ON A LOCAL VERSION OF THE ALEKSANDROV-FENCHEL
INEQUALITY FOR THE QUERMASSINTEGRALS OF A
CONVEX BODY

A. GIANNOPOULOS, M. HARTZOULAKI, AND G. PAOURIS

ABSTRACT. We discuss the analogue in the Brunn-Minkowski theory of the in-
equalities of Marcus-Lopes and Bergstrom about symmetric functions of pos-
itive reals and determinants of symmetric positive matrices respectively. We
obtain a local version of the Aleksandrov-Fenchel inequality Wi2 > Wi iWina
which relates the quermassintegrals of a convex body K to those of an arbi-
trary hyperplane projection of K. A consequence is the following fact: for any
convex body K, for any (n — 1)-dimensional subspace E of R™ and any ¢ > 0,

|Pp(K) 4+ tDg| < |K + 2tDy|
|Pe(k)l = K]
where D denotes the Euclidean unit ball and |- | denotes volume in the appro-
priate dimension.

1. INTRODUCTION

The starting point of this paper is an inequality of Marcus and Lopes [9] about
symmetric functions of positive real numbers. The i-th elementary symmetric func-
tion E;(z) of an n-tuple z = (1, ... ,z,) of positive reals is defined by Ey(z) =1
and

Ei(z) = Z T Ty, &, , 1<i<n.
1<ji<-<ji<n
In particular, By (z) = Y | ; and E,(21,... ,2,) = [[;~, z;. With this notation,
for every i = 1,... ,n and all positive n-tuples z,y one has
Ei(z +y) > Ei(x) E;(y)
Eiv(z+y) ~ Eia(z)  Ei1(y)
A formal consequence of the arithmetic-geometric means inequality and (1.1) is the
inequality
(1.2) Ei(e + )] 2 [E:@)" + [Eiy)]""
(see [3] (§1.33 and §1.34) for proofs and extensions of these facts.)

An inequality of Bergstrom [1], which is the matrix analogue of (1.1) (see also [3],
§2.17), states that if A and B are symmetric positive definite matrices and A;, B;
denote the submatrices obtained by deleting the i-th row and column, then
det(A + B) S det(4)  det(B)
det(A4; + B;) — det(A;)  det(B;)’
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This is generalized by Ky Fan [7] in the form

o (i) () ()

where Ay, is the submatrix of A obtained by deleting k rows and the corresponding
columns of A. When k = n, this reduces to Minkowski’s inequality [det(A+B)]*/* >
[det A]*/™ 4 [det B]*/™.

There is a remarkable similarity between inequalities about symmetric func-
tions (or determinants of symmetric matrices) and inequalities about the mixed
volumes of convex bodies. In particular, the analogue of (1.2) or (1.4) in the
Brunn-Minkowski theory is

(1.5)  Wi(A+ B)Y=) > wy( )Y y w9 | i=0,...,n—-1

which holds true for any pair of convex bodies A and B in R"™. This is a consequence
of the Aleksandrov-Fenchel inequality (see the next section for the definition of the
quermassintegrals W;(-) and background material).

In view of these analogies, V. Milman asked if there is a version of (1.1) or (1.3)
in the theory of mixed volumes. As we shall see in the next section, one can prove
a similar statement when B is a ball:

Theorem 1.1. Let A be a convex body and B be a ball in R™. Then
Wi(A+ B) Wi(A) Wi(B)
> +
Wit1(A+ B) = Wi (4) Wit (B)
for alli e {0,... ,n—1}.

(1.6)

The referee of this paper informed us that the case ¢ = 0 of this theorem has
already appeared in the literature; in [5] it is stated as an open question whether
this inequality holds for an arbitrary pair of nonempty compact convex sets A and
B. It is also mentioned that (1.6) follows directly from the Aleksandrov-Fenchel
inequality when ¢ = 0 and B is a ball.

