
Euclidean regularization in John’s position

G. Chasapis and A. Giannopoulos

Abstract

Starting from a result of D. Fresen we propose a Euclidean regularization method which provides
short proofs of several facts on the local structure of a symmetric convex body in John’s position. In
particular, we obtain a simple proof of the isomorphic version of Dvoretzky’s theorem as well as a new
isomorphic version of the global form of Dvoretzky’s theorem.

1 Introduction

The purpose of this note is to propose a method based on “Euclidean regularization” which provides short
proofs of several facts on the local structure of finite dimensional normed spaces, including the isomor-
phic Dvoretzky theorem of V. Milman and Schecthman and an isomorphic version of the global version of
Dvoretzky’s theorem due to Bourgain, Lindenstrauss and V. Milman.

Let X = (Rn, ‖ · ‖) be an n-dimensional normed space. We write K for the unit ball {x ∈ Rn : ‖x‖ 6 1}
of X, and define

(1.1) M :=

∫
Sn−1

‖x‖ dσn(x) and b := max{‖x‖ : x ∈ Sn−1},

where Sn−1 is the Euclidean unit sphere and σ denotes the rotationally invariant probability measure on
Sn−1. The parameters M and b play a crucial role in the local theory of finite dimensional normed spaces.
This was first demonstrated by V. Milman [17] in his sharp version of the classical Dvoretzky theorem [5] on
approximately Euclidean sections of high-dimensional symmetric convex bodies: for any ε ∈ (0, 1) and any

k 6 kX(ε) = c1ε
2[log−1(2/ε)]n(M/b)2,

one can find a subspace F of Rn with dimension dim(F ) = k such that

(1.2) (1 + ε)−1M‖x‖2 6 ‖x‖ 6M(1 + ε)‖x‖2

is satisfied for every x ∈ F , where ‖ · ‖2 is the Euclidean norm. Moreover, this holds for all F in a
subset An,k ⊂ Gn,k of measure νn,k(An,k) > 1 − exp(−c2ε2k), where Gn,k is the Grassmann manifold of
k-dimensional subspaces of Rn equipped with the Haar probability measure νn,k. Choosing ε = 1/2 we get:

Theorem 1.1 (V. Milman). Let X = (Rn, ‖·‖) be an n-dimensional normed space. If k 6 c0n(M/b)2, where
c0 > 0 is an absolute constant, then we can find a subset An,k ⊂ Gn,k of measure νn,k(An,k) > 1−exp(−c0k)
such that for any subspace F ∈ An,k and for any x ∈ F one has

(1.3)
2

3
M‖x‖2 6 ‖x‖ 6 3

2
M‖x‖2.

Theorem 1.1 states that the Banach-Mazur distance (in fact, the geometric distance) dBM(K∩F,Bn2 ∩F )
between K ∩ F and Bn2 ∩ F is bounded by 3 for a random F ∈ Gn,k provided that k 6 k(X) := c0n(M/b)2.
The parameter k(X), which is completely determined by M and b, will be called the “Dvoretzky dimension”
of X (see [8], [19] and [1] for a variety of results in which it appears naturally and plays an essential role).
It is natural to ask what can be said when k is larger than k(X) i.e. if k(X) 6 k 6 n. The “isomorphic
Dvoretzky theorem” of V. Milman and Schechtman provides an exact answer:
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Theorem 1.2 (V. Milman-Schechtman). There exist absolute constants C1, C2 > 0 with the following
property: for every n > 1, for every C1 log n 6 k 6 n and for every n-dimensional normed space X,
there exists a k-dimensional subspace Y of X such that

(1.4) dBM(Y, `k2) 6 C2

√
k√

log
(
1 + n

k

) .
A slightly weaker version of Theorem 1.2 was first obtained by V. Milman and Schechtman in [18]. The

precise statement above was established by the same authors in [20] and by Guédon in [12] with a different
approach. Extensions of the result to the not necessarily symmetric case were given by Gordon, Guédon and
Meyer in [11] and by Litvak and Tomczak-Jaegermann in [14]. Note that the estimate is sharp: if X = `n∞
then, for any k > log n and any k-dimensional subspace Y of X one has dBM(Y, `k2) 6 δ

√
k√

log(1+n
k )

, where

δ > 0 is an absolute constant. This was first observed by Figiel and Johnson [7], where a slightly weaker
result is obtained, and the full statement was proved, independently, by Carl and Pajor in [4] and by Gluskin
in [10].

