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Abstract

We prove that there exists an absolute constant α > 1 with the following property: if K is a
convex body in Rn whose center of mass is at the origin, then a random subset X ⊂ K of cardinality
card(X) = dαne satisfies with probability greater than 1− e−c1n

K ⊆ c2n conv(X),

where c1, c2 > 0 are absolute constants. As an application we show that the vertex index of any convex
body K in Rn is bounded by c3n

2, where c3 > 0 is an absolute constant, thus extending an estimate of
Bezdek and Litvak for the symmetric case.

1 Introduction

The starting point of this article is the following fact, which appears in [13] and [3]: If K is an origin
symmetric convex body in Rn then for any d > 1 there exist N 6 dn points x1, . . . , xN ∈ K such that

absconv({x1, . . . , xN}) ⊆ K ⊆ γd
√
n absconv({x1, . . . , xN}),

where γd :=
√
d+1√
d−1 . For the proof one assumes that the Euclidean unit ball Bn2 is the ellipsoid of minimal

volume containing K, and makes essential use of a theorem of Batson, Spielman and Srivastava [4] on
extracting an approximate John’s decomposition with few vectors from a John’s decomposition of the identity.
An extension of this result to the non-symmetric case was recently obtained by the first named author in [8]:
There exists an absolute constant α > 1 with the following property: if K is a convex body whose minimal
volume ellipsoid is the Euclidean unit ball, then there exist N 6 αn points x1, . . . , xN ∈ K ∩Sn−1 such that

(1.1) K ⊆ Bn2 ⊆ cn3/2conv({x1, . . . , xN}),

where c > 0 is an absolute constant. The proof involves a more delicate theorem of Srivastava from [26].
Using (1.1) one can establish the following “quantitative diameter version” of Helly’s theorem (see [8]): If
{Pi : i ∈ I} is a finite family of convex bodies in Rn with diam

(⋂
i∈I Pi

)
= 1, then there exist s 6 αn and

i1, . . . is ∈ I such that
diam(Pi1 ∩ · · · ∩ Pis) 6 cn3/2,

where c > 0 is an absolute constant. For this application it is crucial to choose the points x1, . . . , xN in (1.1)
among the contact points of K and its minimal volume ellipsoid.

Our first main result shows that if we choose x1, . . . , xN independently and uniformly from K then we
can have a random version of (1.1) with an improved dependence on the dimension.

Theorem 1.1. There exists an absolute constant α > 1 with the following property: if K is a convex body
in Rn whose center of mass is at the origin and x1, . . . , xN , N = dαne, are independent random points
uniformly distributed in K then, with probability greater than 1− e−c1n we have

K ⊆ c2n conv({x1, . . . , xN}),

where c1, c2 > 0 are absolute constants.
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For the proof we may assume that K is an isotropic convex body (see Section 2 for background informa-
tion) and we use the so-called one-sided Lq-centroid bodies of K; these are the convex bodies Z+

q (K), q > 1,
with support functions

hZ+
q (K)(y) =

(
2

∫
K

〈x, y〉q+dx
)1/q

,

where a+ = max{a, 0}. We show that if N > αn, where α > 1 is an absolute constant, then N independent
random points x1, . . . , xN uniformly distributed in K satisfy

conv({x1, . . . , xN}) ⊇ c1Z+
2 (K) ⊇ c2LKBn2

with probability greater than 1−exp(−c3n), where c1, c2, c3 > 0 are absolute constants. Since K is contained
in (n+ 1)LKB

n
2 , Theorem 1.1 follows.

A natural question, which is closely related to Theorem 1.1, is to fix N > αn and to ask for the largest
value t(N,n) for which N independent random points x1, . . . , xN uniformly distributed in K satisfy

conv({x1, . . . , xN}) ⊇ t(N,n)K

with probability “exponentially close” to 1. A sharp answer to this question would unify Theorem 1.1 and
the following result from [11] which deals with the case where N is exponential in n: For every δ ∈ (0, 1) there
exists n0 = n0(δ) such that for every n > n0, if C log n/n 6 γ 6 1 and K is a centered convex body in Rn,
then N = exp(γn) independent random points x1, . . . , xN chosen uniformly from K satisfy with probability
greater than 1− δ

K ⊇ conv({x1, . . . , xN}) ⊇ c(δ)γK,

where c(δ) is a constant depending on δ. We prove the following.

