
ON A LOCAL VERSION OF THE ALEKSANDROV-FENCHELINEQUALITY FOR THE QUERMASSINTEGRALS OF ACONVEX BODYA. GIANNOPOULOS, M. HARTZOULAKI, AND G. PAOURISAbstrat. We disuss the analogue in the Brunn-Minkowski theory of the in-equalities of Marus-Lopes and Bergstrom about symmetri funtions of pos-itive reals and determinants of symmetri positive matries respetively. Weobtain a loal version of the Aleksandrov-Fenhel inequality W 2i �Wi�1Wi+1whih relates the quermassintegrals of a onvex body K to those of an arbi-trary hyperplane projetion of K. A onsequene is the following fat: for anyonvex body K, for any (n� 1)-dimensional subspae E of Rn and any t > 0,jPE(K) + tDE jjPE(K)j � jK + 2tDnjjKj ;where D denotes the Eulidean unit ball and j � j denotes volume in the appro-priate dimension. 1. IntrodutionThe starting point of this paper is an inequality of Marus and Lopes [9℄ aboutsymmetri funtions of positive real numbers. The i-th elementary symmetri fun-tion Ei(x) of an n-tuple x = (x1; : : : ; xn) of positive reals is de�ned by E0(x) = 1and Ei(x) = X1�j1<���<ji�nxj1xj2 � � �xji ; 1 � i � n:In partiular, E1(x) =Pni=1 xi and En(x1; : : : ; xn) =Qni=1 xi. With this notation,for every i = 1; : : : ; n and all positive n-tuples x; y one has(1:1) Ei(x+ y)Ei�1(x+ y) � Ei(x)Ei�1(x) + Ei(y)Ei�1(y) :A formal onsequene of the arithmeti-geometri means inequality and (1.1) is theinequality(1:2) [Ei(x + y)℄1=i � [Ei(x)℄1=i + [Ei(y)℄1=i(see [3℄ (x1.33 and x1.34) for proofs and extensions of these fats.)An inequality of Bergstrom [1℄, whih is the matrix analogue of (1.1) (see also [3℄,x2.17), states that if A and B are symmetri positive de�nite matries and Ai; Bidenote the submatries obtained by deleting the i-th row and olumn, then(1:3) det(A+B)det(Ai +Bi) � det(A)det(Ai) + det(B)det(Bi) :Date: Deember 20, 2000.1991 Mathematis Subjet Classi�ation. Primary 52A20; Seondary 52A39, 52A40.Key words and phrases. Mixed volumes, Aleksandrov-Fenhel inequality.1



2 A. GIANNOPOULOS, M. HARTZOULAKI, AND G. PAOURISThis is generalized by Ky Fan [7℄ in the form(1:4) � det(A+B)det(Ak +Bk)�1=k � � det(A)det(Ak)�1=k +� det(B)det(Bk)�1=k ;where Ak is the submatrix of A obtained by deleting k rows and the orrespondingolumns ofA. When k = n, this redues to Minkowski's inequality [det(A+B)℄1=n �[detA℄1=n + [detB℄1=n.There is a remarkable similarity between inequalities about symmetri fun-tions (or determinants of symmetri matries) and inequalities about the mixedvolumes of onvex bodies. In partiular, the analogue of (1.2) or (1.4) in theBrunn-Minkowski theory is(1:5) Wi(A+B)1=(n�i) �Wi(A)1=(n�i) +Wi(B)1=(n�i) ; i = 0; : : : ; n� 1whih holds true for any pair of onvex bodies A and B in Rn . This is a onsequeneof the Aleksandrov-Fenhel inequality (see the next setion for the de�nition of thequermassintegrals Wi(�) and bakground material).In view of these analogies, V. Milman asked if there is a version of (1.1) or (1.3)in the theory of mixed volumes. As we shall see in the next setion, one an provea similar statement when B is a ball:Theorem 1.1. Let A be a onvex body and B be a ball in Rn . Then(1:6) Wi(A+B)Wi+1(A+B) � Wi(A)Wi+1(A) + Wi(B)Wi+1(B)for all i 2 f0; : : : ; n� 1g.The referee of this paper informed us that the ase i = 0 of this theorem hasalready appeared in the literature; in [5℄ it is stated as an open question whetherthis inequality holds for an arbitrary pair of nonempty ompat onvex sets A andB. It is also mentioned that (1:6) follows diretly from the Aleksandrov-Fenhelinequality when i = 0 and B is a ball.The answer to the above question is negative; it an be proved that (1:6) is truein full generality only when i = n� 2 or i = n� 1 (the details will appear in [6℄).However, it is an interesting question to desribe the lass B of ompat onvexsubsets B of Rn for whih the weaker inequality(1:7) Wi(A+B)Wi+1(A+B) � Wi(A)Wi+1(A)holds true for every onvex body A. In partiular, if line segments belong to thislass, then taking i = 0, A = K, and B = [��; �℄ for any � 2 Sn�1 we see that(1:8) �(P�?(K))jP�?(K)j � �(K)jKjfor every onvex body K in Rn , where P�? denotes orthogonal projetion onto�? and �(�) is surfae area in the appropriate dimension. This orresponds tothe following isoperimetri problem (whih we onjeture to have an aÆrmativeanswer):Question 1: Let A denote the lass of all onvex bodies whose projetion onto Eis a given onvex body A (this is the anal lass of A in the terminology of [10℄).Is it true that the in�mum of the ratio �(K)=jKj over all K 2 A is \attained" fora ylinder of \in�nite length" in A?