The answer to the above question is negative; it can be proved that (1.6) is true
in full generality only when i = n — 2 or i = n — 1 (the details will appear in [6]).
However, it is an interesting question to describe the class B of compact convex
subsets B of R" for which the weaker inequality

Wi(A+ B) S Wi(A)

Wiri(A+ B) = Wit (4)

holds true for every convex body A. In particular, if line segments belong to this
class, then taking i = 0, A = K, and B = [0, 6] for any § € S"~! we see that
0Py (K) _ B(K)

[Py (K)| — |K|

for every convex body K in R™, where Py. denotes orthogonal projection onto
6+ and O(-) is surface area in the appropriate dimension. This corresponds to

the following isoperimetric problem (which we conjecture to have an affirmative
answer):

(1.7)

(1.8)

QUESTION 1: Let A denote the class of all convex bodies whose projection onto E
is a given convex body A (this is the canal class of A in the terminology of [10]).
Is it true that the infimum of the ratio 9(K)/|K| over all K € A is “attained” for
a cylinder of “infinite length” in A7



LOCAL VERSION OF THE ALEKSANDROV-FENCHEL INEQUALITY 3

We present two approaches to this question. The first one is based on a local ver-
sion of the Aleksandrov-Fenchel inequalities for the quermassintegrals of a convex
body. By this we mean a set of inequalities involving the quermassintegrals of the
body and of an arbitrary hyperplane projection, which imply the classical inequali-
ties W;i(K)? > Wiy (K)W;_1(K) up to constant by integration on the appropriate
Grassmannian. The precise statement is the following.

Theorem 1.2. Let K be a convex body in R* and E be an (n — 1)-dimensional
subspace of R™. Then,

Wini (K) _ Wi(Pp(K)) _ 2Wi(K)
2Wi(K) — W/ (Pe(K)) — Wi—i(K)
for everyie {1,...,n—1}.

(1.9)

Here, the prime in W, means that the quermassintegrals of Pg(K) are being
considered in the appropriate dimension n — 1. The most interesting case is when

¢t = 1. Then, Theorem 1.2 implies that
0(Pp(K)) _ 2(n—1) 9(K)
|Pe(K)] = n  |K[|’
for every (n — 1)-dimensional subspace E. The question is whether this inequality
holds true with constant 1 instead of 2(n — 1)/n.

Our second approach, which is more elementary, is based on a local version of
the Loomis-Whitney inequality about coordinate projections of a convex body.

(1.10)

The results of this paper are also related to the following question:
QUESTION 2: Let K be a convex body in R”. For every ¢t > 0, consider the ¢-
extension K; := K +tD,, of K, where D,, is the Euclidean unit ball. Is it true that
the ratio |K¢|/| K| decreases under projection onto any subspace E of R"?

It is clear by induction that a positive answer to this question in the case
dim(E) = n — 1 is enough for the general case. What we are able to prove is
the following fact.

Theorem 1.3. Let K be a convex body in R* and E be an (n — 1)-dimensional
subspace of R™. Then,

|Pu(K) +tDp| _ |K +2tD,)|

(L11) EeE)] S K]

The paper is organized as follows. In Section 2 we recall definitions and basic
facts from the classical Brunn-Minkowski theory (for a detailed exposition we refer
the reader to the books [4] and [10]). We also prove Theorem 1.1. In Section 3 we
prove Theorems 1.2 and 1.3; our approach makes use of the general Aleksandrov-
Fenchel inequality. In Section 4 we prove a local Loomis-Whitney type inequality
which leads to (1.10).

2. NOTATION AND BACKGROUND MATERIAL

We shall work in R", which is equipped with an inner product (-,-) and a fixed
orthonormal basis {ej,...,e,}. We denote by D, and S™~! the unit ball and
the unit sphere in R" respectively. We write o for the normalized rotationally
invariant probability measure on S” ! and p for the Haar probability measure on
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the orthogonal group O(n). Let G,, i, denote the Grassmannian of all k-dimensional
subspaces of R”. Then, O(n) equips G,  with a Haar probability measure v,, j.

Let K, denote the class of all nonempty compact convex subsets of R™. If
K € K,, has nonempty interior, we will say that K is a convex body. If A € K,,, we
will denote by |A| the volume of A in the appropriate affine subspace. The volume
of D,, is wy,.

If 9 € S* 1, then 0+ = {z € R" : (z,0) = 0}. The section of K € K,, with a
subspace E of R" is K N E, and the orthogonal projection of K onto E is denoted
by PE(K) .

Minkowski’s theorem provides a fundamental relation between volume and the
operations of addition and multiplication of convex bodies by nonnegative reals: If
K,,... , K, € K,, m € N, then the volume of t; K; +- - - +1,,, K,;, is a homogeneous
polynomial of degree n in ¢; > 0 (see [4], [10]). That is,

(2.1) WK+ At K = Y V(K Ki by iy,

1Si17--- ,infm
where the coefficients V(Kj,,...,K;,) are chosen to be invariant under permu-
tations of their arguments. The coefficient V(K;,,..., K;,) is called the mixed
volume of the n-tuple (K;,,...,K;, ).

