On the isotropic constant of random polytopes

N. Dafnis, A. Giannopoulos and O. Guédon

Abstract

Let K be an isotropic 1 -unconditional convex body in \mathbb{R}^{n}. For every $N>$ n consider N independent random points x_{1}, \ldots, x_{N} uniformly distributed in K. We prove that, with probability greater than $1-C_{1} \exp (-c n)$ if $N \geq c_{1} n$ and greater than $1-C_{1} \exp (-c n / \log n)$ if $n<N<c_{1} n$, the random polytopes $K_{N}:=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{N}\right\}$ and $S_{N}:=\operatorname{conv}\left\{x_{1}, \ldots, x_{N}\right\}$ have isotropic constant bounded by an absolute constant $C>0$.

1 Introduction

A convex body K in \mathbb{R}^{n} is called isotropic if it has volume $|K|=1$, center of mass at the origin, and there is a constant $L_{K}>0$ such that

$$
\begin{equation*}
\int_{K}\langle x, \theta\rangle^{2} d x=L_{K}^{2} \tag{1.1}
\end{equation*}
$$

for every θ in the Euclidean unit sphere S_{2}^{n-1}. It is not hard to see that for every convex body K in \mathbb{R}^{n} there exists an affine transformation T of \mathbb{R}^{n} such that $T(K)$ is isotropic. Moreover, this isotropic image is unique up to orthogonal transformations; consequently, one may define the isotropic constant L_{K} as an invariant of the affine class of K. One can check that the isotropic position of K minimizes the quantity

$$
\begin{equation*}
\frac{1}{|T(K)|^{1+\frac{2}{n}}} \int_{T(K)}\|x\|_{2}^{2} d x \tag{1.2}
\end{equation*}
$$

over all non-degenerate affine transformations T of \mathbb{R}^{n}. In particular,

$$
\begin{equation*}
n L_{K}^{2} \leq \frac{1}{|K|^{1+\frac{2}{n}}} \int_{K}\|x\|_{2}^{2} d x \tag{1.3}
\end{equation*}
$$

It is conjectured that there exists an absolute constant $C>0$ such that $L_{K} \leq C$ for every $n \in \mathbb{N}$ and every convex body K in \mathbb{R}^{n}. The best known general estimate is currently due to Klartag [13] who proved that $L_{K} \leq c \sqrt[4]{n}$; Bourgain had proved
in [6] that $L_{K} \leq c \sqrt[4]{n} \log n$. The conjecture is related to the slicing problem, which asks if there exists an absolute constant $c>0$ such that every convex body with volume 1 has a hyperplane section whose volume exceeds c. The connection comes from the fact that

$$
\begin{equation*}
c_{1} \leq L_{K} \cdot\left|K \cap \theta^{\perp}\right| \leq c_{2} \tag{1.4}
\end{equation*}
$$

for every $\theta \in S^{n-1}$ and every isotropic convex body K, where $c_{1}, c_{2}>0$ are absolute constants. We refer to the article [15] of Milman and Pajor for background information about isotropic convex bodies.

The purpose of this note is to establish a positive answer to the problem for some classes of random convex bodies. The study of this question was initiated by Klartag and Kozma in [14] with the case of Gaussian random polytopes. They proved that if $N>n$ and if G_{1}, \ldots, G_{N} are independent standard Gaussian random vectors in \mathbb{R}^{n}, then the isotropic constant of the random polytopes

$$
\begin{equation*}
K_{N}:=\operatorname{conv}\left\{ \pm G_{1}, \ldots, \pm G_{N}\right\} \quad \text { and } \quad S_{N}:=\operatorname{conv}\left\{G_{1}, \ldots, G_{N}\right\} \tag{1.5}
\end{equation*}
$$

is bounded by an absolute constant $C>0$ with probability greater than $1-C e^{-c n}$. The argument of [14] works for other classes of random polytopes with vertices which have independent coordinates (for example, if the vertices are uniformly distributed in the cube $Q_{n}:=[-1 / 2,1 / 2]^{n}$ or in the discrete cube $\left.E_{2}^{n}:=\{-1,1\}^{n}\right)$. Alonso-Gutiérrez (see [1]) has recently obtained a positive answer in the situation where K_{N} or S_{N} is spanned by N random points uniformly distributed on the Euclidean sphere S_{2}^{n-1}. We study the following problem:

Question 1.1 Let K be a convex body in \mathbb{R}^{n}. For every $N>n$ consider N independent random points x_{1}, \ldots, x_{N} uniformly distributed in K and define the random polytopes

$$
\begin{equation*}
K_{N}:=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{N}\right\} \quad \text { and } \quad S_{N}:=\operatorname{conv}\left\{x_{1}, \ldots, x_{N}\right\} \tag{1.6}
\end{equation*}
$$

Is it true that, with probability tending to 1 as $n \rightarrow \infty$, one has $L_{K_{N}} \leq C L_{K}$ and $L_{S_{N}} \leq C L_{K}$ where $C>0$ is a constant independent from K, n and N ?