Theorem 1.2. Let β ∈ (0, 1). There exist a constant α = α(β) > 1 depending only on β and an absolute
constant c1 > 0 with the following property: let K be a centered convex body in Rn, αn 6 N 6 en and
x1, . . . , xN be independent random points uniformly distributed in K; then

conv({x1, . . . , xN}) ⊇
c1β log(N/n)

n
K.

with probability greater than 1− e−N1−βnβ .

In fact, Theorem 1.1 is a special case of Theorem 1.2 by setting β = 1/2 and N = dαne. The proof of
Theorem 1.2 is given in Section 3.

Theorem 1.1 is very naturally related to the question of estimating the vertex index of a not necessarily
symmetric n-dimensional convex body. The vertex index of a symmetric convex body K in Rn was introduced
in [6] as follows:

vi(K) = inf
{ N∑
j=1

‖yj‖K : K ⊆ conv({y1, . . . , yN})
}
,

where ‖·‖K is the norm with unit ball K in Rn. This index is closely related to the illumination parameter of
a convex body, introduced by K. Bezdek in [5], and to a well-known conjecture of Boltyanski and Hadwiger
about covering of an n-dimensional convex body by 2n smaller positively homothetic copies (see [6] and [12]).
Bezdek and Litvak proved that

c1n
3/2

ovr(K)
6 vi(K) 6 c2n

3/2,

where c1, c2 > 0 are absolute constants and ovr(K) is the outer volume ratio of K (see Section 2 for the
definition). To the best of our knowledge the notion of vertex index has not been studied in the not necessarily
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symmetric case. A way to define it for an arbitrary convex body K in Rn is to consider first any z ∈ int(K)
and to set

viz(K) = inf
{ N∑
j=1

pK,z(yj) : K ⊆ conv({y1, . . . , yN})
}
,

where
pK,z(x) = pK−z(x) = inf{t > 0 : x ∈ t(K − z)}

is the Minkowski functional of K with respect to z. Then, one may define the (generalized) vertex index of
K by

vi(K) = vibar(K)(K),

where bar(K) is the center of mass of K. With this definition, we clearly have vi(K) = vi(K−bar(K)), and
hence we may restrict our attention to centered convex bodies (i.e. convex bodies whose center of mass is
at the origin). In Section 4 we establish some elementary properties of this index and using Theorem 1.1 we
obtain the following general estimate.

Theorem 1.3. There exist two absolute constants c1, c2 > 0 such that for every n > 2 and for every centered
convex body K in Rn,

c1n
3/2

ovr(conv(K,−K))
6 vi(K) 6 c2n

2.

The lower bound of Theorem 1.3 is not sharp, even in the symmetric case. Gluskin and Litvak [13] have
proved that for every n > 1 there exists a symmetric convex body K in Rn such that

ovr(K) > c

√
n

log(2n)
and vi(K) > cn3/2.

It would be interesting to provide alternative lower bounds for vi(K) and of course it would be also interesting
to decide whether, in the non-symmetric case, the upper bound vi(K) 6 Cn2 of Theorem 1.3 is sharp or
not.

2 Notation and background

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote by ‖ · ‖2 the corresponding
Euclidean norm, and write Bn2 for the Euclidean unit ball and Sn−1 for the unit sphere. Volume is denoted
by | · |. We use the same notation |X| for the cardinality of a finite set X. We write ωn for the volume of Bn2
and σ for the rotationally invariant probability measure on Sn−1. The letters c, c′, c1, c2, . . . denote absolute
positive constants which may change from line to line.

We refer to the book of Schneider [25] for basic facts from the Brunn-Minkowski theory and to the book
of Artstein-Avidan, Giannopoulos and V. Milman [1] for basic facts from asymptotic convex geometry.