LOCAL VERSION OF THE ALEKSANDROV-FENCHEL INEQUALITY 3We present two approahes to this question. The �rst one is based on a loal ver-sion of the Aleksandrov-Fenhel inequalities for the quermassintegrals of a onvexbody. By this we mean a set of inequalities involving the quermassintegrals of thebody and of an arbitrary hyperplane projetion, whih imply the lassial inequali-ties Wi(K)2 �Wi+1(K)Wi�1(K) up to onstant by integration on the appropriateGrassmannian. The preise statement is the following.Theorem 1.2. Let K be a onvex body in Rn and E be an (n � 1)-dimensionalsubspae of Rn . Then,(1:9) Wi+1(K)2Wi(K) � W 0i (PE(K))W 0i�1(PE(K)) � 2Wi(K)Wi�1(K)for every i 2 f1; : : : ; n� 1g.Here, the prime in W 0i means that the quermassintegrals of PE(K) are beingonsidered in the appropriate dimension n� 1. The most interesting ase is wheni = 1. Then, Theorem 1.2 implies that(1:10) �(PE(K))jPE(K)j � 2(n� 1)n �(K)jKj ;for every (n� 1)-dimensional subspae E. The question is whether this inequalityholds true with onstant 1 instead of 2(n� 1)=n.Our seond approah, whih is more elementary, is based on a loal version ofthe Loomis-Whitney inequality about oordinate projetions of a onvex body.The results of this paper are also related to the following question:Question 2: Let K be a onvex body in Rn . For every t > 0, onsider the t-extension Kt := K+ tDn of K, where Dn is the Eulidean unit ball. Is it true thatthe ratio jKtj=jKj dereases under projetion onto any subspae E of Rn?It is lear by indution that a positive answer to this question in the asedim(E) = n � 1 is enough for the general ase. What we are able to prove isthe following fat.Theorem 1.3. Let K be a onvex body in Rn and E be an (n � 1)-dimensionalsubspae of Rn . Then,(1:11) jPE(K) + tDE jjPE(K)j � jK + 2tDnjjKj :The paper is organized as follows. In Setion 2 we reall de�nitions and basifats from the lassial Brunn-Minkowski theory (for a detailed exposition we referthe reader to the books [4℄ and [10℄). We also prove Theorem 1.1. In Setion 3 weprove Theorems 1.2 and 1.3; our approah makes use of the general Aleksandrov-Fenhel inequality. In Setion 4 we prove a loal Loomis-Whitney type inequalitywhih leads to (1.10).2. Notation and bakground materialWe shall work in Rn , whih is equipped with an inner produt h�; �i and a �xedorthonormal basis fe1; : : : ; eng. We denote by Dn and Sn�1 the unit ball andthe unit sphere in Rn respetively. We write � for the normalized rotationallyinvariant probability measure on Sn�1 and � for the Haar probability measure on



4 A. GIANNOPOULOS, M. HARTZOULAKI, AND G. PAOURISthe orthogonal group O(n). Let Gn;k denote the Grassmannian of all k-dimensionalsubspaes of Rn . Then, O(n) equips Gn;k with a Haar probability measure �n;k.Let Kn denote the lass of all nonempty ompat onvex subsets of Rn . IfK 2 Kn has nonempty interior, we will say that K is a onvex body. If A 2 Kn, wewill denote by jAj the volume of A in the appropriate aÆne subspae. The volumeof Dn is !n.If � 2 Sn�1, then �? = fx 2 