We give an affirmative answer in the case of 1-unconditional convex bodies. That is, we make the additional assumptions that K is centrally symmetric and that, after a linear transformation, the standard orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of \mathbb{R}^{n} is a 1 -unconditional basis for $\|\cdot\|_{K}$: for every choice of real numbers t_{1}, \ldots, t_{n} and every choice of signs $\varepsilon_{j}= \pm 1$,

$$
\begin{equation*}
\left\|\varepsilon_{1} t_{1} e_{1}+\cdots+\varepsilon_{n} t_{n} e_{n}\right\|_{K}=\left\|t_{1} e_{1}+\cdots+t_{n} e_{n}\right\|_{K} \tag{1.7}
\end{equation*}
$$

Then, it is easily checked that one can bring K to the isotropic position by a diagonal operator. It is also not hard to prove that the isotropic constant of K satisfies $L_{K} \simeq 1$. The upper bound follows from the Loomis-Whitney inequality; see also [4] where the inequality $2 L_{K}^{2} \leq 1$ is proved. On the other hand, recall that for every convex body K in \mathbb{R}^{n} one has $L_{K} \geq L_{B_{2}^{n}} \geq c$, where $c>0$ is an absolute constant (see [15]). The precise formulation of our result is the following.

Theorem 1.2 Let K be an isotropic 1-unconditional convex body in \mathbb{R}^{n}. For every $N>n$ consider N independent random points x_{1}, \ldots, x_{N} uniformly distributed in K. Then, with probability greater than $1-C_{1} \exp (-c n)$ if $N \geq c_{1} n$ and greater than $1-C_{1} \exp (-c n / \log n)$ if $n<N<c_{1} n$, the random polytopes $K_{N}:=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{N}\right\}$ and $S_{N}:=\operatorname{conv}\left\{x_{1}, \ldots, x_{N}\right\}$ have isotropic constant bounded by an absolute constant $C>0$.

The main result is proved in Section 2. Our method is based on the approach of [14] and on precise results of Bobkov and Nazarov from [5] about the ψ_{2}-behavior of linear functionals on isotropic 1-unconditional convex bodies. We conclude with remarks and comments in Section 3.
Notation. We work in \mathbb{R}^{n}, which is equipped with a Euclidean structure $\langle\cdot, \cdot\rangle$. We denote by $\|\cdot\|_{p}$ the norm of $\ell_{p}^{n}, 1 \leq p \leq \infty$, and write B_{p}^{n} for the unit ball and S_{p}^{n-1} for the unit sphere of ℓ_{p}^{n}. Volume is denoted by $|\cdot|$. The homothet of B_{p}^{n} of volume 1 is denoted by \bar{B}_{p}^{n}. The letters $c, c^{\prime}, C, c_{1}, c_{2}$ etc. denote absolute positive constants which may change from line to line.

2 Proof of the theorem

It was mentioned in the Introduction that if D is a convex body in \mathbb{R}^{n} then $|D|^{2 / n} n L_{D}^{2} \leq \frac{1}{|D|} \int_{D}\|x\|_{2}^{2} d x$. Our starting point will be a stronger estimate for L_{D} in terms of the ℓ_{1}^{n}-norm (see [15, Paragraph 3.6]):

Lemma 2.1 Let D be a convex body in \mathbb{R}^{n}. Then,

$$
\begin{equation*}
|D|^{1 / n} n L_{D} \leq c \frac{1}{|D|} \int_{D}\|x\|_{1} d x \tag{2.1}
\end{equation*}
$$

where $c>0$ is an absolute constant.
In view of Lemma 2.1, in order to prove that $K_{N}:=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{N}\right\}$ (or $\left.S_{N}:=\operatorname{conv}\left\{x_{1}, \ldots, x_{N}\right\}\right)$ has bounded isotropic constant with probability close to 1 , it suffices to give a lower bound for the volume radius $\left|K_{N}\right|^{1 / n}$ (or $\left|S_{N}\right|^{1 / n}$ respectively) and an upper bound for the expected value of $\|\cdot\|_{1}$ on K_{N} (or S_{N} respectively). Observe that the problem is affinely invariant, and hence, we may assume that K is an isotropic convex body.

2.1 Lower bound for the volume radius

Since $K_{N} \supseteq S_{N}$ for every choice of points $x_{1}, \ldots, x_{N} \in K$, it is enough to give a lower bound for $\left|S_{N}\right|^{1 / n}$. This is a consequence of the following observations:
Fact 1. It was proved in [10, Lemma 3.3] (see also [12, Lemma 2.5]) that if K is a convex body in \mathbb{R}^{n} with volume 1 and if \bar{B}_{2}^{n} is a ball in \mathbb{R}^{n} with volume 1 , then

$$
\begin{equation*}
\operatorname{Prob}\left(\left|S_{N}\right| \geq \rho\right) \geq \operatorname{Prob}\left(\left|\left[\bar{B}_{2}^{n}\right]_{N}\right| \geq \rho\right) \tag{2.2}
\end{equation*}
$$

for every $\rho>0$. This reduces the problem to the case $K=\bar{B}_{2}^{n}$.
Fact 2. It was proved in [11] that there exist $c_{1}>1$ and $c_{2}>0$ such that if $N \geq c_{1} n$ and x_{1}, \ldots, x_{N} are independent random points uniformly distributed in \bar{B}_{2}^{n}, then

$$
\begin{equation*}
S_{N}:=\operatorname{conv}\left\{x_{1}, \ldots, x_{N}\right\} \supseteq c_{2} \min \left\{\frac{\sqrt{\log (2 N / n)}}{\sqrt{n}}, 1\right\} \bar{B}_{2}^{n} \tag{2.3}
\end{equation*}
$$

with probability greater than $1-\exp (-n)$. Actually, the argument from [11] shows that, for every $\delta>0$, if $N \geq(1+\delta) n$ then (2.3) holds true with for a random K_{N} with $c_{2}=c_{2}(\delta)$; see [1, Lemma 3.1].