We provide a short proof of Theorem 1.2 which is based on the following idea: given an n-dimensional
normed space X and an integer 1 6 k 6 n it is enough to find a space Y such that k(Y ) > k and
dBM(X,Y ) 6 f(n/k) where f(n/k) is as small as possible. To this end, we exploit a recent result of
Fresen [9] on “Euclidean regularization” of a convex body in John’s position (see Section 2 for background
information).

Theorem 1.3 (Fresen). Let K be a symmetric convex body in Rn such that Bn2 is the maximal volume
ellipsoid of K. For every t ∈ [α, β

√
n], where α, β > 0 are absolute constants, there exists a symmetric

convex body Kt such that d(K,Kt) 6 t and

(1.5)

(
Mt

bt

)2

> c1
t2

n
log
(c2n
t2

)
,

where c1, c2 > 0 are absolute constants.

We believe that Theorem 1.3 can be useful in many situations and the main purpose of this note is to
illustrate its use. As a second application, we revisit the global form of Dvoretzky’s theorem. The next
theorem of Bourgain, Lindenstrauss and Milman [3] (see also [22] for the dependence on ε) shows that the
average of (roughly) (b/M)2 rotations of the polar body of a symmetric convex body K is an isomorphic
Euclidean ball.

Theorem 1.4 (Bourgain-Lindenstrauss-Milman). Let X = (Rn, ‖ · ‖) be an n-dimensional normed space.
For any ε ∈ (0, 1/2) and for any integer

k >
c3
ε2

(
b

M

)2

,

a random choice of k orthogonal transformations U1, . . . , Uk ∈ O(n) satisfies

(1.6)
M

1 + ε
‖x‖2 6

1

k

k∑
i=1

‖Ui(x)‖ 6M(1 + ε)‖x‖2,

for every x ∈ Rn, and hence,

(1.7) dG

(
1

k

k∑
i=1

U∗i (K◦), Bn2

)
6 (1 + ε)2,

with probability greater than 1− exp(−cε2nk(M/b)2), where c > 0 is an absolute constant.
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We present an isomorphic version of this result. In the spirit of Theorem 1.2 we fix k > 2, we consider
U1, . . . , Uk ∈ O(n) and ask for the typical Banach-Mazur distance between 1

k

∑k
i=1 U

∗
i (K◦) and Bn2 . Using

Theorem 1.3 we get:

Theorem 1.5. Let K be a symmetric convex body in Rn such that the Euclidean unit ball Bn2 is the maximal
volume ellipsoid of K. For every k 6 δn/ log(n + 1), where δ ∈ (0, 1) is an absolute constant, a random
k-tuple of orthogonal transformations U1, . . . , Uk ∈ O(n) satisfies with probability greater than 1−exp(−c4n)

(1.8) dG

(
1

k

k∑
i=1

U∗i (K◦), Bn2

)
6 C3

√
n

k log k
,

where C3, c4 > 0 are absolute constants.