Rn : hx; �i = 0g. The setion of K 2 Kn with asubspae E of Rn is K \E, and the orthogonal projetion of K onto E is denotedby PE(K).Minkowski's theorem provides a fundamental relation between volume and theoperations of addition and multipliation of onvex bodies by nonnegative reals: IfK1; : : : ;Km 2 Kn, m 2 N, then the volume of t1K1+ � � �+ tmKm is a homogeneouspolynomial of degree n in ti � 0 (see [4℄, [10℄). That is,(2:1) jt1K1 + � � �+ tmKmj = X1�i1;::: ;in�mV (Ki1 ; : : : ;Kin)ti1 � � � tin ;where the oeÆients V (Ki1 ; : : : ;Kin) are hosen to be invariant under permu-tations of their arguments. The oeÆient V (Ki1 ; : : : ;Kin) is alled the mixedvolume of the n-tuple (Ki1 ; : : : ;Kin).Steiner's formula is a speial ase of Minkowski's theorem; the volume ofK+tDn,t > 0, an be expanded as a polynomial in t:(2:2) jK + tDnj = nXi=0 �ni�Wi(K)ti;where Wi(K) := V (K;n� i;Dn; i) is the i-th quermassintegral of K.The Aleksandrov-Fenhel inequality states that if K;L;K3; : : : ;Kn 2 Kn, then(2:3) V (K;L;K3; : : : ;Kn)2 � V (K;K;K3; : : : ;Kn)V (L;L;K3; : : : ;Kn):In partiular, this implies that the sequene (W0(K); : : : ;Wn(K)) is log-onave.In other words,(2:4) W k�ij �W k�ji W j�ikif 0 � i < j < k � n. From the Aleksandrov-Fenhel inequality one an alsoreover the Brunn-Minkowski inequality as well as the following generalization forthe quermassintegrals:(2:5) Wi(K + L)1=(n�i) �Wi(K)1=(n�i) +Wi(L)1=(n�i); i = 0; : : : ; n� 1:Let �(K) denote the surfae area of K. From Steiner's formula and the de�nitionof surfae area we see that �(K) = nW1(K).Let us �nally mention Kubota's integral formula(2:6) Wi(K) = !n!n�i ZGn;n�i jPE(K)j�n;n�i(dE); 1 � i � n� 1:The ase i = 1 is Cauhy's surfae area formula(2:7) �(K) = !nn!n�1 ZSn�1 jPu?(K)j�(du):Using (2.4) one an easily prove Theorem 1.1.



LOCAL VERSION OF THE ALEKSANDROV-FENCHEL INEQUALITY 5Theorem Let A be any onvex body and B be a ball in Rn . Then,Wi(A+B)Wi+1(A+B) � Wi(A)Wi+1(A) + Wi(B)Wi+1(B)for all i 2 f0; : : : ; n� 1g.Proof. We may assume that B = tDn for some t > 0. For every i 2 f0; : : : ; n� 1gwe de�ne fi(s) = Wi(A + sDn). Then, by the linearity of the mixed volumes wesee that(2:8) fi(s+ ") = fi(s) + "(n� i)fi+1(s) +O("2);for all i � n� 1, and therefore(2:9) f 0i(s) = (n� i)fi+1(s):From the Aleksandrov-Fenhel inequalities (2.4) we have f2i+1(s) � fi(s)fi+2(s) forall i � n� 2. It follows thatf 0i(s)fi+1(s)� fi(s)f 0i+1(s) = (n� i)f2i+1(s)� (n� i� 1)fi(s)fi+2(s)= f2i+1(s) + (n� i� 1)[f2i+1(s)� fi(s)fi+2(s)℄� f2i+1(s)if 0 � i � n � 2. This implies that the funtion gi : R+ ! R+ de�ned bygi(s) = Wi(A + sDn)=Wi+1(A + sDn) satis�es g0i(s) � 1. Hene, gi(t) � gi(0) + tfor every t � 0. This is exatly the statement of the theorem.Observe that when i = n � 1, then the theorem redues to the inequalityWn�1(A + B) � Wn�1(A) +Wn�1(B), whih holds as an equality for every pairof onvex bodies; mean width is linear with respet to Minkowski addition. Thisompletes the proof.An immediate onsequene of the proof of Theorem 1.1 is the following