Combining the above we have the first part of the next Proposition:
Proposition 2.2 Let K be a convex body in \mathbb{R}^{n} with volume $|K|=1$ and let x_{1}, \ldots, x_{N} be independent random points uniformly distributed in K.
(i) If $N \geq c_{1} n$ then, with probability greater than $1-\exp (-n)$ we have

$$
\begin{equation*}
\left|K_{N}\right|^{1 / n} \geq\left|S_{N}\right|^{1 / n} \geq c_{2} \min \left\{\frac{\sqrt{\log (2 N / n)}}{\sqrt{n}}, 1\right\} \tag{2.4}
\end{equation*}
$$

where $c_{1}>1$ and $c_{2}>0$ are absolute constants.
(ii) If $n<N<c_{1} n$ then (2.4) holds true with probability greater than $1-$ $\exp (-c n / \log n)$, where $c>0$ is an absolute constant.

Part (ii) (the case $n<N<c_{1} n$) has to be treated separately. We first consider the symmetric random polytope K_{N}. Because of Fact 1, we may assume that $K=\bar{B}_{2}^{n}$ and, by monotonicity, it is enough to prove that with probability close to one $K_{n}=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{n}\right\}$ has the appropriate volume. We write

$$
\begin{equation*}
\left|K_{n}\right|=\frac{2^{n}}{n!} \prod_{k=1}^{n} d\left(x_{k}, \operatorname{span}\left\{x_{1}, \ldots, x_{k-1}\right\}\right), \tag{2.5}
\end{equation*}
$$

where $\operatorname{span}(\emptyset)=\{0\}$ and $d(z, A)$ is the Euclidean distance from z to A. As in [14], we observe that the random variables $Y_{k}:=d\left(x_{k}, \operatorname{span}\left\{x_{1}, \ldots, x_{k-1}\right\}\right)$ are independent. Using the fact that the radius of \bar{B}_{2}^{n} is of the order of \sqrt{n} and taking into account rotational invariance, we see that there exists an absolute constant $c_{2}>0$ such that

$$
\begin{equation*}
\operatorname{Prob}\left(Y_{k} \leq c_{2} t \sqrt{n}\right) \leq \operatorname{Prob}\left(d\left(x, E_{k-1}\right) \leq t\right) \tag{2.6}
\end{equation*}
$$

for every $t>0$, where x is uniformly distributed in B_{2}^{n} and $E_{k}=\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}$.
A similar question is studied in [2] (where x is uniformly distributed on S^{n-1}, but the proof and the estimates for $x \in B_{2}^{n}$ are similar). We will use [2, Theorem 4.3]: assume that $3 \leq k \leq n-3$ and set $\lambda=k / n$. If $\frac{1}{n} \leq \frac{\sin ^{2} \varepsilon}{1-\lambda} \leq n$ and $\frac{1}{n} \leq \frac{\cos ^{2} \varepsilon}{\lambda} \leq n$, then

$$
\begin{equation*}
c_{1} \frac{e^{-\alpha_{n} u}}{\sqrt{u}} \leq \operatorname{Prob}\left(\rho\left(x, E_{k}\right) \leq \varepsilon\right) \leq c_{2} \frac{e^{-\alpha_{n} u}}{\sqrt{u}} \tag{2.7}
\end{equation*}
$$

where ρ is the geodesic distance, $\alpha_{n}>0$ and $\alpha_{n} \rightarrow 1, c_{1}, c_{2}>0$ are absolute constants and $u=\frac{n}{2}\left[(1-\lambda) \log \frac{1-\lambda}{\sin ^{2} \varepsilon}+\lambda \log \frac{\lambda}{\cos ^{2} \varepsilon}\right]$.

We apply this fact as follows: assume that $\lambda=\frac{k}{n} \leq 1-\frac{1}{\log n}$. We define ε_{k} by the equation $\sin ^{2} \varepsilon_{k}=(1-\lambda) / 4$. Then,

$$
\begin{equation*}
u_{k}=\frac{n}{2}\left[(1-\lambda) \log 4+\lambda \log \frac{4 \lambda}{3+\lambda}\right]=\frac{n}{2}\left[\log 4+\lambda \log \frac{\lambda}{3+\lambda}\right] . \tag{2.8}
\end{equation*}
$$

Consider the function $H:[0,1] \rightarrow \mathbb{R}$ defined by $H(\lambda)=\log 4+\lambda \log \frac{\lambda}{3+\lambda}-\delta(1-\lambda)$, where $\delta=\log 2-3 / 8>0$. Then, $H^{\prime}(\lambda)<0$ on $[0,1]$ and $H(1)=0$. Therefore,

$$
\begin{equation*}
u_{k} \geq \frac{\delta(1-\lambda) n}{2} \geq \frac{\delta n}{2 \log n} \tag{2.9}
\end{equation*}
$$

Since ρ and d are comparable, it follows that

$$
\begin{equation*}
\operatorname{Prob}\left(Y_{k} \leq c_{3} \sqrt{n-k}\right) \leq \exp (-c n / \log n) \tag{2.10}
\end{equation*}
$$

for all $k \leq k_{0}:=\left\lfloor n-\frac{n}{\log n}\right\rfloor$. For $k>k_{0}$ we define ε_{k} by the equation $\sin ^{2} \varepsilon_{k}=$ $(1-\lambda) / n$; then, it is easy to check that $u_{k} \geq c n \log n$.