Steiner’s formula is a special case of Minkowski’s theorem; the volume of K+tD,,,
t > 0, can be expanded as a polynomial in ¢:

(2.2) |K +tDy| = é <’Z’> Wi (K¢,

where Wi (K) := V(K,n — i; Dy, 1) is the i-th quermassintegral of K.
The Aleksandrov-Fenchel inequality states that if K, L, K3,... , K, € K,, then

23) V(K,L,Ks,...,K.)?>V(K K,Ks,...,KJ)V(L,L, K3, ... ,K,).

In particular, this implies that the sequence (Wy(K),... ,W,(K)) is log-concave.
In other words,
(2.4) Wh > wiIw T

if 0 <i < j <k <n. From the Aleksandrov-Fenchel inequality one can also
recover the Brunn-Minkowski inequality as well as the following generalization for
the quermassintegrals:

(2.5)  Wi(K 4+ L)Y > wi(K)Y) p w9 i=0,... ,n—1.

Let O(K) denote the surface area of K. From Steiner’s formula and the definition
of surface area we see that 9(K) = nW1(K).
Let us finally mention Kubota’s integral formula

@6 Wilk) = [ Pe()naidE), 1<i<n-1
n—i Gnon—i
The case ¢ =1 is Cauchy’s surface area formula
(2.7) A(K) = — / |P,s (K)|o(du).
nwp—1 Jgn-1

Using (2.4) one can easily prove Theorem 1.1.
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Theorem Let A be any convex body and B be a ball in R™. Then,

W;(A + B) S Wi(A) N W;(B)
Wiri(A+B) = Wipa(4) Wi (B)
for alli € {0,... ,n—1}.

Proof. We may assume that B = tD,, for some t > 0. For every i € {0,... ,n —1}
we define f;(s) = W;(A + sD,). Then, by the linearity of the mixed volumes we
see that

(2.8) fils +¢) = fi(s) +e(n — i) fis1(s) + O(?),
for all « <n — 1, and therefore
(2.9) fi(s) = (n = i) fira(s).

From the Aleksandrov-Fenchel inequalities (2.4) we have f7 ,(s) > fi(s)fi42(s) for
all ¢ <n — 2. It follows that

Fi$) fisr(s) = fi() fia(s) = (n=0)fir(s) = (n =i — 1) fi(s) fira(s)
fa(s) + (n =i = D[fZ1(5) = fi(5) fisa(5)]

> fia(s)
if 0 < i < n — 2. This implies that the function g; : R* — R defined by
gi(s) = Wi(A + sD,,) /Wit1(A + sD,,) satisfies gi(s) > 1. Hence, g;(t) > ¢:(0) + ¢
for every t > 0. This is exactly the statement of the theorem.

Observe that when i = n — 1, then the theorem reduces to the inequality
Wp_1(A+ B) > W,_1(A) + W,,_1(B), which holds as an equality for every pair
of convex bodies; mean width is linear with respect to Minkowski addition. This
completes the proof. O

An immediate consequence of the proof of Theorem 1.1 is the following fact:

Corollary 2.1. Let K be a convex body in R™. For every 0 < j <i <n—1, the
function

W;(K +tDy,)

Wi(K +tD,,)

is an increasing function of t € [0,400). O

Let £ € {1,...,n —1}. From Corollary 2.1, we readily see that the function
Wi (K +tD,,)/Wo(K +tD,,) is increasing. Kubota’s formula (2.6) shows that
(2.10)

J

for every ¢ > 0, hence our question about t-extensions has an affirmative answer
(for any codimension k) on the average. In particular, for every ¢ > 0 we have

|K +tD,,| S | K|
O(K +tD,) — 0(K)’

K
|PE(K)|Vn,n—k(dE) > ﬁ/g |PE(K) +tDE|I/n7n_k(dE)
n n,n—k

n,n—k

(2.11)
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3. LOCAL VERSION OF THE ALEKSANDROV-FENCHEL INEQUALITY

If w e S™, we write J, for the line segment [0,u]. Computing the volume of
K + tJ,, we see that nV (K,n — 1;J,) = |Pg(K)|, where E = u*. Linearity of
mixed volumes shows that
(3.1) nV(Ki,...,Kn-1,Ju) = VE(PE(K1),. .., Pp(Kn-1))
for all Ky,...,K,—1 € K. In fact, there is a generalization of (3.1), which is due
to Fedotov (see [4]):

Lemma 3.1. Let E € G, and Ly, ... , L, be compact convex subsets of E+. If
Ki,...,K, € Ky, then

n
<k>V(K1,... K, Ly, ... Lon_g) = Vg(Pe(K1), ..., Pe(Kp)Ves (L1, ..., Lo_),

where Vi, Vi. denote mized volumes on E, E+ respectively. |

We will also need a consequence of the Aleksandrov-Fenchel inequality (for his-
torical remarks on inequalities of this type see [10], Section 6.4).