fat:Corollary 2.1. Let K be a onvex body in Rn . For every 0 � j < i � n � 1, thefuntion Wj(K + tDn)Wi(K + tDn)is an inreasing funtion of t 2 [0;+1). �Let k 2 f1; : : : ; n � 1g. From Corollary 2.1, we readily see that the funtionWk(K + tDn)=W0(K + tDn) is inreasing. Kubota's formula (2:6) shows that(2:10)ZGn;n�k jPE(K)j�n;n�k(dE) � jKjjK + tDnj ZGn;n�k jPE(K) + tDE j�n;n�k(dE)for every t > 0, hene our question about t-extensions has an aÆrmative answer(for any odimension k) on the average. In partiular, for every t > 0 we have(2:11) jK + tDnj�(K + tDn) � jKj�(K) :



6 A. GIANNOPOULOS, M. HARTZOULAKI, AND G. PAOURIS3. Loal version of the Aleksandrov-Fenhel inequalityIf u 2 Sn�1, we write Ju for the line segment [o; u℄. Computing the volume ofK + tJu, we see that nV (K;n � 1; Ju) = jPE(K)j, where E = u?. Linearity ofmixed volumes shows that(3:1) nV (K1; : : : ;Kn�1; Ju) = VE(PE(K1); : : : ; PE(Kn�1))for all K1; : : : ;Kn�1 2 Kn. In fat, there is a generalization of (3:1), whih is dueto Fedotov (see [4℄):Lemma 3.1. Let E 2 Gn;k and L1; : : : ; Ln�k be ompat onvex subsets of E?. IfK1; : : : ;Kk 2 Kn, then�nk�V (K1; : : : ;Kk; L1; : : : ; Ln�k) = VE(PE(K1); : : : ; PE(Kk))VE? (L1; : : : ; Ln�k);where VE ; VE? denote mixed volumes on E;E? respetively. �We will also need a onsequene of the Aleksandrov-Fenhel inequality (for his-torial remarks on inequalities of this type see [10℄, Setion 6.4).Lemma 3.2. Let C = (K3; : : : ;Kn), where Kj 2 Kn, j = 3; : : : ; n. If A;B 2 Kn,we denote V (A;B; C) by V (A;B). Then, for all A;B;C 2 Kn we have eitherV (B;C)V (A;A) � V (B;A)V (C;A) or(V (A;B)V (A;C) � V (B;C)V (A;A))2 � [V (A;B)2 � V (A;A)V (B;B)℄�[V (A;C)2 � V (A;A)V (C;C)℄:Proof. By the Aleksandrov-Fenhel inequality, for all t; s � 0 we haveV (B + tA;C + sA)2 � V (B + tA;B + tA)V (C + sA;C + sA) � 0;and, using the linearity of mixed volumes, we arrive at0 � g(t; s) + t2 �V (C;A)2 � V (A;A)V (C;C)�+s2 �V (B;A)2 � V (A;A)V (B;B)�+2ts (V (B;C)V (A;A)� V (B;A)V (C;A)) ;where g is a linear funtion of t and s. It follows that the quadrati term is non-negative and hene, either V (B;C)V (A;A) � V (B;A)V (C;A) or its disriminantis non-positive. This proves the lemma.Let K be a onvex body in Rn . For every i 2 f1; : : : ; n � 1g, we de�ne theparameter di := di(K) = Wi�1(K)Wi+1(K)W 2i (K) :It is lear that di(K) > 0, and the Aleksandrov-Fenhel inequalities show thatdi(K) � 1. In the symmetri ase, Shneider [11℄ has proved that di(K) = 1 if andonly if K is an (n� i� 1)-tangential body of a ball.Theorem 3.3. Let K be a onvex body in Rn . For every (n � 1)-dimensionalsubspae E of Rn and every i 2 f1; : : : ; n� 2g, we have�1�p1� di� Wi(K)Wi�1(K) � W 0i (PE(K))W 0i�1(PE(K)) � �1 +p1� di� Wi(K)Wi�1(K) :



