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Abstract
The purpose of this article is to describe a reduction of the slicing problem

to the study of the parameter I1(K,Z
◦
q (K)) =

∫
K
‖〈·, x〉‖Lq(K)dx. We show

that an upper bound of the form I1(K,Z
◦
q (K)) 6 C1q

s√nL2
K , with 1/2 6

s 6 1, leads to the estimate

Ln 6
C2

4
√
n logn

q
1−s
2

,

where Ln := max{LK : K is an isotropic convex body in Rn}.

1 Introduction

A convex body K in Rn is called isotropic if it has volume |K| = 1, it is centered,
i.e. its center of mass is at the origin, and if its inertia matrix is a multiple of the
identity. The last property is equivalent to the existence of a constant LK > 0 such
that

(1.1)
∫

K

〈x, θ〉2dx = L2
K

for every θ in the Euclidean unit sphere Sn−1. It is not hard to see that for
every convex body K in Rn there exists an affine transformation T of Rn such
that T (K) is isotropic. Moreover, this isotropic image is unique up to orthogonal
transformations; consequently, one may define the isotropic constant LK as an
invariant of the affine class of K.

The isotropic constant is closely related to the hyperplane conjecture (also
known as the slicing problem) which asks if there exists an absolute constant c > 0
such that max

θ∈Sn−1
|K ∩ θ⊥| > c for every convex body K of volume 1 in Rn with

center of mass at the origin. This is because, by Brunn’s principle, for any convex
body K in Rn and any θ ∈ Sn−1, the function t 7→ |K ∩ (θ⊥ + tθ)|

1
n−1 is concave

on its support, and this is enough to show that

(1.2)
∫

K

〈x, θ〉2dx ' |K ∩ θ⊥|−2.

Using this relation one can check that an affirmative answer to the slicing problem
is equivalent to the following statement: “There exists an absolute constant C > 0
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such that LK 6 C for every convex body K”. We refer to the article [13] of Milman
and Pajor for background information about isotropic convex bodies.

It is known that LK > LBn
2

> c > 0 for every convex body K in Rn (we use
the letters c, c1, C etc. to denote absolute constants). In the opposite direction, let
us write Ln for the maximum of all isotropic constants of convex bodies in Rn,

(1.3) Ln := max{LK : K is isotropic in Rn}.

Bourgain first proved in [4] that Ln 6 c 4
√

n logn and, a few years ago, Klartag [8]
obtained the estimate Ln 6 c 4

√
n (see also [9] for a second proof of this bound).

The purpose of this article is to describe a reduction of the slicing problem (or,
equivalently, the question whether Ln can be bounded by a quantity independent
of the dimension n), to the study of the parameter

(1.4) I1(K, Z◦
q (K)) =

∫
K

‖〈·, x〉‖Lq(K)dx

for isotropic convex bodies K. Generally, if K is a centered convex body of volume
1 in Rn, then for every symmetric convex body C in Rn and for every q ∈ (−n,∞),
q 6= 0, we define

(1.5) Iq(K, C) :=
(∫

K

‖x‖q
Cdx

)1/q

.

The notation I1(K, Z◦
q (K)) is then justified by the fact that ‖〈·, x〉‖Lq(K) is the

norm induced on Rn by the polar body Z◦
q (K) of the Lq-centroid body of K (see

the next section for background information on Lq-centroid bodies).
Our reduction can be viewed as a continuation of Bourgain’s approach to the

slicing problem in [4]: the bound O( 4
√

n logn) followed from the inequality

(1.6) nL2
K 6 I1

(
K, (T (K))◦

)
,

after obtaining an upper bound for the quantity I1

(
K, (T (K))◦

)
, where T ∈ SL(n)

is a symmetric, positive definite matrix such that the mean width of T (K) satisfies
the estimate w(T (K)) 6 c

√
n logn (the existence of such a position for K is guar-

anteed by Pisier’s estimate on the norm of the Rademacher projection; see [19]).
In Section 4 we prove the following statement:

Theorem 1.1. There exists an absolute constant ρ ∈ (0, 1) with the following
property: given κ, τ > 1, for every n > n0(τ) and every isotropic convex body K in
Rn which satisfies the following entropy estimate:

(1.7) log N(K, tBn
2 ) 6

κn2 log2n

t2
for all t > τ

√
n logn,

we have that, if q > 2 satisfies

(1.8) 2 6 q 6 ρ2n and I1(K, Z◦
q (K)) 6 ρnL2

K ,
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then

(1.9) L2
K 6 Cκ

√
n

q
log2n max

{
1,

I1(K, Z◦
q (K))

√
qnL2

K

}
.

Theorem 1.1 can lead to an upper bound for Ln, provided that there exist
(κ, τ)-regular isotropic convex bodies in Rn, i.e. bodies which satisfy the entropy
estimate (1.7) for a pair of constants κ, τ , and at the same time have maximal
isotropic constant, i.e. LK ' Ln. The existence of such bodies is essentially
established by [5, Theorem 5.7]. In Section 5 we give a self-contained proof of this
fact; see Theorem 5.1.

Observe that, for every isotropic convex body K in Rn, we have that both
conditions in (1.8) are satisfied with q = 2, since I1(K, Z◦

2 (K)) 6
√

nL2
K . Therefore,

Theorem 1.1 will give us that

(1.10) L2
K 6 C1

√
n log2 n

for any such body which is regular. Theorem 5.1 then guarantees that, for some
absolute constants κ, τ and δ > 0, there exists a (κ, τ)-regular isotropic convex
body K in Rn with LK > δLn, and hence (1.10) leads us to Bourgain’s bound
again: Ln 6 C2

4
√

n logn.
However, the behaviour of I1(K, Z◦

q (K)) may allow us to use much larger values
of q. In Section 3 we discuss upper and lower bounds for this quantity. For every
isotropic convex body K in Rn we have some simple general estimates:

(i) For every 2 6 q 6 n,

c1 max
{√

nL2
K ,
√

qn,R(Zq(K))LK

}
6 I1(K, Z◦

q (K)) 6 c2q
√

nL2
K .

(ii) If 2 6 q 6
√

n, then

c1 max
{√

nL2
K ,
√

qnLK

}
6 I1(K, Z◦

q (K)) 6 c2q
√

nL2
K .

Any improvement of the exponent of q in the upper bound I1(K, Z◦
q (K)) 6 cq

√
nL2

K

would lead to an estimate Ln 6 Cnα with α < 1
4 . It seems plausible that one could

even have I1(K, Z◦
q (K)) 6 c

√
qnL2

K , at least when q is small, say 2 6 q �
√

n.
Some evidence is given by the following facts:

(iii) If K is an unconditional isotropic convex body in Rn, then

c1
√

qn 6 I1(K, Z◦
q (K)) 6 c2

√
qn logn

for all 2 6 q 6 n.