Lemma 3.2. Let C = (K3,... ,Ky), where K; € Ky, j=3,...,n. If A,B € K,,
we denote V(A,B,C) by V(A,B). Then, for all A,B,C € K, we have either
V(B,C)V(A,A) > V(B,A)V(C,A) or
(V(A,B)V(A,C) — V(B,C’)V(A,A))2 < [V(4,B)? —V(A, AV (B, B)]
V(4,C)? =V (A, AV (C,C).
Proof. By the Aleksandrov-Fenchel inequality, for all ¢,s > 0 we have
V(B +tA,C +sA)?* —V(B+tA,B+tA)V(C +sA,C+sA) >0,
and, using the linearity of mixed volumes, we arrive at
0 < g(t,s)+t*(V(C,A)? - V(4,4V(C,0))

+s (V(B,A)* =V (A, A)V (B, B))

+2ts (V(B,C)V(A,A) —V(B,A)V(C,A)),
where ¢ is a linear function of ¢ and s. It follows that the quadratic term is non-

negative and hence, either V/(B,C)V (A, A) > V(B,A)V(C, A) or its discriminant
is non-positive. This proves the lemma. [l

Let K be a convex body in R™. For every i € {1,...,n — 1}, we define the
parameter
Wi (K)Wiq1 (K)
WE(K)
It is clear that d;(K) > 0, and the Aleksandrov-Fenchel inequalities show that
d;(K) < 1. In the symmetric case, Schneider [11] has proved that d;(K) = 1 if and
only if K is an (n — i — 1)-tangential body of a ball.

di = dz(K) =

Theorem 3.3. Let K be a convex body in R*. For every (n — 1)-dimensional
subspace E of R" and every i € {1,... ,n — 2}, we have

Wi(K) Wi (Pe(K)) Wi(K)
(1-vi-a) Wi (K) = W;fl(sz(K)) <(1+vi-a) Wi (K)°
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[Notation: We write W/(Pg(K)) for Vg(Pg(K),n—1—1i; Dg, i), where Vg denotes
mixed volume in E.

Proof. Let C be the (n —2)-tuple (K,n —i—1;D,,,i — 1) and assume that E = u™,
ue St

We first set A = K, B = J, and C = D,. Observe that V(J,,J,) = 0. By
Lemma 3.2, there are two possibilities: either

V(Ju,Dp)V(K,K) >V (J,, K)V(K,D,)
which, by Lemma 3.1, implies
W) _ W/(Pp(K))

(32) Wit (K) = WL, (Pu(K))’
33) U VWD) L gy (kWi (1)),

Wit (K)  V(Ju, K) = Wi (K)
and Lemma 3.1 gives
(1= V) M) VD) _ WP
i(K) T V(Jy, K) - Wi, (Pe(K))
From (3.2) and (3.4) we get the left hand side inequality of the theorem. For the

right hand side inequality, we choose A = D,,, B = J, and C = K in Lemma 3.2,
and follow the same steps. We either have

WL(Pe(K) _ Win(K) _ W,
WL (Pe(E) ~ WiE)

(3.4)

(3:5) Wz—il((f)() ’

V(Ju,Dn) W; 1(K)
GBS TonE) W) S

V(Ju; D)

V(i K) (Wi(K)? - VVFl(K)I/Vz'Jrl(K)))l/2 )

which implies

W (Ps(K)) L W(K) L\ Wi(K)
6D ) S Ty o — VI )

This completes the proof. [l

Proof of Theorems 1.2 and 1.3: Since d;(K) < 1 for all 1 <i <n — 1, simple
algebra gives

Wit1(K) < Wi (Pg(K)) < 2Wi(K)

(3-8) 2Wi(K) — W/_(Pg(K)) = W1 (K)

for every (n — 1)-dimensional subspace E of R” and every i € {1,...,n —1}. This
proves Theorem 1.2.
For the proof of Theorem 1.3, we first apply successively (3.8) to obtain