The restriction k 6 n/ log(n + 1) in Theorem 1.5 is natural. Note that if K is in John’s position

then
(
b
M

)2
6 Cn

log(n+1) (this is a consequence of the Dvoretzky-Rogers lemma, see Section 2). Therefore, if

k > n/ log(n+ 1) we have

dG

(
1

k

k∑
i=1

U∗i (K◦), Bn2

)
6 C

for a random k-tuple U1, . . . , Uk ∈ O(n).
Theorem 1.5 may be viewed as a global version of Theorem 1.2 and, to the best of our knowledge, it

has not appeared before. We give the proofs of both theorems in Section 3. Regarding the sharpness of
the estimate in (1.8) we show (see Remark 3.3) that if K = [−1, 1]n is the unit cube then, for any k-tuple
U1, . . . , Uk ∈ O(n),

(1.9) dG

(
1

k

k∑
i=1

U∗i (K◦), Bn2

)
> c

√
n

k2 log k
,

where c > 0 is an absolute constant.
In Section 4 we study the diameter of a random k-dimensional section of a symmetric convex body K

in Rn which is in John’s position. We provide a new proof of the following result of Litvak, Mankiewicz and
Tomczak-Jaegermann from [15].

Theorem 1.6 (Litvak-Mankiewicz-Tomczak). Let K be a symmetric convex body in Rn such that the Eu-
clidean unit ball Bn2 is the maximal volume ellipsoid of K. For every k(K) 6 k 6 n we have that a subspace
F ∈ Gn,k satisfies

(1.10) c5

√
n

k
Bn2 ∩ F ⊆ K ∩ F ⊆ c6

√
n

log
(
1 + n

k

) Bn2 ∩ F
with probability greater than 1− exp(−c7k), where c5, c6, c7 > 0 are absolute constants.

Note that Theorem 1.6 is stronger than Theorem 1.2. When k(K) 6 k 6 n it provides the same upper
bound for the Banach-Mazur distance dBM(K ∩ F,Bn2 ∩ F ) between a random k-dimensional section of K
and the Euclidean ball, while if 1 6 k 6 k(K) we anyway have that a random k-dimensional section K ∩ F
of K is an isomorphic Euclidean ball.

2 Notation and background material

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote by ‖ · ‖2 the corresponding
Euclidean norm, and write Bn2 for the Euclidean unit ball, and Sn−1 for the unit sphere. Volume is denoted
by | · |. We write ωn for the volume of Bn2 and σn for the rotationally invariant probability measure on Sn−1.
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We also denote the Haar measure on O(n) by νn. The Grassmann manifold Gn,k of k-dimensional subspaces
of Rn is equipped with the Haar probability measure νn,k. Let 1 6 k 6 n and F ∈ Gn,k. We will denote the
orthogonal projection from Rn onto F by PF . We also define BF = Bn2 ∩ F and SF = Sn−1 ∩ F .

The letters c, c′, c, c1, c2 etc. denote absolute positive constants whose value may change from line
to line. Whenever we write a ' b, we mean that there exist absolute constants c1, c2 > 0 such that
c1a 6 b 6 c2a. Similarly, if K,T ⊆ Rn we will write K ' T if there exist absolute constants c1, c2 > 0 such
that c1K ⊆ T ⊆ c2K.

A convex body is a compact convex subset K of Rn with non-empty interior. We say that K is symmetric
if −x ∈ K whenever x ∈ K. The support function hK : Rn → R of K is defined by hK(x) = max{〈x, y〉 :
y ∈ K}. The mean width w(K) of K is defined by

(2.1) w(K) =

∫
Sn−1

hK(x)dσn(x).

The radius of K is defined as R(K) = max{‖x‖2 : x ∈ K} and, if the origin is an interior point of K, the
polar body K◦ of K is

(2.2) K◦ := {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ K}.

Finally, if K is a symmetric convex body in Rn and ‖ · ‖K is the norm induced to Rn by K, we set

(2.3) M(K) =

∫
Sn−1

‖x‖Kdσn(x)

and write b(K) for the smallest positive constant b with the property ‖x‖K 6 b‖x‖2 for all x ∈ Rn.
We set k(K) = k(XK), where XK = (Rn, ‖ · ‖K), and k∗(K) := k(K◦). Note that M(K◦) = w(K) and

b(K◦) = R(K), and hence

(2.4) k∗(K) = c0n

(
w(K)

R(K)

)2

.