(iv) If K is an isotropic convex body in Rn then, for every 2 6 q 6
√

n, there
exists a set Aq ⊆ O(n) with ν(Aq) > 1 − e−q such that I1(K, Z◦

q (U(K))) 6
c3
√

qn L2
K for all U ∈ Aq.
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The proofs of (i)-(iv) are given in Section 3.
We can make a final observation about the reduction of Theorem 1.1 on the

basis that there exist (κ, τ)-regular isotropic convex bodies K in Rn with LK > δLn

(where κ, τ, δ > 0 are absolute constants) which, at the same time, have “small
diameter”: they satisfy K ⊆ γ

√
nLK Bn

2 , where γ > 0 is an absolute constant (see
Theorem 5.9). In Section 6, we show that then it is enough to study the parameter
I1(K, Z◦

q (K)) within the class IKsd of isotropic convex bodies which are O(γ)-
close to the Euclidean ball Dn of volume 1 and have uniformly bounded isotropic
constant. The precise statement which we prove is the following: if we have an
isotropic symmetric convex body K in Rn satisfying K ⊆ γ

√
nLK Bn

2 , then we can
find an isotropic symmetric convex body C such that LC 6 c1, c2Dn ⊆ C ⊆ c3γDn,
and

(1.11)
I1(K, Z◦

q (K))
√

qnL2
K

6 c4

I1(C,Z◦
q (C))

√
qn

for all 1 6 q 6 n, where c1, c2, c3, c4 > 0 are absolute constants.

2 Notation and preliminaries

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote
the corresponding Euclidean norm by ‖ · ‖2, and write Bn

2 for the Euclidean unit
ball, and Sn−1 for the unit sphere. Volume is denoted by | · |. We write ωn for the
volume of Bn

2 and σ for the rotationally invariant probability measure on Sn−1.
We also denote the Haar measure on O(n) by ν. The Grassmann manifold Gn,k

of k-dimensional subspaces of Rn is equipped with the Haar probability measure
µn,k. Let k 6 n and F ∈ Gn,k. We will denote the orthogonal projection from Rn

onto F by PF . We also define BF := Bn
2 ∩ F and SF := Sn−1 ∩ F .

The letters c, c′, c1, c2 etc. denote absolute positive constants whose value may
change from line to line. Whenever we write a ' b, we mean that there exist
absolute constants c1, c2 > 0 such that c1a 6 b 6 c2a. Also if K, L ⊆ Rn we will
write K ' L if there exist absolute constants c1, c2 > 0 such that c1K ⊆ L ⊆ c2K.

A convex body in Rn is a compact convex subset C of Rn with nonempty
interior. We say that C is symmetric if x ∈ C implies that −x ∈ C. We say that
C is centered if it has center of mass at the origin, i.e.

∫
C
〈x, θ〉 dx = 0 for every

θ ∈ Sn−1. The support function of a convex body C is defined by

(2.1) hC(y) := max{〈x, y〉 : x ∈ C},

and the mean width of C is

(2.2) w(C) :=
∫

Sn−1
hC(θ)σ(dθ).

For each −∞ < q < ∞, q 6= 0, we define the q-mean width of C by

(2.3) wq(C) :=
(∫

Sn−1
hq

C(θ)σ(dθ)
)1/q

.
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The radius of C is the quantity R(C) := max{‖x‖2 : x ∈ C}. Also, if the origin is
an interior point of C, the polar body C◦ of C is defined as follows:

(2.4) C◦ := {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ C}.

Finally, we write C for the homothetic image of volume 1 of a convex body C ⊆ Rn,
i.e. C := C

|C|1/n .

Recall that if A and B are nonempty sets in Rn, then the covering number
N(A,B) of A by B is defined to be the smallest number of translates of B whose
union covers A. In this paper, B will usually be a multiple of the Euclidean ball:
in those cases we also require that the centres of the translates of B are taken from
the set A; one can easily check that this additional requirement does not crucially
affect our entropy estimates.

2.1 Lq-centroid bodies

Let K be a convex body of volume 1 in Rn. For every q > 1 and every y ∈ Rn we
set

(2.5) hZq(K)(y) :=
(∫

K

|〈x, y〉|qdx

)1/q

.

The Lq-centroid body Zq(K) of K is the centrally symmetric convex body with
support function hZq(K). Note that K is isotropic if and only if it is centered and
Z2(K) = LKBn

2 . Also, if T ∈ GL(n) with detT = ±1, then Zp(T (K)) = T (Zp(K)).
From Hölder’s inequality it follows that Z1(K) ⊆ Zp(K) ⊆ Zq(K) ⊆ Z∞(K) for
all 1 6 p 6 q 6 ∞, where Z∞(K) = conv{K,−K}. Using Borell’s lemma (see [15,
Appendix III]), one can check that inverse inclusions also hold:

(2.6) Zq(K) ⊆ β1qZ1(K),

and more generally,

(2.7) Zq(K) ⊆ β2
q

p
Zp(K)

for all 1 6 p < q. In particular, if K is isotropic, then R(Zq(K)) 6 β1qLK . One
can also check that if K is centered, then Zq(K) ⊇ β3 K for all q > n (see [16]).
All the constants βi, βj that appear in this section are absolute positive constants
which may be used again in the arguments of the next sections.

Let C be a symmetric convex body in Rn and let ‖·‖C denote the norm induced
on Rn by C. The parameter k∗(C) is the largest positive integer k 6 n with the
property that the measure of F ∈ Gn,k for which we have 1

2w(C)BF ⊆ PF (C) ⊆
2w(C)BF is greater than n

n+k . It is known that

(2.8) β4n
w(C)2

R(C)2
6 k∗(C) 6 β5n

w(C)2

R(C)2
.
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The q-mean width wq(C) is equivalent to w(C) as long as q 6 k∗(C). Litvak,
Milman and Schechtman proved in [11] that, for every symmetric convex body C
in Rn,

(i) If 1 6 q 6 k∗(C) then w(C) 6 wq(C) 6 β6w(C).

(ii) If k∗(C) 6 q 6 n then β7

√
q/n R(C) 6 wq(C) 6 β8

√
q/n R(C).

Let K be a centered convex body of volume 1 in Rn. Recall that, for every
symmetric convex body C in Rn and for every q ∈ (−n,∞), q 6= 0, we define

(2.9) Iq(K, C) :=
(∫

K

‖x‖q
Cdx

)1/q

.

When C = Bn
2 , we write Iq(K) := Iq(K, Bn

2 ) for simplicity. In [17] and [18] it is
proved that for every 1 6 q 6 n/2,

(2.10) Iq(K) '
√

n/q wq(Zq(K)) and I−q(K) '
√

n/q w−q(Zq(K)).

The parameter q∗(K) is also defined by

(2.11) q∗(K) := max{q 6 n : k∗(Zq(K)) > q}.

