion andonvex hull with balls.We simply write rr1 = rM(W o) 1r1M(W ) M(W )M(W o)and making use of (i)-(iii) and of Lemma 5.2 we arrive at(5:9) rr1 � g(�)g(�)NC=ng2(�)Eo NC=ng2(�)E :21



Note that, at some point, we also used the fat that �E�Eo ' 1. Finally, assumingthat both E and Eo are in MÆ-position, we rewrite (5.9) as follows:(5:10) rr1 � g(�)g(�)eCÆ=g2(�)g2(�):We have �+ � = 1+ � and with this ondition we an easily hek that 1g(�)g(�) � log( 2� )p� , whih ompletes the proof in this ase.Case 2: M(Eor )r � g(1).We hoose r1 > 0 suh that M((Er)r1)r1 = g(�) and as above we onlude thatt(Eo; 1r1 ) � (1 � �)n. The estimate for r=r1 is done exatly in the same way, theonly di�erene being that now r=M(Eor ) � 1=g(1).Case 3: M((Er)o)r < g(�).This is the simplest ase sine we already have t(E; r) � (1� �)n. 26 Integer points inside an ellipsoid: some remarksConsider an arbitrary ellipsoid E in Rn . Write E in the form (2.1), so thatPj�n juj j2 = nM2E . Without loss of generality we may assume that the juj j'sare arranged in the inreasing order, therefore a simple appliation of Markov'sinequality shows that(6:1) juj j �r nn� j + 1ME ; j = 1; : : : ; n:Reall that the j-th suessive minimum �j(E) of E is de�ned by �j(E) = minf� >0 : dim(span(�E \ Zn)) � jg. Inequality (6.1) gives an estimate on the suessiveminima of E in terms of ME :Fat I: Let E be an ellipsoid in Rn . Then, �j(E) �q nn�j+1ME ; j = 1; : : : ; n. Inpartiular, if ME � 1 then E ontains an integer point di�erent from the origin.Note that if ME > 1 then E may ontain no integer points other than theorigin. Consider for example a ball of radius r = 1ME .Let us onentrate on the ase ME < 1. If ME < jDnj1=n=2, then we obviouslyhave jEj > 2n and Minkowski's theorem with its relatives start giving estimateson the ardinality of the set of integer points in E. We are interested in the rangejDnj1=n=2 < ME < 1. From Fat I we know that E ontains non-trivial integerpoints, and using ME as a parameter we try to estimate the number of them.Theorem 2.4 an be useful in this diretion:22



Let Dm be the m-dimensional Eulidean unit ball, and de�ne d(t;m) = jtDm\Zmj be the ardinality of the set of integer points in tDm. A simple lower boundfor d(t;m) an be given by ounting the points with oordinates 0;�1 in tDm:(6:2) d(t;m) � [t2℄Xk=0�nk�2k � � n[t2℄�2[t2℄:By Theorem 2.4, for every m � 1pn we an �nd � � f1; : : : ; ng with j�j = mand E \ R� � 2pmMED� , where 1; 2 > 0 are absolute onstants. Assuming thatME < 2 and using (6.2) we have some non-trivial information: It is lear that(6:3) jE \ Znj � maxm fjE \ Z� j : j�j = m � 1pngThus, we have:Fat II: Let E be an ellipsoid in Rn with ME < 2 < 1. Then,jE \ Znj � maxm fd( 2pmME ;m) : m � 1png� maxm f� n[22=mM2E℄�2[22=mM2E ℄ : m � 1png:The question of omputation of the number of integer points inside an ellipsoid(or, more generally, inside a symmetri onvex body) in Rn was relaxed in severaldiretions in [M6℄. One of the questions stated asks for \almost integer" pointsinside E in the following preise sense: for a given � 2 (0; 1), �nd a projetion ofE onto some oordinate subspae R� with j�j � (1� �)n, whih ontains as manyas possible integer points. Then, E itself will ontain many points with [(1 � �)n℄oordinates whih are distint [(1� �)n℄-dimensional integers.Our lowM�-estimate for ellipsoids provides an answer to this question in termsof ME . We know that there exists � � f1; : : : ; ng; j�j = [(1� �)n℄, suh thatP�(E) � p�qlog( 2� )ME D� :This, and (6.2), lead to the following:Fat III: Let E be an ellipsoid in Rn . For every � 2 (0; 1) there exists � �f1; : : : ; ng with j�j = [(1� �)n℄ for whihjP�(E) \ Z� j � d( p�qlog( 2� )ME ; [(1� �)n℄)� � [(1� �)n℄[ 2�log( 2� )M2E ℄�2[ 2�log( 2� )M2E ℄:Clearly, the results in Setions 3 and 4 give analogous estimates for an arbitrarysymmetri onvex body. 23
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