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Abstract

We show that the rate of convergence on the approximation of volumes
of a convex symmetric polytope P € R" by its dual L,-centroid bodies is
independent of the geometry of P. In particular we show that if P has

volume 1,
Zo (P
lim —2 12, )|—1 =n’
p—oo logp |Pe|
We provide an application to the approximation of polytopes by uniformly
convex sets.

1 Introduction

Let K be a convex body in R™ of volume 1 and, for 6 € (0,1), let K be the convex
floating body of K [21]. Tt is the intersection of all halfspaces HT whose defining
hyperplanes H cut off a set of volume § from K. Note that Ks converges to K in
the Hausdorff metric as § — 0. C. Schiitt and the second name author showed an
exact formula for the convergence of volumes [21],

K| - |K
oy L= 1S

asy (K),
6—0 Jn+i 1( )

which involves the affine surface area of K, as;(K). The same phenomenon (and
similar formulas) has been observed for other types of approximation using instead
of floating bodies, convolution bodies [20], illumination bodies [26] or Santalé bodies
[17]. We refer to e.g. [2], [4]-]9], [12]-[16], [22]-[25], [27]-[29] for further details,
extensions and applications. Another family of bodies that approximate a given
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convex body K are the Ly-centroid bodies of K introduced by Lutwak and Zhang
[16]. For a symmetric convex body K of volume 1 in R™ and 1 < p < n, the
L,-centroid body Z,(K) is the convex body that has support function

1

hz,r)(0) = </K |<I79>|”do:)p, fe st

Note that Z,(K) converges to K in the Hausdorff metric as p — co. It has been
shown in [18] that the family of L,-centroid bodies is isomorphic to the family of
the floating bodies: Kj is isomorphic to Z,., 1 (K). However, it was proved in [18]
that in the case of C bodies, the convergence of volume of the L,-centroid bodies
is independent of the “geometry” of K: For any symmetric convex body in R™ of
volume 1 that is CfL (i.e. K has C? boundary with everywhere strictly positive
Gaussian curvature),

_n(n+1)

Ke°|.

In this work we show that the same phenomenon occurs also in the case of polytopes.
We show the following

Theorem 1.1. Let K be a symmetric polytope of volume 1 in R™. Then

im Z2(K)| — |K°|) = n? K°|.

Jim o (1Z5(0)] = |K°)) = n |5

As an application of this result we get bounds for the approximation of a polytope
by a uniformly convex body with respect to the symmetric difference metric:

Theorem 1.2. Let P be a symmetric polytope in R™. Then there exists py = po(P)
such that for every p = po, there exists a p-uniformly convexr body K, such that

1
dy(P,.K,) < 20°|P|2L,
p

where dg is the symmetric difference metric.

The statements and proofs are for symmetric convex bodies only. If K is not
symmetric, then Z,(K) does not converge to K since the Z,(K) are centrally
symmetric by definition. However, all results can be extended to the non-symmetric
case with minor modifications of the proofs by using the non-symmetric version of
the L,-centroid bodies from [12] (see also [6]).

The paper is organized as follows. In section 2 we give some bounds for the approx-
imation of volume in the case of a general convex body. In section 3 we consider
the case of polytopes and we give the proof of Theorem 1.1. Finally, in section 4,
we discuss approximation of a polytope by p-uniformly convex bodies (see [11]) and
we give the proof of Theorem 1.2.



Notation.

We work in R™, which is equipped with a Euclidean structure (-,-). We denote
by | - ||2 the corresponding Euclidean norm, and write By for the Euclidean unit
ball and S™"~! for the unit sphere. Volume is denoted by |- |. We write o for the
rotationally invariant surface measure on S™1.

A convex body is a compact convex subset C of R™ with non-empty interior. We
say that C is symmetric, if x € C' implies that —z € C'. We say that C has center
of mass at the origin if fC (x,0)dx = 0 for every § € S"~!. The support function
he : R™ — R of C is defined by he(z) = max{(z,y) : y € C}. C° = {y € R":
(x,y) < 1for all z € C} is the polar body of C.

We refer to [1] and [19] for basic facts from the Brunn-Minkowski theory.
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2 General Bounds

Let K be a symmetric convex body in R™ of volume 1. Let § € S"~'. We define
the parallel section function fx g : [—hi(0), hi(6)] — Ry by

freo(t) == |K N (64 +10)].

1
By Brunn’s principle, fz ' is concave and attains its maximum at 0. So we have
that

n—1

t

<1 - ) fr0(0) < fro(t) < fro(0). (1)
hi(0)

The right-hand side inequality is sharp if and only if K is a cylinder in the direction

of 6 and the left-hand side inequality is sharp if and only if K is a double cone in

the direction of 6.