Then, the main result of [18] states that, for every centered convex body K of
volume 1 in Rn, one has I−q(K) ' Iq(K) for every 1 6 q 6 q∗(K). In particular,
for all q 6 q∗(K) one has Iq(K) 6 β9I2(K). If K is isotropic, one can check that
q∗(K) > c

√
n, where c > 0 is an absolute constant (for a proof, see [17]). Therefore,

(2.12) Iq(K) 6 β10

√
nLK for every q 6

√
n.

In particular, from (2.10) and (2.12) we see that w(Zq(K)) ' wq(Zq(K)) ' √
qLK

for all q 6
√

n.

2.2 The bodies Bq(K, F )

Another family of convex bodies associated with a centered convex body K ⊂ Rn

was introduced by Ball in [1] (see also [13]): to define them, let us consider a k-
dimensional subspace F of Rn and its orthogonal subspace E. For every φ ∈ F \{0}
we denote by E+(φ) the halfspace {x ∈ span{E, φ} : 〈x, φ〉 > 0}. Ball proved that,
for every q > 0, the function

(2.13) φ 7→ ‖φ‖1+ q
q+1

2

(∫
K∩E+(φ)

〈x, φ〉qdx

)− 1
q+1

is the gauge function of a convex body Bq(K, F ) on F . Several properties of these
bodies can be found in [1], [13] and also in [17], [18]. In Section 5, we will make use
of only two of those:
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(i) Let K ⊂ Rn be isotropic, let 1 6 k < n and let F ∈ Gn,k. Then the
body Bk+1(K, F ) is almost isotropic, namely it has (by definition) volume 1,
and we can write Bk+1(K, F ) ' T (Bk+1(K, F )) where T (Bk+1(K, F )) is an
isotropic (in the regular sense) linear image of Bk+1(K, F ). In addition,

(2.14) |K ∩ F⊥|1/k '
LBk+1(K,F )

LK
.

(ii) Let K, F and k < n be as above and consider any p ∈ [1, k]. Then

(2.15) Zp

(
Bk+1(K, F )

)
' |K ∩ F⊥|1/kPF (Zp(K)).

2.3 Two related lemmas

We close this section with two lemmas that will be used in the sequel; they reveal
some properties of the support function of the Lq-centroid bodies of a convex body
with respect to subsets or certain integrals of maxima.

Lemma 2.1. Let K be a convex body of volume 1 in Rn, and consider any points
z1, z2, . . . , zN ∈ Rn. If q > 1 and p > max{logN, q}, then

(2.16)
(∫

K

max
16i6N

|〈x, zi〉|qdx

)1/q

6 β1 max
16i6N

hZp(K)(zi),

where β1 > 0 is an absolute constant.

Proof. Let p > max{logN, q} and θ ∈ Sn−1. Markov’s inequality shows that

(2.17) |{x ∈ K : |〈x, θ〉| > e3hZp(K)(θ)}| 6 e−3p.

Since x 7→ |〈x, θ〉| is a seminorm, from Borell’s lemma (see [15, Appendix III]) we
get that

(2.18) |{x ∈ K : |〈x, θ〉| > e3thZp(K)(θ)}| 6 (1− e−3p)
(

e−3p

1− e−3p

) t+1
2

6 e−pt

for every t > 1. We set S := e3 max
16i6N

hZp(K)(zi). Then, for every t > 1 we have

that

|{x ∈ K : max
16i6N

|〈x, zi〉| > St}| 6
N∑

i=1

|{x ∈ K : |〈x, zi〉| > e3thZp(K)(zi)}|

6 Ne−pt.
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It follows that∫
K

max
16i6N

|〈x, zi〉|qdx = q

∫ ∞

0

sq−1|{x ∈ K : max
16i6N

|〈x, zi〉| > s}| ds

6 Sq + q

∫ ∞

S

sq−1|{x ∈ K : max
16i6N

|〈x, zi〉| > s}| ds

= Sq

(
1 + q

∫ ∞

1

tq−1|{x ∈ K : max
16i6N

|〈x, zi〉| > St}| dt

)
6 Sq

(
1 + qN

∫ ∞

1

tq−1e−ptdt

)
= Sq

(
1 +

qN

pq

∫ ∞

p

tq−1e−tdt

)
6 Sq

(
1 +

qN

pq
e−ppq

)
6 (3S)q,

where we have also used the fact that, for every p > q > 1,

(2.19)
∫ ∞

p

tq−1e−tdt 6 e−ppq.

This finishes the proof (with β1 = 3e3). 2

Remark 2.2. It is a well-known fact (see e.g. [6, Proposition 2.5.1]) that

(2.20)
∫

K

max
16i6N

|〈x, zi〉|dx 6 C1 logN max
16i6N

hZ1(K)(zi).

Through a variant of the argument in [6], and using (2.19) as well, one can also
show that for q 6 logN ,

(2.21)
(∫

K

max
16i6N

|〈x, zi〉|qdx

)1/q

6 C2 logN max
16i6N

hZ1(K)(zi).

Now, both inequalities can be directly deduced from Lemma 2.1 combined with
(2.6), however the lemma provides additional information on how well the quantities(∫

K
maxi |〈x, zi〉|qdx

)1/q and maxi

(∫
K
|〈x, zi〉|qdx

)1/q ≡ maxi hZq(K)(zi) can be
compared: for q 6 logN , using also (2.7), we have that
(2.22)(∫

K

max
16i6N

|〈x, zi〉|qdx

)1/q

6 β1 max
16i6N

hZlogN (K)(zi) 6 C
logN

q
max

16i6N
hZq(K)(zi),

whereas for q > logN ,

(2.23)
(∫

K

max
16i6N

|〈x, zi〉|qdx

)1/q

' max
16i6N

(∫
K

|〈x, zi〉|qdx

)1/q

.
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We now turn our attention to the Lq-centroid bodies of subsets of K.

Lemma 2.3. Let K be a convex body of volume 1 in Rn and let 1 6 q, r 6 n.
There exists an absolute constant β2 > 0 such that if A is a subset of K with
|A| > 1− e−β2q, then

(2.24) Zp(K) ⊆ 2Zp(A)

for all 1 6 p 6 q. Also, for the opposite inclusion, it suffices to have |A| > 2−
r
2 to

conclude that

(2.25) Zp(A) ⊆ 2Zp(K)

for all r 6 p 6 n.

Proof. Let θ ∈ Sn−1. Note that

(2.26) hZp(A)(θ) =
(∫

A

|〈x, θ〉|pdx

)1/p

=
1

|A|
1
p + 1

n

(∫
A

|〈x, θ〉|pdx

)1/p

.