From Theorem 1.1 we know that if k 6 k(K) then for most F ∈ Gn,k we have K ∩ F ' 1
M(K) BF . By

duality, if k 6 k∗(K) then PF (K) ' w(K)BF .
If K and T are two convex bodies in Rn that contain the origin in their interior, their geometric distance

dG(K,T ) is defined by

(2.5) dG(K,T ) = inf{ab : a, b > 0,K ⊆ bT and T ⊆ aK}.

The natural distance between two n-dimensional normed spaces XK and XT is the Banach-Mazur distance

(2.6) dBM(XK , XT ) = inf
A∈GL(n)

‖A : XK → XT ‖ ‖A−1 : XT → XK‖.

From the definition of the geometric distance we see that

(2.7) dBM(XK , XT ) = inf{dG(K,A(T )) : A ∈ GL(n)}.

In other words, the Banach-Mazur distance dBM(XK , XT ) is the smallest positive real λ for which we may
find A ∈ GL(n) such that K ⊆ A(T ) ⊆ λK. It is clear that dBM(XK , XT ) > 1 with equality if and
only if XK are XT isometrically isomorphic. Note that dBM(X,Z) 6 dBM(X,Y )dBM(Y, Z) for any triple of
n-dimensional normed spaces.

A symmetric convex body K in Rn is said to be in John’s position if the Euclidean unit ball Bn2 is
contained in K and for every T ∈ GL(n) with T (Bn2 ) ⊆ K we have |T (Bn2 )| 6 |Bn2 |; in other words, if Bn2
is the ellipsoid of maximal volume inscribed in K. One can check that this position is uniquely determined
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up to orthogonal transformations. It is easily checked that K is in John’s position if and only if Bn2 is the
ellipsoid of minimal volume containing K◦.

A classical theorem of John [13] (see also [2] for the reverse implication) states that K is in John’s
position if and only if Bn2 ⊆ K and there exist contact points x1, . . . , xm ∈ Rn of K and Bn2 and positive
real numbers c1, . . . , cm such that

(2.8) x =

m∑
j=1

cj〈x, xj〉xj

for all x ∈ Rn. This implies that K ⊆
√
nBn2 , and hence, dG(K,Bn2 ) 6

√
n. Starting from John’s decompo-

sition (2.8), Dvoretzky and Rogers [6] obtained a series of results on the distribution of the xj ’s in the unit
sphere. One of the consequences of the “Dvoretzky-Rogers lemma” is that if K is in John’s position then

(2.9) k(K) = c0n

(
M

b

)2

> c log(n+ 1).

This estimate plays a key role in the proof of Dvoretzky’s theorem.
We refer the reader to the books [21] and [1] for more information on the asymptotic theory of convex

bodies; the proofs of all the results that are mentioned in the first two sections of this note can be found in
[1].

3 Regularization in John’s position and Dvoretzky-type theorems

Let K be a symmetric convex body in Rn such that Bn2 ⊆ K. For every t > 1 we define

(3.1) Kt = conv(K ∪ tBn2 ).

Note that K1 = K. We set

(3.2) Mt :=

∫
Sn−1

‖x‖Kt
dσn(x) and bt := max{‖x‖Kt

: x ∈ Sn−1}.

Since t > 1 and Bn2 ⊆ K, we have

(3.3) K ⊆ Kt ⊆ tK, or equivalently,
1

t
‖x‖ 6 ‖x‖Kt 6 ‖x‖

for all x ∈ Rn. In other words,

(3.4) dBM(K,Kt) 6 dG(K,Kt) 6 t.

From (3.3) we see that M1 6 tMt and bt 6 b1, therefore

(3.5)

(
Mt

bt

)2

>
1

t2

(
M1

b1

)2

for all t > 1.

Fresen’s result (Theorem 1.3) provides lower bounds for Mt/bt in the case where K is in John’s position.
The proof makes essential use of proportional Dvoretzky-Rogers factorization results (the main tool is in
fact a theorem of Vershynin from [24]). It will be convenient to state Theorem 1.3 in a slightly different way.