The next proposition is well known. There, for z,y > 0, B(z,y) = fol AT —

ArLdx = HEEW s the Beta function and T(z) = [ A*"Le™d) is the Gamma

function.

Proposition 2.1. Let K be a symmetric convex body in R™ of volume 1. Let
1<p<ooand @ e S '. Then

1 hz,x)(0) ( n )
Bp+1,n)r < =2 <
A VS

=

Proof. As |K| =1,

%hK(o)fK,O(O) <1< 2hk(0)fr0(0).



Hence, on the one hand, with (1),

hi(6) hi ()
Wy, (@) = 2 / t frco(t)dt < 2fx (0) / Pt
0 0
2 p+1
= <
. lfK,e(O) R (0) <

On the other hand, also with with (1),

n

I (6) B (6) N
hg (K) ) = 2/ tprﬂ(t)dt = 2fK79(0) / P (1 _ ) dt
' 0 0 i (0)

1
= 2fK,9(O)h§(+1(0)/ sP(1—s)""'ds = B(p+ 1,n)h%(6).
0
The proof is complete. o

As it was mentioned in the introduction, it was proved in [18] that if K is a C%
symmetric convex body of volume 1, then

) D o o nn+1),
1 — (|Z2(K)| — |K°|) = ———=|K°|.
Ll (12, ()| = |K°) 5 IK°

Before we consider the case of polytopes, we show that for every convex body we

have that |Z; (K)| — |K°| = O( logp). In particular, the following proposition holds.

Proposition 2.2. Let K be a symmetric convex body in R™ of volume 1. Then

o . p o o 2 o
K°| <1 —(|Z2(K)| — | K < K°|.

Proof. We have that

1 1 1
Z2(K)| - |K°] = 7/ — do (6
ZEN -1 = 5w e

1 1 U
2o (hz,,<K><9) 1>d )

where o is the usual surface area measure on S"~!. By Proposition 2.1,

R (0) >< n ) ”:1+nlogpi0( P

hy a(0) T \p+1 P logp
and
_EO) B(p+1,n)" 7 =1+ n*logp +o(—L)
h%p(}() (0) h 7 p logp™

For the last equality see e.g. [18], Lemma 4.3 - which is also stated here as Lemma
3.3. Lebesgue’s convergence theorem completes the proof. a



3 Polytopes

Let K be a convex polytope in R™ with vertices v1,...,vp. For 0 < k <n—1, let
Ay, = {F}, : Fy is a k-dimensional face of K}. For § € S"~! and 0 < s < hg(0) let

9(0,s) = card ({v; : v; € KN {{v;,0) > s}).

Let

Br={0ecS" ' :Vs<hg(d):g(0,s) >1} (2)
and

G ={0cS" ' :Is<hg():g(0,s) =1} (3)
Finally, for 0 € G, let

sp =min{s >0:¢(0,s) =1} (4)

Remarks. Let 0 € .
(i) Then there is a vertex v; such that for all sy < s < hg(6)
{r € K:(z,0) > s} =co[KN (0" +s0),v]
(ii) Recall that fr g(s) = |K N (61 + s6)|. We have for all sy < s < hy(6)

1— s n—1
fr0(s) = fro(so) (1_]”29(9)> (5)
ke ()

For a convex body K, let Hyx = maxgegn—1 hi (0).
For 1 < k < n, let K be a k-dimensional convex body in a k-dimensional affine
space of R™. Let

r(K)=sup{r >0:3 2z € K such that =+ rBf C K} (6)
be the inradius of K. Let

ro = min min r(Fj)
1<k<n—1 FreAj

Note that 7o > 0. We also put hy = maxyep, hr(u).
For 6 > 0, we define
AG)={0€S" ' :FJuec By :|0—u| <5} (7)

and
So

(8)

s(6) = sup
(©) pesn—1\A(s) M (0)
Remark. s(0) < 1 and if § — ¢ where ¢ € By, then by continuity, #‘@) —

1. Hence we may assume that for 6 > 0 small enough, s(J) is attained on the
“boundary” of S"~1\ A(9).



Lemma 3.1. Let K be a 0-symmetric polytope in R™ of volume 1. Then for §

small enough,

Sg oro
s(d) = sup <1l-——
©) pesn-1\A(5) I (6) 2ho

Proof. Let § < Ig—;}( By the above Remark, for § > 0 small enough, there exists

¢ € 8"\ A(6) such that s(8) = %.
As ¢ € S"71\ A(J), there exists u € B, such that ||u — ¢|| = 6. Let v € OK be

that vertex of K such that (¢, v) = max,ex (¢, x). Let
xo={agp:a>0}NIK, zy={au:a>0}NIK,
and
di = [[wo — 20ll,  d2 = [lzo —v].