With this choice of ε_{k} it is clear that, with probability greater than $1-$ $\exp (-c n / \log n)$, we have

$$
\begin{equation*}
\left|K_{n}\right| \geq \frac{2^{n}}{n!} \prod_{k=1}^{k_{0}}\left(c_{3} \sqrt{n-k}\right) \times \prod_{k=k_{0}+1}^{n} \frac{c_{4}}{\sqrt{n}} \geq\left(\frac{c}{\sqrt{n}}\right)^{n} \tag{2.11}
\end{equation*}
$$

This extends the estimate (2.4) of Proposition 2.2 to the range $n \leq N<c_{1} n$ (in the symmetric case) with a slightly worse probability estimate.

For the random polytope S_{N} we follow [14]: we may assume that $N=n+1$. We define $y_{i}=x_{i}-x_{1}, i=1, \ldots, n+1$ and consider the symmetric random polytope $K_{n+1}^{\prime}=\operatorname{conv}\left\{ \pm y_{2}, \ldots, \pm y_{n+1}\right\}$. By the Rogers-Shephard inequality we have

$$
\begin{equation*}
\left|S_{n+1}\right|=\left|\operatorname{conv}\left\{0, y_{2}, \ldots, y_{n+1}\right\}\right| \geq 4^{-n}\left|K_{n+1}^{\prime}\right| \tag{2.12}
\end{equation*}
$$

and hence, it remains to estimate $\left|K_{n+1}^{\prime}\right|$ from below. Consider the linear map F defined by $F\left(x_{i}\right)=x_{i}-x_{1}, 2 \leq i \leq n+1$. With probability one, x_{2}, \ldots, x_{n+1} are linearly independent, and $K_{n+1}^{\prime}=F\left(D_{n}\right)$, where $D_{n}=\operatorname{conv}\left\{ \pm x_{2}, \ldots, \pm x_{n+1}\right\}$. Therefore,

$$
\begin{equation*}
\left|K_{n+1}^{\prime}\right|=|\operatorname{det} F| \cdot\left|D_{n}\right| . \tag{2.13}
\end{equation*}
$$

Let $v \in \mathbb{R}^{n}$ be such that $\left\langle v, x_{i}\right\rangle=1,2 \leq i \leq n+1$. Since $\left\|x_{i}\right\|_{2} \leq c \sqrt{n}$ for all i, we have $\|v\|_{2} \geq c_{1} / \sqrt{n}$ by the Cauchy-Schwarz inequality. Observe that $F(x)=x-\langle x, v\rangle x_{1}$ for every $x \in \mathbb{R}^{n}$; therefore, $\operatorname{det} F=1-\left\langle v, x_{1}\right\rangle$. This implies that
$\operatorname{Prob}\left(|\operatorname{det} F|<2^{-n}\right)=\mathbb{E}_{v}\left[\operatorname{Prob}\left(|\langle v, x\rangle-1|<2^{-n}\right)\right] \leq\left|\left\{x:\left|\left\langle x, \theta_{v}\right\rangle\right| \leq \frac{1}{\|v\|_{2} 2^{n}}\right\}\right|$,
where $\theta_{v}=v /\|v\|_{2}$, because the centered strip has maximal volume among all strips of width 2^{-n} which are perpendicular to θ_{v}. Since $\|v\|_{2} \geq c / \sqrt{n}$, we easily check that the last quantity in (2.14) is bounded by $\sqrt{n} \exp (-c n)$. We have already seen that, with probability greater than $1-\exp (-c n / \log n)$, the volume of D_{n} is larger than $(c / \sqrt{n})^{n}$. Since we also have $|\operatorname{det} F| \geq 2^{-n}$, the proof is complete.

2.2 Upper bound for the expectation of $\|\cdot\|_{1}$

Let (Ω, μ) be a probability space and let $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a strictly increasing convex function with $\phi(0)=0$ and $\lim _{t \rightarrow \infty} \phi(t)=\infty$. The Orlicz space $L_{\phi}(\mu)$ is the space of all measurable functions f on Ω for which $\int_{\Omega} \phi(|f| / t) d \mu<\infty$ for some $t>0$, equipped with the norm $\|f\|_{\phi}=\inf \left\{t>0: \int_{\Omega} \phi(|f| / t) d \mu \leq 1\right\}$. We will only need the functions $\psi_{\alpha}(t)=e^{t^{\alpha}}-1$. In particular,

$$
\begin{equation*}
\|f\|_{\psi_{2}}=\inf \left\{t>0: \int e^{(f(x) / t)^{2}} d \mu(x) \leq 2\right\} \tag{2.15}
\end{equation*}
$$

We will make use of the following Bernstein type inequality (see [8]):
Lemma 2.3 Let g_{1}, \ldots, g_{m} be independent random variables with $\mathbb{E} g_{j}=0$ on some probability space (Ω, μ). Assume that $\left\|g_{j}\right\|_{\psi_{2}} \leq A$ for all $j \leq m$ and some constant $A>0$. Then,

$$
\begin{equation*}
\operatorname{Prob}\left\{\left|\sum_{j=1}^{m} g_{j}\right|>\alpha m\right\} \leq 2 \exp \left(-\alpha^{2} m / 8 A^{2}\right) \tag{2.16}
\end{equation*}
$$

for every $\alpha>0$.
Let K be an isotropic 1-unconditional convex body in \mathbb{R}^{n}. The ψ_{2} behavior of linear functionals $x \mapsto\langle x, \theta\rangle$ on K is described by the following result of Bobkov and Nazarov from [5].