LOCAL VERSION OF THE ALEKSANDROV-FENCHEL INEQUALITY 7[Notation: We write W 0i (PE(K)) for VE(PE(K); n�1� i;DE ; i), where VE denotesmixed volume in E.℄Proof. Let C be the (n� 2)-tuple (K;n� i� 1;Dn; i� 1) and assume that E = u?,u 2 Sn�1.We �rst set A = K, B = Ju and C = Dn. Observe that V (Ju; Ju) = 0. ByLemma 3.2, there are two possibilities: eitherV (Ju; Dn)V (K;K) � V (Ju;K)V (K;Dn)whih, by Lemma 3.1, implies(3:2) Wi(K)Wi�1(K) � W 0i (PE(K))W 0i�1(PE(K)) ;or(3:3) Wi(K)Wi�1(K) � V (Ju; Dn)V (Ju;K) � 1Wi�1(K) �Wi(K)2 �Wi�1(K)Wi+1(K))�1=2 ;and Lemma 3.1 gives(3:4) �1�p1� di� Wi(K)Wi�1(K) � V (Ju; Dn)V (Ju;K) = W 0i (PE(K))W 0i�1(PE(K)) :From (3:2) and (3:4) we get the left hand side inequality of the theorem. For theright hand side inequality, we hoose A = Dn, B = Ju and C = K in Lemma 3.2,and follow the same steps. We either have(3:5) W 0i (PE(K))W 0i�1(PE(K)) � Wi+1(K)Wi(K) � Wi(K)Wi�1(K) ;or(3:6) V (Ju; Dn)V (Ju;K) � Wi+1(K)Wi(K) � V (Ju; Dn)V (Ju;K) �Wi(K)2 �Wi�1(K)Wi+1(K))�1=2 ;whih implies(3:7) W 0i (PE(K))W 0i�1(PE(K)) � 11�p1� di Wi+1(K)Wi(K) = �1 +p1� di� Wi(K)Wi�1(K) :This ompletes the proof.Proof of Theorems 1.2 and 1.3: Sine di(K) � 1 for all 1 � i � n� 1, simplealgebra gives(3:8) Wi+1(K)2Wi(K) � W 0i (PE(K))W 0i�1(PE(K)) � 2Wi(K)Wi�1(K)for every (n� 1)-dimensional subspae E of Rn and every i 2 f1; : : : ; n� 1g. Thisproves Theorem 1.2.For the proof of Theorem 1.3, we �rst apply suessively (3:8) to obtain(3:9) W 0i (PE(K))jPE(K)j � 2iWi(K)jKj



8 A. GIANNOPOULOS, M. HARTZOULAKI, AND G. PAOURISfor all i 2 f1; : : : ; n� 1g, and then use Steiner's formula:jPE(K) + tDE j � jPE(K)j = n�1Xi=1 �n� 1i �W 0i (PE(K))ti� jPE(K)jjKj n�1Xi=1 n� in �ni�Wi(K)(2t)i;whih implies(3:10) jPE(K) + tDEj � jPE(K)jjPE(K)j � n� 1n jK + 2tDnj � jKjjKj :This is slightly stronger than the assertion of Theorem 1.3. �4. A loal Loomis-Whitney inequalityLet K be a onvex body in Rn , n � 2. We write Pi(K) for the orthogonalprojetion ofK onto e?i , i = 1; : : : ; n. The Loomis-Whitney inequality [8℄ omparesjKj with the geometri mean of jPi(K)j:jKjn�1 � nYi=1 jPi(K)j:We will show that one an estimate jKj using a smaller number of projetions:Lemma 4.1. Let K be a onvex body in Rn and i 6= j 2 f1; : : : ; ng. If Pij(K) =Phei;eji?(K), then jPi(K)j � jPj(K)j � n2(n� 1) jKj � jPij(K)j:For the proof of Lemma 4.1, we will use a lassial inequality of Berwald [2℄:Lemma 4.2. Let A be a onvex body in Rk , and � : A! R+ be a onave funtion.Then, for every 0 < p < q,��k + qk � 1jAj ZA j�(x)jqdx�1=q � ��k + pk � 1jAj ZA j�(x)jpdx�1=p : �Proof of Lemma 4.1: Without loss of generality we may assume that i = n� 1and j = n. If x 2 Rn we write x = (y; t; s) where y 2 Rn�2 and t; s 2 R. For everyy 2 Pij(K) we de�ne the setsKi(y) = fs 2 R : (y; 0; s) 2 Pi(K)g; Kj(y) = ft 2 R : (y; t; 0) 2 Pj(K)gand Kij(y) = f(t; s) 2 R2 : (y; t; s) 2 Kg:Then, Ki(y) andKj(y) are the orthogonal projetions ofKij(y) onto the oordinateaxes of R2 , and therefore jKij(y)j � jKi(y)j � jKj(y)j