Zg, v and zg lie in the n — 1-dimensional face F' orthogonal to u. As ¢ € G, we may

also assume that ¢ is small enough such that s, = ||xo||, and hence s(d) = h”:”—"”

(#)
Let w be the angle between ¢ and u. Then "
tanw = ! and sinw:m.
hK (u) d2
Hence
hi(¢) —sg  dicosw
dg hK (u)
and thus
Se . dids cosw
hi(9) hic(u)h (6)
As dy > 19 and as 6 < dﬁ;‘(’z;’, we get that
S¢ dro
<1- .
hi () — hr(9)
Now observe that
hi(¢) = hi (¢ —u) + hi(u) < SHg + hi(u) < 2hg.
Therefore,
S 00
hi(9) 2hg
O

Let f: R — R, be a C? log-concave function with fR+ ft)dt < oo and let

p > 1. Let g,(t) = t* f(t) and let ¢, = t,(f) the unique point such that ¢'(¢,) = 0.
We make use of the following Lemma due to B. Klartag [10] (Lemma 4.3 and Lemma
4.5).



Lemma 3.2. Let f be as above. For every e € (0,1),

tp(1+e)

/OOO P F(t)dt < (1 + Ce‘cpfz) /t 2 f(t)dt

p(l—¢)

where C > 0 and ¢ > 0 are universal constants.

We will use Lemma 3.2 for the function fx ¢(s) = |K N (6 + s0)| in the proof
of the next lemma. First we oberve

Remark 1. Let 0 € Gi. As above, let g,(t) =t fi o(t) and let ¢, be the unique
point such that g, (¢,) = 0. Note that, since t, — h(0), as p — oo (see e.g. [18],
Lemma 4.5), for p large enough - namely p so large that t, > s¢ - we can use (5)

and compute ;.
p

tp = ——hk(0 9
p= (0 Q
We will also use (see e.g. [18], Lemma 4.3).
Lemma 3.3. Let p > 0. Then
n n2 n TL4 2 TLS
(Bp+1,n)r = 1-""logp+ Tlog(I'(n)) + 5 5(logp)” — -5 log (T'(n)) log p

£ o(p?).

Lemma 3.4. Let K be a 0-symmetric polytope in R™ of volume 1. For all suffi-
ciently small &, for all @ € S"=1\ A(6) and for all p > #, we have

(th(K)(9)>n <1-n? logp

log 5  cx
1 —29 + sn
e (0) )

+(n—
p p p

an(K) = % and ck , are constants that depend on K and n only.
Proof. Let 0 < § < }f}—(’K be as in Lemma 3.1. Let § € S"~1\ A(5). Hence, in
particular, 6 € Gk. By Lemma 3.2 we have for all € € (0,1)

hx(0)
Wuo® = 2 [ et
0

hr(0)

2 (1 + Ce—cpfz) /( t2 fic o (t)dt

1—e)t,

IN

Since t, — hk(0), as p — oo (see e.g. [18], Lemma 4.5), there exists p. > 0 (which
we will now determine), such that for all p > p.,

(1 —e)tp > so. (10)



By (9), (10) holds for all p > p. with

(n—-1) hi"(e

Pe=1"%¢

_ _Seo
hi (0

By Lemma 3.1, hséf;) <1- 3;%‘3 and thus (10) holds for all p > p. with

n—1 2]10—5’/’0
Pe = ) T0—2h0€/5.

We choose € = %. Then for
0

n—1 4h0

Pe = 5

To

the estimate (10) holds for all p > p. uniformly for all # € S»~*\ A(§). Thus, using
also (5),

hir (0)

hgp(K)('g) < 2 (1 + Cefc”EQ) tP frc o (t)dt
(1=e)tp
N0
< 2 (1 + Cemere ) / 7 frco(t)lt
sg
p+1 1
= 2 (1 + Ce_Cpaz) Mfm(jﬁ ‘ wP (1 — u)nfl du
(1-rtm)
hp"rl 0 0 1 -
< 2(1+C676‘D52> MK’OHQ up(liu)n L
(1 - ﬁ?@) TR @
< ( —cps2 P 2h0 n—1
< n (14Ce ) B(p+1,n) k% (0) 5o ) (11)

In the last inequality we have used that 1 — % > g%?) and that %hK(O)fKﬂ(O) <
|K| = 1. Equivalently, (11) becomes

(n—1)n

hz,) (O\" = Cepe2\ 7 [(2ho) T n
Nz, )V 2 cpe = 5
() =nd (o) (52) 7 B

With Lemma 3.3, we then get

hz (K)(9)>n 2 logp logt  cron
2B ) <1 -2 2R 4 (n— 1)n—3 4 K
( hi(0) p ( ) P p



Let § € [0,1) and § € S"~!. We define the cap C(6,d) of the sphere S"~1

around 6 by
C(0,0) == {pe 8" [lo— ]l < 5}

We will estimate the surface area of a cap, and to do so we will make use of the

following fact which follows immediately from e.g. Lemma 1.3 in [22].

