# On the zeroes of hypergraph independence polynomials 

Mihalis Sarantis

June 12, 2024


#### Abstract

We prove that the multivariate independence polynomial of any hypergraph of maximum degree $\Delta$ has no zeroes on the complex polydisc of radius $\sim \frac{1}{e \Delta}$, centered at the origin. Up to logarithmic factors in $\Delta$, the result is optimal, even for graphs with all edge sizes greater than 2. As a corollary, we get an FPTAS for approximating the independence polynomial in this region of the complex plane. We furthermore prove the corresponding radius for the $k$-uniform linear hypertrees is $\Omega\left(\Delta^{-1 /(k-1)}\right)$, a significant discrepancy from the graph case.

Joint work with David Galvin, Gwen McKinley, Will Perkins and Prasad Tetali.