Lemma 2.4 Let K be an isotropic 1-unconditional convex body in \mathbb{R}^{n}. For every $\theta \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\|\langle\cdot, \theta\rangle\|_{\psi_{2}} \leq c \sqrt{n}\|\theta\|_{\infty}, \tag{2.17}
\end{equation*}
$$

where $c>0$ is an absolute constant.
Now, let y_{1}, \ldots, y_{n} be independent random points uniformly distributed in K. We fix $\theta \in \mathbb{R}^{n}$ with $\|\theta\|_{\infty}=1$ and a choice of $\operatorname{signs} \varepsilon_{j}= \pm 1$, and apply Lemma 2.3 to the random variables $g_{j}\left(y_{1}, \ldots, y_{n}\right)=\left\langle\varepsilon_{j} y_{j}, \theta\right\rangle$ on $\Omega=K^{n}$. From Lemma 2.4 (with $m=n$) we see that

$$
\begin{equation*}
\operatorname{Prob}\left\{\left|\left\langle\varepsilon_{1} y_{1}+\cdots+\varepsilon_{n} y_{n}, \theta\right\rangle\right|>\alpha n\right\} \leq 2 \exp \left(-c \alpha^{2}\right) \tag{2.18}
\end{equation*}
$$

for every $\alpha>0$. Consider a $1 / 2$-net \mathcal{N} for S_{∞}^{n} with cardinality $|\mathcal{N}| \leq 5^{n}$. Choosing $\alpha=C \sqrt{n} \sqrt{\log (2 N / n)}$ where $C>0$ is a large enough absolute constant, we see that, with probability greater than $1-\exp \left(-c_{1} n \log (2 N / n)\right)$ we have

$$
\begin{equation*}
\left|\left\langle\varepsilon_{1} y_{1}+\cdots+\varepsilon_{n} y_{n}, \theta\right\rangle\right| \leq C n^{3 / 2} \sqrt{\log (2 N / n)} \tag{2.19}
\end{equation*}
$$

for every $\theta \in \mathcal{N}$ and every choice of signs $\varepsilon_{j}= \pm 1$. Using a standard successive approximation argument, and taking into account all 2^{n} possible choices of signs $\varepsilon_{j}= \pm 1$, we get that, with probability greater than $1-\exp \left(-c_{2} n \log (2 N / n)\right)$,

$$
\begin{equation*}
\max _{\varepsilon_{j}= \pm 1}\left\|\varepsilon_{1} y_{1}+\cdots+\varepsilon_{n} y_{n}\right\|_{1} \leq C n^{3 / 2} \sqrt{\log (2 N / n)} \tag{2.20}
\end{equation*}
$$

Now, let $N \geq n$ and let x_{1}, \ldots, x_{N} be independent random points uniformly distributed in K. Since the number of subsets $\left\{y_{1}, \ldots, y_{n}\right\}$ of $\left\{ \pm x_{1}, \ldots, \pm x_{N}\right\}$ is bounded by $(2 e N / n)^{n}$, we immediately get the following.

Proposition 2.5 Let K be an isotropic 1-unconditional convex body in \mathbb{R}^{n}. Fix $N>n$ and let x_{1}, \ldots, x_{N} be independent random points uniformly distributed in K. Then, with probability greater than $1-\exp (-c n \log (2 N / n))$ we have

$$
\begin{equation*}
\max _{\varepsilon_{j}= \pm 1}\left\|\varepsilon_{1} x_{i_{1}}+\cdots+\varepsilon_{n} x_{i_{n}}\right\|_{1} \leq C n^{3 / 2} \sqrt{\log (2 N / n)} \tag{2.21}
\end{equation*}
$$

for all $\left\{i_{1}, \ldots, i_{n}\right\} \subseteq\{1, \ldots, N\}$.
Observe that, with probability equal to 1 , all the facets of K_{N} or S_{N} are simplices. Also, if $F=\operatorname{conv}\left\{y_{1}, \ldots, y_{n}\right\}$ is a facet of K_{N} then we must have $y_{j}=\varepsilon_{j} x_{i_{j}}$ and $i_{j} \neq i_{s}$ for all $1 \leq j \neq s \leq n$. In other words, x_{i} and $-x_{i}$ cannot belong to the same facet of K_{N}.

We first consider the case of the symmetric random polytope K_{N}. The next lemma reduces the computation of the expectation of $\|x\|_{1}$ on K_{N} to a similar problem on the facets of K_{N} (the idea comes from [14]).