Lemma 3.1 (Fresen). Let K be a symmetric convex body in Rn such that Bn2 is the maximal volume ellipsoid
of K. For every 1 6 t 6

√
n we have

(3.6)

(
Mt

bt

)2

> c
t2

n
log
(

1 +
n

t2

)
,

where c > 0 is an absolute constant.
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Proof. The exact statement of Fresen’s lemma is that there exist absolute constants α > 1 and β < 1 such
that, for every t ∈ [α, β

√
n], the body Kt defined by (3.1) satisfies

(3.7)

(
Mt

bt

)2

> c1
t2

n
log
(c2n
t2

)
,

where c1, c2 > 0 are absolute constants. We observe that the function f(y) = log (c2y) / log (1 + y) tends to
1 as y →∞, so we can find M > 0 such that

(3.8) log (c2y) >
1

2
log (1 + y)

for all y >M . If α2 6 t2 6 min{β2,M−1}n then, setting y = n/t2 and using (3.7) and (3.8) we get

(3.9)

(
Mt

bt

)2

>
c1
2

t2

n
log
(

1 +
n

t2

)
.

Now, let min{β2,M−1}n 6 t2 6 n. We observe that tBn2 ⊆ Kt ⊆
√
nBn2 , and hence

(3.10)

(
Mt

bt

)2

>
t2

n
>

1

C(β,M)

t2

n
log
(

1 +
n

t2

)
,

where C(β,M) = log(1 + max{β−2,M}). Finally, if 1 6 t 6 α then we use (2.9) and (3.5) to write

(3.11)

(
Mt

bt

)2

>
1

t2

(
M1

b1

)2

>
c

α2

log(n+ 1)

n
>

c

α4

t2

n
log
(

1 +
n

t2

)
.

The result follows if we choose c = c(α, β,M) > 0 suitably, taking into accout (3.9), (3.10) and (3.11).

Remark 3.2. It is useful to note that, in fact, what Fresen proved is a lower bound for Mt: for every
1 6 t 6

√
n we have

(3.12) M2
t >

c log
(
1 + n

t2

)
n

,

where c > 0 is an absolute constant. Then, Lemma 3.1 (or Theorem 1.3) follows immediately from the fact
that Kt ⊇ tBn2 and hence bt 6 1

t .

We use Lemma 3.1 to “increase” the Dvoretzky dimension of K as much as we need using the regulariza-
tion operation K 7→ Kt for a suitable value of t. The cost of this operation is measured by the Banach-Mazur
distance dBM(K,Kt) which is controlled by t. The idea will become clear in the argument that follows.

Proof of Theorem 1.2. We may assume that the unit ball K of X is in John’s position. Consider the
smallest value tk for which

(3.13) c0ct
2
k log

(
1 +

n

t2k

)
> k,

where c0 is the constant in Theorem 1.1. Then, we may apply Lemma 3.1 to get

(3.14) k(Ktk) = c0n

(
Mtk

btk

)2

> c0ct
2
k log

(
1 +

n

t2k

)
> k.

Therefore, we can find a subset An,k ⊂ Gn,k of measure νn,k(An,k) > 1 − exp(−c0k) such that for any
subspace F ∈ An,k we have

(3.15) dG(Ktk ∩ F,Bn2 ∩ F ) 6 9/4 6 3.
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From (3.4) we conclude that

(3.16) dG(K ∩ F,Bn2 ∩ F ) 6 dG(Ktk ∩ F,Bn2 ∩ F )dG(K,Ktk) 6 3tk

with probability greater than 1− e−c0k on Gn,k.
It remains to estimate tk: Let us assume that k 6 δn for some small enough δ > 0 that will be specified

shortly, and set C =
√

2
c0c

. The real function g(y) = log
(

1 + y(log 2)
C2

)
/ log (1 + y) tends to 1 as y →∞, so

we can find M > 0 such that

log

(
1 +

y(log 2)

C2

)
>

1

2
log (1 + y) .

for all y > M . Now choose any δ ∈ (0,M−1), so that y := n/k > δ−1 > M . Then, the choice tk =

C
√
k/
√

log
(
1 + n

k

)
gives

(3.17) c0ct
2
k log

(
1 +

n

t2k

)
> C2c0ck

log
(

1 + n(log 2)
C2k

)
log
(
1 + n

k

) > k.