A convex body in Rn is a compact convex subset K of Rn with non-empty interior. We say that K is
symmetric if x ∈ K implies that −x ∈ K, and that K is centered if its center of mass

bar(K) =
1

|K|

∫
K

x dx

is at the origin. The support function of K is defined by hK(y) = max{〈x, y〉 : x ∈ K}. The circumradius of
K is the radius of the smallest ball which is centered at the origin and contains K, i.e. R(K) = max{‖x‖2 :
x ∈ K}.

If 0 ∈ int(K) then the polar body K◦ of K is defined by

K◦ := {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ K},
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and the Minkowski functional of K is defined by

pK(x) = inf{t > 0 : x ∈ tK}.

Recall that pK is subadditive and positively homogeneous.

We say that a convex body K is in John’s position if the ellipsoid of maximal volume inscribed in K is
the Euclidean unit ball Bn2 . John’s theorem ([16], see also [1, Chapter 2]) states that K is in John’s position
if and only if Bn2 ⊆ K and there exist v1, . . . , vm ∈ bd(K)∩Sn−1 (contact points of K and Bn2 ) and positive
real numbers a1, . . . , am such that

m∑
j=1

ajvj = 0,

and the identity operator In is decomposed in the form

(2.1) In =

m∑
j=1

ajvj ⊗ vj ,

where (vj ⊗ vj)(y) = 〈vj , y〉vj . We say that a convex body K is in Löwner’s position if the ellipsoid of
minimal volume containing K is the Euclidean unit ball Bn2 . One can check that this holds true if and only
if K◦ is in John’s position (see [1, Lemma 2.1.8]); in particular, we have a decomposition of the identity
similar to (2.1). The outer volume ratio of a convex body K in Rn is the quantity

ovr(K) = inf

{(
|E|
|K|

)1/n

: E is an ellipsoid and K ⊆ E

}
.

If K is in Löwner’s position then (|Bn2 |/|K|)1/n = ovr(K).
A convex body K in Rn is called isotropic if it has volume 1, it is centered, and its inertia matrix is a

multiple of the identity matrix: there exists a constant LK > 0 such that∫
K

〈x, θ〉2dx = L2
K

for every θ in the Euclidean unit sphere Sn−1. It is known that every convex body has an isotropic affine
image, and if K is isotropic then

cLK B
n
2 ⊆ K ⊆ (n+ 1)LK B

n
2 ,

where c > 0 is an absolute constant. A simple proof of the left hand side inclusion is given in [9, Section 3.2.1],
while the right hand side inclusion was proved in [17]. The hyperplane conjecture asks if there exists an
absolute constant C > 0 such that

Ln := max{LK : K is isotropic in Rn} 6 C

for all n > 1. Bourgain proved in [7] that Ln 6 c 4
√
n logn, while Klartag [18] obtained the bound Ln 6 c 4

√
n.

A second proof of Klartag’s bound appears in [19]. We refer the reader to the article of V. Milman and Pajor
[21] and to the book [9] for an updated exposition of isotropic log-concave measures and more information
on the hyperplane conjecture.

Let K be a centered convex body of volume 1 in Rn. The Lq-centroid body Zq(K) of K is the centrally
symmetric convex body with support function

hZq(K)(y) =

(∫
K

|〈x, y〉|qdx
)1/q

.

Note that K is isotropic if and only if it is centered and Z2(K) = LKB
n
2 . Also, if T ∈ SL(n) then

Zq(T (K)) = T (Zq(K)). From Hölder’s inequality it follows that Z1(K) ⊆ Zp(K) ⊆ Zq(K) ⊆ Z∞(K) for all
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1 6 p 6 q 6 ∞, where Z∞(K) = conv(K,−K). Using Borell’s lemma (see [9, Chapter 1]) one can check
that

(2.2) Zq(K) ⊆ c1
q

p
Zp(K)

for all 1 6 p < q, where c1 > 0 is an absolute constant. In particular, if K is isotropic then R(Zq(K)) 6
c1qLK . One can also check that if K is centered, then Zq(K) ⊇ c2Z∞(K) for all q > n. For a proof of all
these assertions see [9, Chapter 5]. The class of Lq-centroid bodies of K was introduced (with a different
normalization) by Lutwak, Yang and Zhang in [20]. An asymptotic approach to this family was developed
by Paouris in [22] and [23].