Lemma 2.6 Let F_{1}, \ldots, F_{m} be the facets of K_{N}. Then,

$$
\begin{equation*}
\frac{1}{\left|K_{N}\right|} \int_{K_{N}}\|x\|_{1} d x \leq \max _{1 \leq s \leq m} \frac{1}{\left|F_{s}\right|} \int_{F_{s}}\|u\|_{1} d u \tag{2.22}
\end{equation*}
$$

Proof. Following [14, Lemma 2.5], one can check that

$$
\begin{equation*}
\frac{1}{\left|K_{N}\right|} \int_{K_{N}}\|x\|_{1} d x=\frac{1}{\left|K_{N}\right|} \sum_{s=1}^{m} \frac{d\left(0, F_{s}\right)}{n+1} \int_{F_{s}}\|u\|_{1} d u \tag{2.23}
\end{equation*}
$$

where $d\left(0, F_{s}\right)$ is the Euclidean distance from 0 to the affine subspace determined by F_{s}. Since

$$
\begin{equation*}
\left|K_{N}\right|=\frac{1}{n} \sum_{s=1}^{m} d\left(0, F_{s}\right)\left|F_{s}\right| \tag{2.24}
\end{equation*}
$$

the result follows.
Let $y_{1}, \ldots, y_{n} \in \mathbb{R}^{n}$ and define $F=\operatorname{conv}\left\{y_{1}, \ldots, y_{n}\right\}$. Then, $F=T\left(\Delta^{n-1}\right)$ where $\Delta^{n-1}=\operatorname{conv}\left\{e_{1}, \ldots, e_{n}\right\}$ and $T_{i j}=\left\langle y_{j}, e_{i}\right\rangle=: y_{j i}$. Assume that $\operatorname{det} T \neq 0$. It follows that

$$
\begin{aligned}
\frac{1}{|F|} \int_{F}\|u\|_{1} d u & =\frac{1}{\left|\Delta^{n-1}\right|} \int_{\Delta^{n-1}}\|T u\|_{1} d u \\
& =\frac{1}{\left|\Delta^{n-1}\right|} \int_{\Delta^{n-1}} \sum_{i=1}^{n}\left|\sum_{j=1}^{n} y_{j i} u_{j}\right| d u \\
& =\sum_{i=1}^{n} \frac{1}{\left|\Delta^{n-1}\right|} \int_{\Delta^{n-1}}\left|\sum_{j=1}^{n} y_{j i} u_{j}\right| d u \\
& \leq \sum_{i=1}^{n}\left(\frac{1}{\left|\Delta^{n-1}\right|} \int_{\Delta^{n-1}}\left(\sum_{j=1}^{n} y_{j i} u_{j}\right)^{2} d u\right)^{1 / 2}
\end{aligned}
$$

Using the fact that

$$
\begin{equation*}
\frac{1}{\left|\Delta^{n-1}\right|} \int_{\Delta^{n-1}} u_{j_{1}} u_{j_{2}}=\frac{1+\delta_{j_{1}, j_{2}}}{n(n+1)} \tag{2.25}
\end{equation*}
$$

we see that

$$
\begin{aligned}
\frac{1}{|F|} \int_{F}\|u\|_{1} d u & \leq \frac{1}{\sqrt{n(n+1)}} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} y_{j i}^{2}+\left(\sum_{j=1}^{n} y_{j i}\right)^{2}\right)^{1 / 2} \\
& \leq \frac{1}{n} \sum_{i=1}^{n}\left[\left(\sum_{j=1}^{n} y_{j i}^{2}\right)^{1 / 2}+\left|\sum_{j=1}^{n} y_{j i}\right|\right]
\end{aligned}
$$

It now follows from the classical Khintchine inequality (see [17] for the best constant $\sqrt{2}$) that

$$
\begin{equation*}
\frac{1}{|F|} \int_{F}\|u\|_{1} d u \leq \frac{\sqrt{2}+1}{n} \max _{\varepsilon_{j}= \pm 1}\left\|\varepsilon_{1} y_{1}+\cdots+\varepsilon_{n} y_{n}\right\|_{1} \tag{2.26}
\end{equation*}
$$

Now, Proposition 2.5 and Lemma 2.6 immediately imply our upper bound:
Proposition 2.7 Let K be an isotropic 1-unconditional convex body in \mathbb{R}^{n}. Fix $N>n$ and let x_{1}, \ldots, x_{N} be independent random points uniformly distributed in K. Then, with probability greater than $1-\exp (-c n \log (2 N / n))$ we have

$$
\begin{equation*}
\frac{1}{\left|K_{N}\right|} \int_{K_{N}}\|x\|_{1} d x \leq C \sqrt{n} \sqrt{\log (2 N / n)} \tag{2.27}
\end{equation*}
$$

where $C>0$ is an absolute constant.

The case of S_{N} requires some minor modifications. First of all, the role of 0 is played by the vector $w=\frac{1}{N}\left(x_{1}+\cdots+x_{N}\right)$ which belongs to $S_{N}:=\operatorname{conv}\left\{x_{1}, \ldots, x_{N}\right\}$. The substitute for (2.23) is

$$
\begin{equation*}
\frac{1}{\left|S_{N}\right|} \int_{S_{N}}\|x\|_{1} d x=\frac{1}{\left|S_{N}\right|} \sum_{s=1}^{m} \frac{d\left(0, F_{s}\right)}{n+1} \int_{F_{s}}\|u-w\|_{1} d u \tag{2.28}
\end{equation*}
$$

where F_{1}, \ldots, F_{m} are the facets of S_{N} (see [14, Lemma 2.5]). As in Lemma 2.6 (and since $\|u-w\|_{1} \leq\|w\|_{1}+\|u\|_{1}$ for every $s \leq m$ and for every $u \in F_{s}$) we see that

$$
\begin{aligned}
\frac{1}{\left|S_{N}\right|} \int_{S_{N}}\|x\|_{1} d x & \leq \max _{1 \leq s \leq m} \frac{1}{\left|F_{s}\right|} \int_{F_{s}}\|u-w\|_{1} d u \\
& \leq\|w\|_{1}+\max _{1 \leq s \leq m} \frac{1}{\left|F_{s}\right|} \int_{F_{s}}\|u\|_{1} d u
\end{aligned}
$$