Wi(Pp(K)) _ 2'Wi(K)
\Pe(K)[ — K]

(3.9)
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foralli e {1,...,n — 1}, and then use Steiner’s formula:
n—1 n—1 )
Pet) 401 - P = 3 (" )Wty

i=1

|Pp(K)| "~ —i(n), .
< R ; - (Z.)Wz(K)@t),

which implies

|Pp(K) +tDg| — |Pr(K)| <P 1|K +2tD,| - |K|

(3.10) P (K] = K|

This is slightly stronger than the assertion of Theorem 1.3. d

4. A LOCAL LOOMIS-WHITNEY INEQUALITY

Let K be a convex body in R*, n > 2. We write P;(K) for the orthogonal
projection of K onto ei, i = 1,... ,n. The Loomis-Whitney inequality [8] compares
| K| with the geometric mean of |P;(K)|:

(K" < [TIAE)]-
i=1

We will show that one can estimate | K| using a smaller number of projections:

Lemma 4.1. Let K be a convex body in R* andi # j € {1,...,n}. If P;;(K) =
P(ei7ej)J-(K); then

IPAK)| - 1Py (K)] 2> 5| K] - [Py (K)].

(n—1)
For the proof of Lemma 4.1, we will use a classical inequality of Berwald [2]:

Lemma 4.2. Let A be a convez body in R, and ¢ : A — R be a concave function.
Then, for every 0 < p < q,

(2 sl < (17 fyora] " o

Proof of Lemma 4.1: Without loss of generality we may assume that ¢t =n — 1
and j = n. If z € R® we write z = (y,t,s) where y € R" 2 and t,s € R. For every
y € P;;(K) we define the sets

Ki(y) ={s€R:(y,0,s) € K(K)}, K;(y)={teR:(y,t,0) € F(K)}
and
Kij(y) = {(t,5) € B : (y,t,5) € K}.

Then, K;(y) and K;(y) are the orthogonal projections of K;;(y) onto the coordinate
axes of R?, and therefore

|Kij(y)] < |Ki(y)| - |K;(y)]
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for every y € P;;(K). An application of the Cauchy-Schwarz inequality shows that

( / |Ki<y)|dy> ( / |Kj<y>|dy>
P;j(K) P (K)

( / |Kz-j(y>|1/2dy> |
P;j(K)

By the Brunn-Minkowski inequality, the function ¢ : P;;(K) — R defined by ¢(y) =
|K;j(y)|*/? is concave. Applying Lemma 4.2 with A = P;;(K), k =n—-2,p =1
and g = 2, we get

[P (K| - [P (K)

v

2
/ |Ki<y)|1/2|Kj<y)|1/2dy>
P;;(K)

v

2
n
[ mswita) 2 i@l [ (s
Pij(K) 2(n-1) Pij (K)
n
Combining the above inequalities, we get the lemma. |

Remark The estimate in Lemma 4.1 is sharp when n = 3, as one can see by the
following example: Let K = conv{Qa,+e3} where Q2 = [—1,1]? is the unit square
in R?. Then, |P,(K)| = |P(K)| =2, |Pi2(K)| =2 and |K| = 8/3.
We are now ready to prove (1.10).

Theorem 4.3. Let K be a convex body in R™*. For every u € S™ ! we have

§K) . n (P (K))

K| ~2(n—1) |Pu(K)|

Proof. From Lemma 4.1 we have

[Py (K)| - |Pyr (K)| >

n
mVﬂ | Py uyr (K|

for every 6 on the unit sphere S(ut) of ut. We integrate both sides with respect
to the rotationally invariant probability measure o, on S(u') and use Cauchy’s
surface area formula; the right hand side gives

T 1 [ P (o) = K- conad(es (00

= 3 ot P (K)).

where ¢,,_1 = w;,,—2/(n — 1)w,,—1, and from the left hand side we get

PaCOL [ 1B Olas) = Pa) g [ [ 6l
= 1Bl 5 [ 0Ok @
= POl e [ VT TEwPox(d)

< cep-1|Pur (K)| - O(K).
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follows that

[Py (K)| - O(K) >

> sy K1 0P ().

O

Remark Using Lemmas 3.1 and 3.2 as in the proof of Theorem 3.1, one can obtain
Lemma 4.1 and a variety of Loomis-Whitney type inequalities about “small sets”
of coordinate projections of a convex body.

10.
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