We are left with the case k > δn. Then, by John’s theorem, we have

(3.18) d(K ∩ F, `k2) 6
√
n 6 C(δ)

√
k√

log
(
1 + n

k

) ,
where C(δ) =

√
log
(
1 + 1

δ

)
/
√
δ. This concludes the proof of the theorem. 2

The proof of the isomorphic global Dvoretzky theorem follows the same lines.

Proof of Theorem 1.5. We assume that K is in John’s position, and choose tk > 1 so that

(3.19) k >
16c3
c

n/t2k

log
(

1 + n
t2k

) ,
where c, c3 > 0 are the constants in Lemma 3.1 and Theorem 1.4. Applying Lemma 3.1 we see that

(3.20) k > 16c3

(
btk
Mtk

)2

.

Then, using Theorem 1.4 for the body Ktk (with this value of k and ε = 1/4) we see that a random k-tuple
(U1, . . . , Uk) from O(n) satisfies

(3.21)
4

5
Mtk‖x‖2 6

1

k

k∑
i=1

‖Ui(x)‖Ktk
6

5

4
Mtk‖x‖2.

with probability greater than 1− exp(−c4n). Taking into account (3.3) we get

(3.22)
4

5
Mtk‖x‖2 6

1

k

k∑
i=1

‖Ui(x)‖K 6
5tk
4
Mtk‖x‖2

for all x ∈ Rn, and hence,

(3.23) dG

(
1

k

k∑
i=1

U∗i (K◦), Bn2

)
6 2tk
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with probability greater than 1− exp(−c4n).

It remains to choose tk. Observe that setting tk = 4
√

c3n
ck log(k+1) we have tk > 1 (because k 6 δn/ log(n+

1) and provided that δ is small enough) and

(3.24)
16c3
c

n/t2k
log (1 + n/t2k)

=
k log(k + 1)

log
(

1 + ck log(k+1)
16c3

) 6 k,

provided that log(k+ 1) > 16c3
c . Since, by John’s theorem, the result is obviously true (with a slightly larger

value of C) for small values of k, the proof is complete. 2

Remark 3.3. Consider the case where K = [−1, 1]n is the unit cube. Then, K◦ = Bn1 = {x ∈ Rn : ‖x‖1 6
1}. Let U1, . . . , Uk be a k-tuple in O(n) and set Vj = U∗j , 1 6 j 6 k. Assume that

(3.25)
1

k

k∑
i=1

Vi(B
n
1 ) ⊇ αBn2

for some α > 0. Recall that the covering number N(A,B) of a body A by a second body B is the least
integer N for which there exist N translates of B whose union covers A. An elementary argument shows
that ∣∣∣∣∣

k∑
i=1

Vi(B
n
1 )

∣∣∣∣∣ 6 N

(
k∑
i=1

Vi(B
n
1 ), krBn2

)
|krBn2 | = N

(
k∑
i=1

Vi(B
n
1 ),

k∑
i=1

rBn2

)
|krBn2 |(3.26)

= |krBn2 |
k∏
i=1

N(Vi(B1)n, rBn2 ) = (kr)n|Bn2 |
(
N(Bn1 , rB

n
2 )
)k

for all r > 0. Now, we use the following result of Schütt [23]: If log n 6 s 6 n then there exists

(3.27) rn,s 6 c5

√
log(n/s+ 1)

s
,

where c5 > 0 is an absolute constant, such that N(Bn1 , rn,sB
n
2 ) 6 2s. From (3.25) and (3.26) it follows that

(3.28) α|Bn2 |1/n 6
1

k

∣∣∣∣∣
k∑
i=1

Vi(B
n
1 )

∣∣∣∣∣
1/n

6 rn,s2
ks
n |Bn2 |1/n

for all log n 6 s 6 n. Assuming that k 6 δ n
log(n+1) we may choose s = n

k in (3.28). This gives

(3.29) α 6 2rn,s 6
c6
√
k log(k + 1)√

n
.