Lemma 3.5. Let 0 € S™ 1 and § < 1. Then

n—1

n—1 62 2 n—1
v0l,_1 (32 ) 1-— ”y 1) <
a(C(8,9)) <

oo (1)
voln,l(BSL*l) (1_ i) Q sn—1

Proof of Theorem 1.1.

For p given, let 6 = @. Let A(9) as defined in (2.10). Let pg be such that pg and
0= @ satisfy the assumptions of Lemma 3.4, i.e. log—opo > %. By Lemma
3.4, we have for all p > py,

1 1 hy (K)(9)
251 - 18| = 5, . LSO P
p ‘ n Sn—1\ A(5) th(K)(Q) hK(G)

1 1 2] log 1 n
> = _ (” osp —(n—l)nw+c">da(9)
n Jsn-1\a@) My, i) (0) p P P
1 1 2] log 1 n
L (T (- R )
n Jgn-1 th(K)(Q) P p p
1 1 2] log1
_Z — (n 08D (n— 1)n70g 8P CK’”)dU(G).
T JA(6) hZP(K)(Q) p p p

Hence,

P (1z5(r) - |K°) =

logp

1 1 —1)nlogl n

7/ n(n2(n )nlog 08P | K, >do(9)
n Jgn-1 th(K)(é') logp logp

1 1 — 1)nlogl n
_,/ _ <n2 _ (n—Dinloglogp _ cx, )da(e).
nJAs) th(K)(Q) logp log p

Note that, since K is centrally symmetric, r(K) = infgcgn—1 hg(6). Also, since
Zy(K) converges to K, for p sufficiently large, h’ZLp(K) @) > (T(§)> for every




6 € S"~1. Together with Lemma 3.5 we thus get

1 / 1
— ——do(0) <
nJA(6) h%p(K)(ﬁ) ( )

n+1 9 ngl 1+ ﬁ %
2 —card (Bk) vol, 1 (B;L_l) gL (1 - 6) (74)

nr(K) 4 (1-2)
2"t card (B ) vol,—1 (B3 ™)
nor(K)" (logp)™~*

By Proposition 2.2 and Lebesgue’s convergence theorem we can interchange
integration and limit and get

. p [e] o
1 Z2(K)| —|K°]) >
Jim o (12, 00] = |K°) =
1 1 — 1)nlogl
—/ lim n(nQ _ (n=lnloglogp + CK’")CZU(G)
n Jgn-1p—o0 th(K)(G) log p log p
72"+1card (Bk)vol,_1 (B ™) . n? _ (n—1)nloglogp CKn
n r(K)" p—oo \ (logp)n—1 (logp)™ (logp)™

=n?|K°|.
Here, we have also used that lim,, .o hz,(x)(0) = hx(0).

The inequality from above follows by Proposition 2.2. m]

4 Approximation with uniformly convex bodies

Let K be a symmetric convex body in R” and 2 < p < co. We say that K is
p-uniformly convex (with constant C,) (see e.g. [3, 11]), if for every z,y € 0K,

r+y

1=

Ik <1—=Cpllz —yllk-

We will need the following Proposition. The proof is based on Clarkson inequalities
and can be found in e.g. ([3], pp. 148).

Proposition 4.1. Let K be a compact set in R™ of volume 1. Then for p > 2,

Z5(K) is p-uniformly convex with constant C), = 1#.

The symmetric difference metric between two convex bodies K and C' is
ds(C,K) = [(C\ K)U(K\ C)|.

Proof of Theorem 1.2.

10



Let P, = 2. Then PP = |P°|w P and |Pg| = |P||P°|. Let K, = |P°| == Z3(P)).
Po|n
Then by Proposition 4.1 we have that K, is uniformly convex. Note that P C K.

By Theorem 1.1 we have that

. p o o 2| po
lim Z2(Py)| — |Py]) = n®| Py
Jim (125 (P = PF]) =2l P

So, for every € > 0, there exists pg(e, P) such that

1 o] o]
ds(P, Kp) = |Kp| — [P| = 7] (1Zp(P) = |PY]) <
|P7| log p 2 pylogp
1+ ¢e)n? = (14¢)n*|P|—.
(1 ey gy ot = (1| P
We choose € = 1 and the proof is complete. O
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