LOCAL VERSION OF THE ALEKSANDROV-FENCHEL INEQUALITY 9for every y 2 Pij(K). An appliation of the Cauhy-Shwarz inequality shows thatjPi(K)j � jPj(K)j =  ZPij (K) jKi(y)jdy! ZPij (K) jKj(y)jdy!�  ZPij (K) jKi(y)j1=2jKj(y)j1=2dy!2�  ZPij (K) jKij(y)j1=2dy!2 :By the Brunn-Minkowski inequality, the funtion � : Pij(K)! R de�ned by �(y) =jKij(y)j1=2 is onave. Applying Lemma 4.2 with A = Pij(K), k = n � 2, p = 1and q = 2, we get ZPij(K) jKij(y)j1=2dy!2 � n2(n� 1) jPij(K)j ZPij(K) jKij(y)jdy= n2(n� 1) jKj � jPij(K)j:Combining the above inequalities, we get the lemma. �Remark The estimate in Lemma 4.1 is sharp when n = 3, as one an see by thefollowing example: Let K = onvfQ2;�e3g where Q2 = [�1; 1℄2 is the unit squarein R2 . Then, jP1(K)j = jP2(K)j = 2, jP12(K)j = 2 and jKj = 8=3.We are now ready to prove (1:10).Theorem 4.3. Let K be a onvex body in Rn . For every u 2 Sn�1 we have�(K)jKj � n2(n� 1) �(Pu?(K))jPu?(K)j :Proof. From Lemma 4.1 we havejP�?(K)j � jPu?(K)j � n2(n� 1) jKj � jPh�;ui?(K)jfor every � on the unit sphere S(u?) of u?. We integrate both sides with respetto the rotationally invariant probability measure �u on S(u?) and use Cauhy'ssurfae area formula; the right hand side givesn2(n� 1) jKj � ZS(u?) jPh�;ui?(K)j�u(d�) = n2(n� 1) jKj � n�1�(Pu?(K))= n2(n� 1)n�1jKj � �(Pu?(K)):where n�1 = !n�2=(n� 1)!n�1, and from the left hand side we getjPu?(K)j ZS(u?) jP�?(K)j�u(d�) = jPu?(K)j � 12 ZS(u?) ZSn�1 jh�; �ij�K(d�)�u(d�)= jPu?(K)j � 12 ZSn�1 ZS(u?) jh�; �ij�u(d�)�K(d�)= jPu?(K)j � n�1 ZSn�1p1� h�; ui2�K(d�)� n�1jPu?(K)j � �(K):



10 A. GIANNOPOULOS, M. HARTZOULAKI, AND G. PAOURISIt follows that jPu?(K)j � �(K) � n2(n� 1) jKj � �(Pu?(K)):Remark Using Lemmas 3.1 and 3.2 as in the proof of Theorem 3.1, one an obtainLemma 4.1 and a variety of Loomis-Whitney type inequalities about \small sets"of oordinate projetions of a onvex body.Referenes1. H. Bergstrom, A triangle inequality for matries, Den Elfte Skandinaviski Matematiker-kongress, Trondheim, 1949. Oslo: Johan Grundt Tanums Forlag 1952.2. L. Berwald, Verallgemeinerung eines Mittelswertsatzes von J. Favard, f�ur positive konkaveFuntionen, Ata Math. 79 (1947), 17-37.3. E.F. Bekenbah and R. Bellman, Inequalities, Springer-Verlag (1971).4. Y.D. Burago and V.A. Zalgaller, Geometri Inequalities, Springer Series in Soviet Mathemat-is, Springer-Verlag, Berlin-New York (1988).5. A. Dembo, T.M. Cover and J.A. Thomas, Information theoreti inequalities, IEEE Trans.Information Theory 37 (1991), 1501-1518.6. M. Fradelizi, A. Giannopoulos and M. Meyer, work in preparation.7. Ky Fan, Some inequalities onerning positive-de�nite hermitian matries, Pro. CambridgePhil. So. 51 (1955), 414-421.8. L.H. Loomis and H. Whitney, An inequality related to the isoperimetri inequality, Bull. Amer.Math. So. 55 (1949), 961-962.9. M. Marus and L. Lopes, Inequalities for symmetri funtions and Hermitian matries,Canad. J. Math. 8 (1956), 524-531.10. R. Shneider, Convex Bodies: The Brunn-Minkowski Theory, Enylopedia of Mathematisand its Appliations 44, Cambridge University Press, Cambridge (1993).11. R. Shneider, On the Aleksandrov-Fenhel inequality, Disrete Geometry and Convexity (edsJ.E. Goodman, E. Lutwak, J. Malkevith and R. Pollak), Ann. New York Aad. Si. 440(1985), 132-141.Department of Mathematis, University of Crete, Iraklion, GreeeE-mail: fapostolo,hmarian,paourisg�math.uh.gr