We first prove (2.25): since A ⊆ K and assuming that |A| > 2−
r
2 , we have

hZp(K)(θ) =
(∫

K

|〈x, θ〉|pdx

)1/p

>

(∫
A

|〈x, θ〉|pdx

)1/p

> 2−
r
2p−

r
2n

(∫
A

|〈x, θ〉|pdx

)1/p

>
1
2
hZp(A)(θ)

for all r 6 p 6 n. On the other hand, assuming that |A| > 1− e−β2q and using the
fact that ‖〈·, θ〉‖2p 6 2β2‖〈·, θ〉‖p, we have∫

K

|〈x, θ〉|pdx =
∫

A

|〈x, θ〉|pdx +
∫

K\A
|〈x, θ〉|pdx

6 |A|1+
p
n

∫
A

|〈x, θ〉|pdx + |K \A|1/2

(∫
K

|〈x, θ〉|2pdx

)1/2

6
∫

A

|〈x, θ〉|pdx + e−β2q/2(2β2)p

∫
K

|〈x, θ〉|pdx

6
∫

A

|〈x, θ〉|pdx +
1
2

∫
K

|〈x, θ〉|pdx

for every p 6 q, if β2 > 0 is chosen large enough. This proves (2.24). 2

3 Simple estimates for I1(K, Z◦
q (K))

In this section we give some upper and lower bounds for I1(K, Z◦
q (K)) which hold

true for every isotropic convex body K in Rn and any 1 6 q 6 n. In fact, our
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arguments are quite direct and make use of estimates for simple parameters of the
bodies Zq(K), such as their radius or their volume, so that it is straightforward
to reach analogous upper and lower bounds for I1(K, Z◦

q (M)) in the more general
case when K and M are not necessarily the same isotropic convex body.

Since hZq(K)(x) 6 R(Zq(K))‖x‖2, we have that

(3.1) I1(K, Z◦
q (K)) 6 R(Zq(K))

∫
K

‖x‖2 dx 6 R(Zq(K))
√

nLK ,

which, in combination with the fact that R(Zq(K)) 6 β1qLK (a direct consequence
of (2.6)), leads to the bound

(3.2) I1(K, Z◦
q (K)) 6 β1q

√
nL2

K .

More generally, we have that

(3.3) I1(K, Z◦
q (M)) 6 R(Zq(M))

∫
K

‖x‖2 dx 6 β1q
√

nLKLM .

However, in the case that M is an orthogonal transformation of K, the next lemma
shows that the average of the quantity I1(K, Z◦

q (M)) can be bounded much more
effectively than in (3.3).

Lemma 3.1. Let K be a centered convex body of volume 1 in Rn. For every
2 6 q 6 n,

(3.4)

(∫
O(n)

Iq
1

(
K, Z◦

q (U(K))
)
dν(U)

)1/q

6 C
√

q/nI2
q (K),

where C > 0 is an absolute constant.

Proof. We write∫
O(n)

Iq
1

(
K, Z◦

q (U(K))
)
dν(U) 6

∫
O(n)

Iq
q

(
K, Z◦

q (U(K))
)
dν(U)

=
∫

O(n)

∫
K

∫
U(K)

|〈x, y〉|qdy dx dν(U)

=
∫

K

∫
K

∫
O(n)

|〈x,Uy〉|qdν(U) dy dx

=
∫

K

∫
K

‖y‖q
2

∫
Sn−1

|〈x, θ〉|qdσ(θ) dy dx

= cq
n,q

∫
K

∫
K

‖y‖q
2‖x‖

q
2dy dx

= cq
n,qI

2q
q (K),

where cn,q '
√

q/n. 2
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Recall that in the case that K is isotropic, one has from [17] that Iq(K) '
max{

√
nLK , R(Zq(K))}. Then, Lemma 3.1 shows that, for every 2 6 q 6 n,

(3.5)

(∫
O(n)

Iq
1

(
K, Z◦

q (U(K))
)
dν(U)

)1/q

6 C1 max{√qn, q2
√

q/n}L2
K ,

where C1 > 0 is an absolute constant. Therefore, for every 2 6 q 6
√

n, there exists
a set Aq ⊆ O(n) with ν(Aq) > 1 − e−q such that I1

(
K, Z◦

q (U(K))
)

6 C2
√

qn L2
K

for all U ∈ Aq. It is thus conceivable that there are properties of the bodies Zq(K)
which we can exploit to also bound I1(K, Z◦

q (K)) more effectively than in (3.1) and
(3.2).

We now pass to lower bounds; we will present three simple arguments. For the
first one we do not have to assume that K or M are in the isotropic position, only
that they are centered and have volume 1: from [13, Corollary 2.2.a] we have that

(3.6) I1(K, Z◦
q (M)) =

∫
K

hZq(M)(x) dx >
n

n + 1
1

|Z◦
q (M)|1/n

.

Then, by the Blaschke–Santaló inequality, we get that

(3.7) I1(K, Z◦
q (M)) > c1n|Zq(M)|1/n > c2

√
qnLM

for all 2 6 q 6
√

n, because |Zq(M)|1/n > c3

√
q/n LM for this range of values of q

by a recent result of Klartag and E. Milman (see [9]). When
√

n 6 q 6 n, we have
the weaker lower bound |Zq(M)|1/n > c4

√
q/n, which is due to Lutwak, Yang and

Zhang (see [12]). It follows that I1(K, Z◦
q (M)) > c5

√
qn for this range of values of

q.
For the second argument, we require that K is isotropic and we write

I1(K, Z◦
q (M)) =

∫
K

hZq(M)(x) dx =
∫

K

max
z∈Zq(M)

|〈x, z〉| dx(3.8)

> max
z∈Zq(M)

∫
K

|〈x, z〉| dx > c max
z∈Zq(M)

‖z‖2LK

= cR(Zq(M))LK .

Finally, if M is isotropic as well, we can use Hölder’s inequality to get

I1(K, Z◦
q (M)) =

∫
K

hZq(M)(x) dx(3.9)

>
∫

K

hZ2(M)(x) dx =
∫

K

‖x‖2LM dx > c
√

nLKLM .

All the estimates presented above are gathered in the next proposition.

Proposition 3.2. Let K and M be isotropic convex bodies in Rn. For every
2 6 q 6 n,

(3.10) c1 max
{√

nLKLM ,
√

qn,R(Zq(M))LK

}
6 I1(K, Z◦

q (M)) 6 c2q
√

nLKLM .
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In addition, if 2 6 q 6
√

n then

(3.11) c1 max
{√

nLKLM ,
√

qnLM

}
6 I1(K, Z◦

q (M)) 6 c2q
√

nLKLM .

The situation is more or less clear in the unconditional case. Recall that a
convex body K in Rn is called unconditional if it is symmetric with respect to
all coordinate hyperplanes (for some orthonormal basis of Rn). Then, it is easy
to check that one can bring K to the isotropic position by applying an operator
which is diagonal with respect to this basis. It is also not hard to prove that
the isotropic constant of K satisfies LK ' 1. The upper bound follows from the
Loomis–Whitney inequality; see also [2]. It is known (from [3]) that, for every
q > 2, one has hZq(K)(y) 6 c

√
qn‖y‖∞, where c > 0 is an absolute constant. This

leads us to the estimates

(3.12) c1
√

qn 6 I1(K, Z◦
q (K)) 6 c

√
qn

∫
K

‖x‖∞dx 6 c2
√

qn logn

for all 2 6 q 6 n (the same estimates hold true for the quantity I1(K, Z◦
q (M)) when

M is too an unconditional isotropic convex body).