On the other hand, if k > δn
logn then k log(k + 1) > c7(δ)n and it is clear that

(3.30) α 6 R

(
1

k

k∑
i=1

Vi(B
n
1 )

)
6 1 6

c8(δ)
√
k log(k + 1)√
n

.

Next, assume that

(3.31)
1

k

k∑
i=1

‖Ui(x)‖K 6 β‖x‖2

for some β > 0 and for all x ∈ Rn. From a result of Litvak, V. Milman and Schectman [16] it follows that
‖x‖K 6 β

√
k‖x‖2 for all x ∈ Rn, and hence, Bn2 ⊆ β

√
kK. Since Bn2 and K have contact points, this implies

that β > 1/
√
k. Combining the above we get:
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Proposition 3.4. Let Bn1 denote the unit ball of `n1 . For any k > 1 and any V1, . . . , Vk ∈ O(n) we have

(3.32) dG

(
1

k

k∑
i=1

Vi(B
n
1 ), Bn2

)
> c

√
n

k2 log k
,

where c > 0 is an absolute constant.

Note. The estimate of Proposition 3.4 is probably not optimal for large values of k; in fact, it provides some
non-trivial information only if k 6 c

√
n/ log(n+ 1).

4 Inradius and circumradius of random sections in John’s position

In this section we prove Theorem 1.6 in its dual form:

Theorem 4.1. Let K be a symmetric convex body in Rn such that the Euclidean unit ball Bn2 is the minimal
volume ellipsoid of K. For every k∗(K) 6 k 6 n we have that a subspace F ∈ Gn,k satisfies

(4.1) c1

√
log
(
1 + n

k

)
n

Bn2 ∩ F ⊆ PF (K) ⊆ c2

√
k

n
Bn2 ∩ F

with probability greater than 1− exp(−c3k).

Proof. For the right hand side inclusion we use the next general fact, which is a standard application of
concentration of measure on the Euclidean sphere (see [1, Section 5.7] for the details). If K is a symmetric
convex body in Rn then, for any 1 6 k < n and any s > 1 there exists a subset An,k ⊂ Gn,k with measure

greater than 1− e−c1s2k such that the orthogonal projection of K onto any subspace F ∈ An,k satisfies

(4.2) R(PF (K)) 6 w(K) + c2s
√
k/nR(K),

where c1 > 0, c2 > 1 are absolute constants. Note that if k > k∗(K) then, by (2.4),

w(K) 6 c
√
k/nR(K).

Therefore, since R(K) = R(Bn2 ) = 1, applying (4.2) we see that

(4.3) PF (K) ⊆ c(s)
√
k/nBn2 ∩ F

with probability greater than 1− e−c1s2k on Gn,k.
For the other inclusion, let T = K◦. Then, T is in John’s position and, as in the proof of Theorem 1.2,

we see that if tk = C
√
k/
√

log
(
1 + n

k

)
, for an absolute constant C > 0, then

(4.4) k(Ttk) = c0n

(
M(Ttk)

b(Ttk)

)2

> k,

and hence, a random k-dimensional projection of (Ttk)◦ satisfies, with probability greater than 1− e−ck,

(4.5) PF ((Ttk)◦) ⊇ cw((Ttk)◦)Bn2 ∩ F = cM(Ttk)Bn2 ∩ F.

Since T ⊆ Ttk , using also (3.12), we see that

(4.6) PF (K) = PF (T ◦) ⊇ PF ((Ttk)◦) ⊇
c′
√

log
(

1 + n
t2k

)
√
n

Bn2 ∩ F ⊇
c1

√
log
(
1 + n

k

)
√
n

Bn2 ∩ F

as required.
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