From (2.26) and Proposition 2.5 we get

$$
\begin{equation*}
\max _{1 \leq s \leq m} \frac{1}{\left|F_{s}\right|} \int_{F_{s}}\|u\|_{1} d u \leq C \sqrt{n} \sqrt{\log (2 N / n)} \tag{2.29}
\end{equation*}
$$

It remains to estimate $\|w\|_{1}$. But, applying Lemma 2.3 (with $m=N$) to the random variables $g_{j}\left(x_{1}, \ldots, x_{N}\right)=\left\langle x_{j}, \theta\right\rangle$, where $\theta \in S_{\infty}^{n-1}$, we see that

$$
\begin{equation*}
\operatorname{Prob}\left\{\left|\left\langle x_{1}+\cdots+x_{N}, \theta\right\rangle\right|>C \sqrt{n} \sqrt{\log (2 N / n)} N\right\} \leq 2 \exp (-c N \log (2 N / n)) \tag{2.30}
\end{equation*}
$$

and continuing as in $\S 2.2$ we can check that

$$
\begin{equation*}
\|w\|_{1}=\frac{1}{N}\left\|x_{1}+\cdots+x_{N}\right\|_{1} \leq C \sqrt{n} \sqrt{\log (2 N / n)} \tag{2.31}
\end{equation*}
$$

with probability greater than $1-C \exp (-c N \log (2 N / n))$. This leads to the analogue of Proposition 2.7 for S_{N}.

2.3 Proof of the main result

Lemma 2.1 tells us that

$$
\begin{equation*}
\left|K_{N}\right|^{1 / n} n L_{K_{N}} \leq c \frac{1}{\left|K_{N}\right|} \int_{K_{N}}\|x\|_{1} d x \tag{2.32}
\end{equation*}
$$

where $c>0$ is an absolute constant. Assume first that $N \leq \exp (c n)$. Propositions 2.2 and 2.7 show that, with probability greater than $1-C_{1} \exp (-c n)$ if $N \geq c_{1} n$ and greater than $1-C_{1} \exp (-c n / \log n)$ if $n<N<c_{1} n, K_{N}$ satisfies

$$
\begin{equation*}
\frac{\sqrt{\log (2 N / n)}}{\sqrt{n}} \cdot n L_{K_{N}} \leq c \cdot C \sqrt{n} \sqrt{\log (2 N / n)} \tag{2.33}
\end{equation*}
$$

It follows that $L_{K_{N}} \leq C_{1}:=c \cdot C$.
It is proved in [9, Section 5] that if $N \geq \exp (c n)$ then, with probability greater than $1-\exp (-c n)$, one has

$$
\begin{equation*}
c_{1} K \subseteq S_{N} \subseteq K_{N} \subseteq K \subseteq c_{2} \bar{B}_{1}^{n} \tag{2.34}
\end{equation*}
$$

The last inclusion is established in [4] for isotropic 1-unconditional convex bodies. Then, $\left|K_{N}\right|^{1 / n} \geq\left|S_{N}\right|^{1 / n} \geq c_{1}$ and

$$
\begin{equation*}
\frac{1}{\left|K_{N}\right|} \int_{K_{N}}\|x\|_{1} d x \leq \frac{1}{\left|K_{N}\right|} \int_{K_{N}} c_{3} n\|x\|_{K_{N}} d x \leq c_{3} n \tag{2.35}
\end{equation*}
$$

Therefore, (2.32) gives $L_{K_{N}} \leq c_{4}:=c_{3} / c_{1}$ in this case as well.
Similar arguments work for S_{N}.

3 Remarks

§3.1. Let K be an isotropic convex body in \mathbb{R}^{n} with the property $\|\langle\cdot, \theta\rangle\|_{\psi_{2}} \leq$ $C\|\langle\cdot, \theta\rangle\|_{2}$ for every $\theta \in \mathbb{R}^{n}$, where $C>0$ is an absolute constant. This class of ψ_{2}-bodies includes the balls \bar{B}_{q}^{n} of $\ell_{q}^{n}, 2 \leq q \leq \infty$ (see [3]). It is also known that ψ_{2}-bodies have bounded isotropic constant; this was proved by Bourgain in [7]. Starting with (1.3) instead of Lemma 2.1 and using the method of Section 2 one can prove that, with probability greater than $1-\exp (-c n)$, the isotropic constants of K_{N} and S_{N} are bounded by an absolute constant. Actually, the argument is completely parallel to the one of Alonso-Gutiérrez in [1] for the case of random points from S_{2}^{n-1}. Note that 1-unconditional isotropic convex bodies are not necessarily ψ_{2}-bodies.
$\S 3.2$. If x_{1}, \ldots, x_{N} are independent random points uniformly distributed in a convex body K of volume 1 in \mathbb{R}^{n}, we define

$$
\begin{equation*}
\mathbb{E}(K, N)=\mathbb{E}\left|S_{N}\right|^{1 / n}=\mathbb{E}\left|\operatorname{conv}\left\{x_{1}, \ldots, x_{N}\right\}\right|^{1 / n} \tag{3.1}
\end{equation*}
$$