4 The reduction

Let κ, τ > 0. Throughout this paper, we say that an isotropic convex body K in
Rn is (κ, τ)-regular if

(4.1) log N(K, tBn
2 ) 6

κn2 log2n

t2
for all t > τ

√
n logn.

The purpose of this section is to present a reduction of the slicing problem to
the study of the quantity I1(K, Z◦

q (K)) for (κ, τ)-regular isotropic convex bodies:
we show that any upper bound for I1(K, Z◦

q (K)) immediately leads to an upper
bound for the isotropic constant LK of a regular convex body K. Note that the
dependence seems to be nontrivial, in the sense that using the simple estimates of
Section 3 we can already recover the currently known bound for LK with a loss
of a logarithmic factor, while a small (although not necessarily easy) improvement
to those estimates will also result in new bounds for LK . In a sense, we will have
fully presented our reduction by the end of the next section, where we provide a
self-contained proof of the fact that there exist regular isotropic convex bodies K
in Rn with LK ' Ln. First, let us see how the quantity I1(K, Z◦

q (K)) and the
isotropic constant of a regular convex body K are connected.

Theorem 4.1. There exists an absolute constant ρ ∈ (0, 1) with the following
property: given κ, τ > 1, for every n > n0(τ) and every (κ, τ)-regular isotropic
convex body K in Rn we have that, if q > 2 satisfies

(4.2) 2 6 q 6 ρ2n and I1(K, Z◦
q (K)) 6 ρnL2

K ,

12



then

(4.3) L2
K 6 Cκ

√
n

q
log2n max

{
1,

I1(K, Z◦
q (K))

√
qnL2

K

}
.

Proof. We define a convex body W in Rn, setting

(4.4) W := {x ∈ K : hZq(K)(x) 6 C1I1(K, Z◦
q (K))},

where C1 = e2β2 and β2 > 0 is the constant which appears in Lemma 2.3. From
Markov’s inequality we have that |W | > 1 − e−2β2 and also trivially that |W | >
2−1 > 2−

q
2 (as long as β2 > 1). Then we set

(4.5) K1 := W.

Applying both cases of Lemma 2.3 to the set W with p = 2, we see that

(4.6)
1
2
Z2(K1) ⊆ Z2(K) ⊆ 2Z2(K1).

This implies that

(4.7)
1
4
L2

K =
1
4

∫
K

〈x, θ〉2dx 6
∫

K1

〈x, θ〉2dx 6 4
∫

K

〈x, θ〉2dx = 4L2
K

for every θ ∈ Sn−1, and hence

(4.8)
nL2

K

4
6

n∑
i=1

∫
K1

〈x, ei〉2dx =
∫

K1

‖x‖22dx 6 4nL2
K .

We also have

(4.9) K1 = |W |−1/nW ⊆ 2W ⊆ 2K,

thus for every x ∈ K1 we have x/2 ∈ W , and using (2.25) of Lemma 2.3 again, we
can write

(4.10) hZq(K1)(x) 6 2hZq(K)(x) = 4hZq(K)(x/2) 6 4C1I1(K, Z◦
q (K)).

Finally,

(4.11) log N(K1, tB
n
2 ) 6 log N(2K, tBn

2 ) 6
4κn2 log2n

t2
,

for all t > 2τ
√

n logn. We now write

(4.12) nL2
K 6 4

∫
K1

‖x‖22dx 6 4
∫

K1

max
z∈K1

|〈x, z〉| dx.

13



(4.11) tells us that for every t > 2τ
√

n logn, we can find z1, . . . , zNt
∈ K1 such that

K1 ⊆
Nt⋃
i=1

(zi + tBn
2 ), and |Nt| 6 exp

(
4κn2 log2n

t2

)
. It follows that

(4.13) max
z∈K1

|〈x, z〉| 6 max
16i6Nt

|〈x, zi〉|+ max
w∈tBn

2

|〈x, w〉| = max
16i6Nt

|〈x, zi〉|+ t‖x‖2,

and hence

nL2
K 6 4

∫
K1

max
16i6Nt

|〈x, zi〉|dx + 4t

∫
K1

‖x‖2dx(4.14)

6 4
∫

K1

max
16i6Nt

|〈x, zi〉|dx + 8t
√

nLK .

We choose

(4.15) t20 = 16C2κ max
{

1,
I1(K, Z◦

q (K))
√

qnL2
K

}
n3/2

√
q

log2n,

where C2 = 16C1β2β1 with β2 the constant appearing in (2.7) and β1 the constant
from Lemma 2.1. With this choice of t0, we have

(4.16) t20 > 16C2κ

√
n

q
n log2n >

16C2κ

ρ
n log2n,

as long as q satisfies (4.2), and

(4.17) t20 > 16C2κ
I1(K, Z◦

q (K))
qL2

K

n log2n.

From (4.16) it is clear that

(4.18) t20 > 16C2κ
n log2n

ρ
> 4τ2n logn,

provided that n > n0(τ, κ, ρ), so the argument above, leading up to (4.14), re-
mains valid for t = t0. We also set p0 := 4κn2 log2n

t20
. Observe that p0 > q (as

long as q is assumed to satisfy (4.2)), if ρ is chosen properly: indeed, we have
max

{
1,

I1(K,Z◦q (K))
√

qnL2
K

}
6 ρ
√

n/q, and hence

(4.19) t20 6 16C2κρ
n2 log2n

q
.

If we choose ρ < 1/(4C2), then we have

(4.20) p0 =
4κn2 log2n

t20
>

4κn2q log2n

16C2κρn2 log2n
=

q

4C2ρ
> q.
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We therefore see that, using Lemma 2.1 with q′ = 1, we can write
(4.21)∫

K1

max
16i6Nt0

|〈x, zi〉|dx 6 β1 max
16i6Nt0

hZp0 (K1)(zi) 6 β1β2
p0

q
max

16i6Nt0

hZq(K1)(zi).

Combining the above with (4.14), (4.10) and the definition of C2, we get

(4.22) nL2
K 6 C2

p0

q
I1(K, Z◦

q (K)) + 8t0
√

nLK .

Also, from (4.17) and the definition of p0, we have

(4.23) C2
p0

q
I1(K, Z◦

q (K)) =
4C2κI1(K, Z◦

q (K))
qt20

n2 log2n 6
1
4

nL2
K .

Therefore, (4.22) becomes

(4.24) nL2
K 6 C3t0

√
nLK .

This gives us that

(4.25) L2
K 6 C4

t20
n

= Cκ max
{

1,
I1(K, Z◦

q (K))
√

qnL2
K

}√
n

q
log2n,

as we desired. 2

5 Regular convex bodies with maximal isotropic
constant

Recall that Ln := max{LK : K is isotropic in Rn}. In order to be able to use the
argument of the previous section to bound Ln, we need to establish the existence
of (κ, τ)-regular convex bodies, namely bodies satisfying (4.1), whose isotropic con-
stant is as “close” to Ln as possible. The following theorem, formulated in the more
general setting of log-concave measures, was proven in [5].

Theorem 5.1. There exist absolute constants κ, τ and δ > 0 such that, for every
n ∈ N, there exists an isotropic convex body K in Rn with the following properties:

(i) LK > δLn.

(ii) log N(K, tBn
2 ) 6 κn2 log2n

t2 , for all t > τ
√

n logn.

For the reader’s convenience, we will give an outline of the proof in the setting
of convex bodies. First, we recall the following theorem by Pisier which will be
used in several steps of the argument (see [19] for a proof in the symmetric case;
this can easily be extended to the general case):
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Theorem 5.2. Let K be a centered convex body of volume 1 in Rn. For every
α ∈ (0, 2) there exists an ellipsoid Eα with |Eα| = 1 such that, for every t > 1,

(5.1) log N(K, tEα) 6
κ(α)
tα

n,

where κ(α) > 0 is a constant depending only on α.

Remark 5.3. One can take κ(α) 6 κ1
2−α , where κ1 > 0 is an absolute constant.

An ellipsoid Eα which satisfies (5.1) is called an α-regular M -ellipsoid for K.

Secondly, let us gather some useful facts about ellipsoids in Rn that we are
going to need for the proof of Theorem 5.1 (proofs for these facts can be found in
[5], [10] and [22]).

Lemma 5.4. Let E be an ellipsoid in Rn, then E = T (Bn
2 ) for some T ∈ GL(n).

We denote the eigenvalues of the matrix
√

T ∗T by λ1 > · · · > λn > 0 (recall that
T ∗T is a symmetric, positive definite matrix). Then, for all 1 6 k 6 n− 1,

(5.2) max
F∈Gn,k

|E ∩ F | = max
F∈Gn,k

|PF (E)| = ωk

k∏
i=1

λi

and

(5.3) min
F∈Gn,k

|E ∩ F | = min
F∈Gn,k

|PF (E)| = ωk

n∏
i=n−k+1

λi.

Also, if the dimension n is even, we can find a subspace F ∈ Gn,n/2 such that
PF (E) = λn/2BF (= λn/2B

n
2 ∩ F ).

In view of the last part of Lemma 5.4, we choose to restrict ourselves to the
cases that the dimension n is even, n = 2m for some m > 1, and prove Theorem
5.1 for those. However, as we will see in Remark 5.7, it is not hard to then extend
the theorem to all dimensions.
Proof of Theorem 5.1. We start with an isotropic convex body K1 with LK1 >
δ1L2m, where δ1 ∈ (0, 1). Then, one has the following upper bound for the volume
of sections of K1.

Lemma 5.5. For every k-codimensional subspace E of R2m, |K1 ∩E|1/k 6 c1(δ1),
where c1(δ1) > 0 depends only on δ1.

Proof. Let E be a k-codimensional subspace of R2m, and denote its orthogonal
subspace by F . We consider the body Bk+1(K1, F ), a convex body in the subspace
F defined as in Subsection 2.2, and we recall that

(5.4) c1

LBk+1(K1,F )

LK1

6 |K1 ∩ E|1/k 6 c2

LBk+1(K1,F )

LK1
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for some absolute constants c1, c2 independent of m or k. On the other hand, it is
not hard to check that if k 6 j then Lk 6 c3Lj (see e.g. [6, Theorem 4.2.2]). Thus,

(5.5) LBk+1(K1,F ) 6 Lk 6 c3L2m = (c3/δ1)LK1 ,

and the lemma follows with c1(δ1) = c2c3/δ1. 2

We will now invoke Pisier’s theorem to also give a lower bound for the volume
of m-dimensional sections of K1 that contain its barycenter.

Lemma 5.6. For every F ∈ G2m,m we have |K1∩F |1/m > c2(δ1), where c2(δ1) > 0
depends only on δ1.

Proof. We consider an α-regular M–ellipsoid Eα for K1 (for the proof of this lemma
we could have fixed α = 1; however, some steps of this more general argument will
be needed again later). Set tα = max{1, [κ(α)]1/α}. Then,

(5.6) |PF (K1)| 6 N(K1, tαEα)|PF (tαEα)| 6 e2m|PF (tαEα)|

for every F ∈ G2m,m. We also need the Rogers-Shephard inequality (see [20]) for
both K1 and Eα: since |K1| = |Eα| = 1, we know that

(5.7) 1 = c1 6 |K1 ∩ F |1/m|PF⊥(K1)|1/m 6 c2,

and similar estimates hold true for Eα (see [21] or [14] for the left hand side in-
equality). The idea of the argument is the following: inequality (5.7) helps us
relate the volume of m-dimensional sections of K1 (or Eα) to that of m-dimensional
projections of K1 (or Eα respectively); an upper bound for the former will give
us a lower bound for the latter and vice versa. Also, inequality (5.6) allows us to
compare the maximum (or minimum) volume of the m-dimensional projections of
K1 to the maximum (or minimum) volume of the corresponding projections of Eα.
However, as we recalled in Lemma 5.4, the maximum volume of the m-dimensional
projections of an ellipsoid is the same as the maximum volume of its m-dimensional
sections, so we can use inequalities (5.6) and (5.7) once more to get from upper
bounds for the volume of sections of K1 to lower bounds.

We now give the precise argument: combining (5.7) with the conclusion of
Lemma 5.5, we see that min

F∈G2m,m

|PF⊥(K1)|1/m > c3(δ1). We then get from (5.6)

that min
F∈G2m,m

|PF⊥(tαEα)|1/m > c4(δ1). Now, using (5.7) for Eα we get |Eα∩F |1/m 6

c5(δ1)tα for every F ∈ G2m,m. But from (5.2) we have that

(5.8) max
F∈G2m,m

|PF (Eα)|1/m = max
F∈G2m,m

|Eα ∩ F |1/m 6 c5(δ1)tα.

Using (5.6) once again, we get |PF (K1)|1/m 6 c6(δ1)t2α for every F ∈ G2m,m.
Inserting this estimate into (5.7), we see that |K1 ∩ F |1/m > c7(δ1)/t2α for every
F ∈ G2m,m. We may choose α = 1 now, and complete the proof with c2(δ1) =
c7(δ1)/t21. 2
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Conclusion of the proof of Theorem 5.1. Let α ∈ (1, 2) and let Eα be an
α-regular M–ellipsoid for K. Recall that |Eα| = 1. Also, if Eα = T (Bn

2 ) = T (B2m
2 ),

let λ1 > · · · > λ2m > 0 be the eigenvalues of the matrix
√

T ∗T ; observe from
Lemma 5.4 that

(5.9) |Bm
2 |

2m∏
i=m+1

λi = min
F∈G2m,m

|PF (Eα)| 6 max
F∈G2m,m

|PF (Eα)| = |Bm
2 |

m∏
i=1

λi.