In [11] it was proved that if K is an isotropic 1 -unconditional convex body in \mathbb{R}^{n}, then, for every $N \geq n+1$,

$$
\begin{equation*}
\mathbb{E}(K, N) \leq C \frac{\sqrt{\log (2 N / n)}}{\sqrt{n}} \tag{3.2}
\end{equation*}
$$

where $C>0$ is an absolute constant. Observe that this is a direct consequence of Proposition 2.7. We have

$$
\begin{equation*}
\left|K_{N}\right|^{1 / n} n L_{K_{N}} \leq C \sqrt{n} \sqrt{\log (2 N / n)} \tag{3.3}
\end{equation*}
$$

with probability greater than $1-\exp (-c n)$, so the result follows from the fact that $L_{K_{N}} \geq c_{1}$, where $c_{1}>0$ is an absolute constant. This was observed by A. Pajor.

In [10] it was proved that if K is any convex body in \mathbb{R}^{n}, then $\mathbb{E}(K, N) \leq$ $C L_{K} \frac{\log (2 N / n)}{\sqrt{n}}$. Using the methods of [10], [11] and the concentration result of G.

Paouris (see [16]) one can prove that for any convex body K in \mathbb{R}^{n}, if $n+1 \leq N \leq$ $n e^{\sqrt{n}}$ then

$$
\begin{equation*}
\mathbb{E}(K, N) \leq C L_{K} \frac{\sqrt{\log (N / n)}}{\sqrt{n}} \tag{3.4}
\end{equation*}
$$

where $C>0$ is an absolute constant. This would be a consequence (for the full range of values of the parameter N) of an affirmative answer to Question 1.1.

References

[1] D. Alonso-Gutiérrez, About the isotropy constant of random convex sets, Preprint: http://arxiv.org/abs/0707.1570.
[2] S. Artstein-Avidan, Proportional concentration phenomena on the sphere, Israel J. Math. 132 (2002), 337-358.
[3] F. Barthe, O. Guédon, S. Mendelson and A. Naor, A probabilistic approach to the geometry of the ℓ_{p}^{n}-ball, Ann. Prob. 33 (2005), 480-513.
[4] S. G. Bobkov and F. L. Nazarov, On convex bodies and log-concave probability measures with unconditional basis, Geom. Aspects of Funct. Analysis (MilmanSchechtman eds.), Lecture Notes in Math. 1807 (2003), 53-69.
[5] S. G. Bobkov and F. L. Nazarov, Large deviations of typical linear functionals on a convex body with unconditional basis, Stochastic Inequalities and Applications, Progr. Probab. 56, Birkhäuser, Basel, 2003, 3-13.
[6] J. Bourgain, On the distribution of polynomials on high dimensional convex sets, Geom. Aspects of Funct. Analysis (Lindenstrauss-Milman eds.), Lecture Notes in Math. 1469 (1991), 127-137.
[7] J. Bourgain, On the isotropy constant for ψ_{2}-bodies, Geom. Aspects of Funct. Analysis (Milman-Schechtman eds.), Lecture Notes in Math. 1807 (2003), 114-121.
[8] J. Bourgain, J. Lindenstrauss and V. D. Milman, Minkowski sums and symmetrizations, Geom. Aspects of Funct. Analysis (Lindenstrauss-Milman eds.), Lecture Notes in Math. 1317 (1988), 44-74.
[9] A. Giannopoulos and V. D. Milman, Concentration property on probability spaces, Adv. in Math. 156 (2000), 77-106.
[10] A. Giannopoulos and A. Tsolomitis, On the volume radius of a random polytope in a convex body, Math. Proc. Cambridge Phil. Soc. 134 (2003), 13-21.
[11] A. Giannopoulos, M. Hartzoulaki and A. Tsolomitis, Random points in isotropic unconditional convex bodies, J. London Math. Soc. 72 (2005), 779-798.
[12] M. Hartzoulaki and G. Paouris, Quermassintegrals of a random polytope in a convex body, Arch. Math. 80 (2003), 430-438.
[13] B. Klartag, On convex perturbations with a bounded isotropic constant, Geom. Funct. Analysis 16 (2006), 1274-1290.
[14] B. Klartag and G. Kozma, On the hyperplane conjecture for random convex sets, Preprint: http://arxiv.org/abs/math.MG/0612517.
[15] V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, Geom. Aspects of Funct. Analysis (Lindenstrauss-Milman eds.), Lecture Notes in Math. 1376 (1989), 64-104.
[16] G. Paouris, Concentration of mass in convex bodies, Geom. Funct. Analysis 16 (2006), 1021-1049.
[17] S. J. Szarek, On the best constant in the Khinchine inequality, Studia Math. 58 (1976), 197-208.
N. Dafnis: Department of Mathematics, University of Athens, Panepistimiopolis 157 84, Athens, Greece.
E-mail: nikdafnis@googlemail.com
A. Giannopoulos: Department of Mathematics, University of Athens, Panepistimiopolis 157 84, Athens, Greece.
E-mail: apgiannop@math.uoa.gr
O. Guédon: Université Pierre et Marie Curie, Institut de Mathématiques de Jussieu, boîte 186, 4 Place Jussieu, 75252 Paris Cedex 05, France.
E-mail: guedon@math.jussieu.fr