Using (5.6) and the conclusion of Lemma 5.6, we get

|Bm
2 |1/mλm > min

F∈G2m,m

|PF (Eα)|1/m >
e−2

tα
min

F∈G2m,m

|PF (K1)|1/m(5.10)

>
e−2

tα
min

F∈G2m,m

|K1 ∩ F |1/m >
c8(δ1)

tα
,

and hence

(5.11) λm >
c9(δ1)

tα

√
n.

In a similar way, using (5.8), we see that |Bm
2 |1/mλm 6 max

F∈G2m,m

|PF (Eα)|1/m 6

c5(δ1)tα, and hence λm 6 c10(δ1)tα
√

n. But from the last part of Lemma 5.4
we know that there exists a subspace F0 ∈ G2m,m such that PF0(Eα) = λmBF0 ,
therefore,

(5.12)
c9(δ1)

tα

√
nBF0 ⊆ PF0(Eα) ⊆ c10(δ1)tα

√
nBF0 .

Let W := Bm+1(K1, F0) and K := W × U(W ), where U ∈ O(2m) satisfies
U(F0) = F⊥

0 . Since W is almost isotropic and LU(W ) = LW , from [6, Lemma 1.6.6]
we see that K = W ×U(W ) is an almost isotropic convex body in Rn ≡ R2m with
LK = LW . We will show that K satisfies (i) and (ii); the same conclusion will then
immediately follow (perhaps with slightly different constants for property (ii)) for
any isotropic linear image T (K) of K satisfying T (K) ' K.

Proof of (i): Since LK = LW , from (5.4) we get

(5.13) LK = LW > c−1
2 LK1 |K1 ∩ F⊥

0 |1/m > c−1
2 c2(δ1)LK1 > δLn,

where δ = δ1c2(δ1)/c2. For the last two inequalities we have used Lemma 5.6 and
the fact that LK1 > δ1Ln.
Proof of (ii): Using the fact that N(A×A,B×B) 6 N(A,B)2 for any two nonempty
sets A,B, and also the fact that Bm

2 ×Bm
2 ⊆

√
2B2m

2 , we may write for any s > 0,

(5.14) N
(
K, s

√
2nBn

2

)
6 N

(
W × U(W ), s

√
n(BF0 ×BF⊥0

)
)

6 N
(
W, s

√
nBF0

)2
.
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From (2.15) we know that

(5.15) Zm(Bm+1(K1, F0)) ' |K1 ∩ F⊥
0 |1/mPF0(Zm(K1)),

therefore, using Lemmas 5.5, 5.6 and the fact that conv(C,−C) ' Zm(C) for every
centered convex body C of volume 1 in F0 or in Rn, we get

conv(W,−W ) ' Zm(Bm+1(K1, F0)) ' |K1 ∩ F⊥
0 |1/mPF0(Zm(K1))(5.16)

'δ1 PF0(conv(K1,−K1)).

But then, recalling also (5.12), we have for every r > 0,

N(W, c10(δ1)tαr
√

nBF0) 6 N
(
conv(W,−W ), c10(δ1)tαr

√
nBF0

)
(5.17)

6 N
(
conv(W,−W ), rPF0(Eα)

)
6 N

(
c11(δ1)PF0(conv(K1,−K1)), rPF0(Eα)

)
6 N

(
c11(δ1)conv(K1,−K1), rEα

)
6 N

(
K1 −K1, c12(δ1)r(Eα − Eα)

)
6 N(K1, c13(δ1)rEα)2

(note that for the last two inequalities we have also used that Eα is convex and
symmetric, so Eα − Eα = 2Eα, that K1 is convex and contains the origin, so
conv(K1,−K1) ⊂ K1−K1, as well as the fact that N(A−A,B−B) 6 N(A,B)2).
It follows that

(5.18) N(K, t
√

n Bn
2 ) 6 N

(
K1,

c13(δ1)t√
2c10(δ1)tα

Eα

)4

for every t > 0. Since Eα is an α-regular M–ellipsoid for K1, it remains to consider
large enough t > τ(δ1, α), where

(5.19) τ(δ1, α) :=
√

2c10(δ1)tα/c13(δ1) = tα/c14(δ1),

to deduce from (5.1) and (5.18) that

(5.20) log N(K, t
√

n Bn
2 ) 6 4 log N

(
K1,

c14(δ1)t
tα

Eα

)
6

4κ(α)tαα
cα
14(δ1)

n

tα
.

Choosing α = 2− 1
logn , we have κ(α) 6 κ1 logn and tα ' t2 as long as, say, t 6 n2.

This completes the proof. 2

Remark 5.7. Now that we have proven the existence of an isotropic body K in R2m

which has properties (i) and (ii) of Theorem 5.1, we can easily prove the existence
of such bodies in R2m−1 as well: just note that for every subspace F ∈ G2m,2m−1

we have that 2LK 6 |K ∩ F⊥| 6 2R(K). Combining this with the properties
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(2.14), (2.15) for the almost isotropic convex body B2m(K, F ) in the (2m − 1)–
dimensional subspace F , we get that

(5.21) LB2m(K,F ) ' |K ∩ F⊥|
1

2m−1 LK ' LK > δL2m >
δ

c3
L2m−1,

and also that
(5.22)

B2m(K, F ) ' Z2m−1

(
B2m(K, F )

)
' |K ∩ F⊥|

1
2m−1 PF (Z2m−1(K)) ' PF (K).

Since for every t > 0, N(PF (K), tBF ) = N
(
PF (K), tPF (B2m

2 )
)

6 N(K, tB2m
2 ),

we conclude that the body B2m(K, F ) will also satisfy properties (i) and (ii) of
Theorem 5.1 with perhaps slightly different, but still independent of the dimension,
constants κ, τ and δ.

In the statement of Theorem 5.1, we can add one more property about the
radius of the body K that we look for: we can require that R(K) 6 γ

√
nLK where

γ > 0 is an absolute constant. The first step towards this is to use Bourgain’s
argument [4] which reduces the slicing problem to the study of bodies of small
diameter; one can prove the following fact (see e.g. [6, Proposition 2.3.1]).

Lemma 5.8. There exists an isotropic convex body K1 in Rn with LK1 > δ1Ln

and R(K1) 6 γ1
√

nLK1 , where δ1, γ1 > 0 are absolute constants.

Then, we can repeat the proof of Theorem 5.1 starting with the body K1 ⊂
Rn = R2m given by Lemma 5.8. One has now that R(W ) 6 c(δ1)γ1

√
nLK1 : to see

this, write

R(W ) = R
(
Bm+1(K1, F0)

)
6 c1|K1 ∩ F⊥

0 |1/mR
(
PF0

(
Zm(K1)

))
(5.23)

6 c2(δ1)R
(
conv(K1,−K1)

)
= c2(δ1)R(K1) 6 c2(δ1)γ1

√
nLK1 .

It is also easy to check that R(K) = R(W×U(W )) ' R(W ), hence R(K) 6 γ
√

nLK

for some absolute constant γ > 0. Similarly for the odd dimensions, we see that for
every F ∈ G2m,2m−1,

(5.24) R(B2m(K, F )) ' R(PF (K)) 6 R(K) 6 cγ
√

2m− 1 LB2m(K,F ),

where we have made use of (5.21), (5.22). Thus, we can state the following version
of Theorem 5.1.

Theorem 5.9. There exist absolute constants κ, τ, γ and δ > 0 such that, for every
n ∈ N, there can be found an isotropic convex body K in Rn with R(K) 6 γ

√
nLK ,

LK > δLn, and the property that

log N(K, tBn
2 ) 6

κn2 log2n

t2
for all t > τ

√
n logn.
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Definition 5.10. Let IK(κ, τ, γ, δ) denote the class of isotropic convex bodies
whose existence is established in Theorem 5.9. Let ρ > 0 be the absolute constant
in Theorem 4.1. Then, we define A(n, κ, τ, γ, δ) to be the set of all q ∈ [2, ρ2n] for
which there exists K ∈ IK(κ, τ, γ, δ) such that I1(K, Z◦

q (K)) 6 ρnL2
K . Observe

that already, by (3.2), A(n, κ, τ, γ, δ) can be shown to contain an interval of the
form [2, c

√
n] where c > 0 is an absolute constant. Clearly, any improvement to

the upper bound in (3.2) will automatically give us that A(n, κ, τ, γ, δ) contains an
even larger part of [2, ρ2n]. For those q we set

(5.25) B(q) = inf
{

I1(K, Z◦
q (K))

√
qnL2

K

: K ∈ IK(κ, τ, γ, δ)
}

.

Then, Theorem 4.1 implies the following: for every q ∈ A(n, κ, τ, γ, δ),

(5.26) δ2L2
n 6 Cκ

√
n/q log2n max{1, B(q)}.

In other words, we have:

Theorem 5.11. There exist absolute constants κ, τ, γ and δ > 0 such that, for
every n ∈ N,

(5.27) L2
n 6 min

{
Cκ

δ2

√
n/q log2n max{1, B(q)} : q ∈ A(n, κ, τ, γ, δ)

}
.

The estimate Ln 6 c 4
√

n logn is a direct consequence of Theorem 5.11: observe
that B(2) ' 1.

6 Isotropic convex bodies of small diameter

In [7, Section 3] it is proven that for every isotropic convex body K there exists
a second isotropic convex body C with bounded isotropic constant and the “same
behaviour” as K with respect to linear functionals.

Theorem 6.1. Let K be an isotropic convex body in Rn. There exists an isotropic
convex body C in Rn with the following properties:

(i) LC 6 c1.

(ii) c2Zq(C) ⊆ Zq(K)
LK

+
√

qBn
2 ⊆ c3Zq(C) for all 1 6 q 6 n.

(iii) c4Iq(C,W ) 6 Iq(K,W )
LK

+Iq(Dn,W ) 6 c5Iq(C,W ) for all 1 6 q 6 n and every
symmetric convex body W in Rn.

The constants ci, i = 1, . . . , 5 are absolute positive constants.

The body C is defined as the “convolution” of K with a multiple of Bn
2 . If

we also assume that K is symmetric, then using the fact that Zn(C) ' C and
Zn(K) ' K, we see that

(6.1) C ' K

LK
+ Dn.
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From the previous section, we know that for our purposes it is enough to study the
quantity I1(K, Z◦

q (K)) in the cases that K is an isotropic symmetric convex body of
small diameter; that is, we can assume that R(K) 6 γ

√
nLK for some γ ' 1. The

next proposition, which makes use of Theorem 6.1, shows us that it even suffices
to consider isotropic convex bodies which are c(γ)-isomorphic to a ball.

Proposition 6.2. Let K be an isotropic symmetric convex body in Rn with R(K) 6
γ
√

nLK . Then, there exists an isotropic symmetric convex body C such that:

(i) LC 6 c6,

(ii) c7Dn ⊆ C ⊆ c8γDn, and

(iii) I1(K, Z◦
q (K)) 6 c9I1(C,Z◦

q (C))L2
K for all 1 6 q 6 n,

where c6, c7, c8, c9 > 0 are absolute constants.

Proof. We will use the fact that wq(Zq(K)) '
√

q/nIq(K), and hence

(6.2) c1
√

qLK 6 wq(Zq(K)) 6 γ
√

qLK

for all 1 6 q 6 n. We consider the body C defined by Theorem 6.1. It is clear that
LC 6 c6 for some absolute constant c6 > 0. Since 1

LK
Zq(K) ⊆ c3Zq(C), we have

c3LKZ◦
q (K) ⊇ Z◦

q (C), and hence

(6.3) I1(C,Z◦
q (C)) > I1(C, c3LKZ◦

q (K)) =
1

c3LK
I1(C,Z◦

q (K)).

Applying the inequality c5I1(C,W ) > I1(K,W )
LK

with W = Z◦
q (K), we get

(6.4) I1(C,Z◦
q (C)) > c9

I1(K, Z◦
q (K))

L2
K

,

with c9 = (c3c5)−1 Finally, from (6.1) and the fact that K
LK

⊆ γ
√

nBn
2 , we see that

c7Dn ⊆ C ⊆ c8γDn. 2

In view of this result, we can give one more version of the “reduction theorem”
of Section 4.

Definition 6.3. Let IKsd(γ) denote the class of isotropic convex bodies that satisfy

(i) LC 6 c6 and

(ii) c7Dn ⊆ C ⊆ c8γDn,

where ci > 0 are absolute constants (e.g. the ones in Proposition 6.2). For every
2 6 q 6 n, set

Γ(q) = sup
{

I1(K, Z◦
q (K))

√
qn

: K ∈ IKsd(γ)
}

.

Then, Theorem 5.11 and Proposition 6.2 imply the following:
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Theorem 6.4. There exist absolute constants κ, τ, γ and δ > 0 such that, for every
n ∈ N,

(6.5) L2
n 6 min

{
Cκ

δ2

√
n/q log2nΓ(q) : q ∈ A(n, κ, τ, γ, δ)

}
.

In other words, studying the behaviour of I1(K,Z◦q (K))
√

qn within the class IKsd(γ)
is enough in order to understand the behaviour of the parameter B(q) as well as
whether that behaviour can lead to improved upper bounds for Ln.
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