For the proof of Theorem 1.2 we generalize arguments from [10] where Lq-centroid bodies are used in
order to describe the asymptotic shape of the absolute convex hull of N random points chosen from a convex
body. The use of one-sided Lq-centroid bodies allows one to consider the convex hull itself.

3 Random approximation of convex bodies

Let K be a centered convex body of volume 1 in Rn. For every q > 1 we consider the one-sided Lq-centroid
body Z+

q (K) of K with support function

hZ+
q (K)(y) =

(
2

∫
K

〈x, y〉q+dx
)1/q

,

where a+ = max{a, 0}. In a dual form, the one-sided Lq-centroid bodies were introduced in [15]. When K
is symmetric, it is clear that Z+

q (K) = Zq(K). In any case, we easily verify that

Z+
q (K) ⊆ 21/qZq(K).

Note that Z+
q (K) ⊆ 21/qK for all q > 1. One can check that if 1 6 q 6 r <∞ then

(3.1)

(
2

e

) 1
q−

1
r

Z+
q (K) ⊆ Z+

r (K) ⊆ Cr

q

(
2e− 2

e

) 1
q−

1
r

Z+
q (K),

where C > 0 is an absolute constant. This double inclusion is stated as (2.3) in [14, Section 2] and is
the analogue of (2.2). One can verify it following the proof of (2.2) and using Grünbaum’s lemma (see [1,
Proposition 1.5.16]). The next lemma is also due to Guédon and E. Milman.

Lemma 3.1. There exists an absolute constant c0 > 0 such that, for every isotropic convex body K in Rn,

Z+
2 (K) ⊇ c0LKBn2 .

Equivalently, for any θ ∈ Sn−1,

hZ+
2 (K)(θ) =

(
2

∫
K

〈x, y〉2+dx
)1/2

> c0LK .

Finally, we need the next lemma, which appears in [14] (see also [9, Theorem 13.2.7]).

Lemma 3.2. Let K be a centered convex body of volume 1 in Rn. Then, for every θ ∈ Sn−1,(
2

e2

)1/q (
Γ(n)Γ(q + 1)

Γ(n+ q + 1)

)1/q

hK(θ) 6 hZ+
q (K)(θ) 6 21/qhK(θ).
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Proof. We sketch the proof of the left hand side inequality. Let

H+
θ = {x ∈ Rn : 〈x, θ〉 > 0}, Hθ(t) = {x ∈ Rn : 〈x, θ〉 = t},

and
fθ(t) = |K ∩Hθ(t)|.

First observe that, by the Brunn-Minkowski inequality, f
1

n−1

θ is concave on its support, and hence we have

fθ(t) >
(

1− t

hK(θ)

)n−1
fθ(0)

for all t ∈ [0, hK(θ)]. Therefore,

hq
Z+
q (K)

(θ) =2

∫ hK(θ)

0

tqfθ(t)dt > 2

∫ hK(θ)

0

tq
(

1− t

hK(θ)

)n−1
fθ(0)dt

= 2fθ(0)hq+1
K (θ)

∫ 1

0

sq(1− s)n−1ds

=
Γ(n)Γ(q + 1)

Γ(q + n+ 1)
2fθ(0)hq+1

K (θ).

Observe that

2fθ(0)hK(θ) =
fθ(0)

‖fθ‖∞
2‖fθ‖∞hK(θ) >

fθ(0)

‖fθ‖∞
(2|K ∩H+

θ |).

We know that ‖fθ‖∞ 6 efθ(0) by a result of Fradelizi (see e.g. [9, Theorem 2.2.2]) and that |K ∩H+
θ | > e−1

by Grünbaum’s lemma (see [1, Proposition 1.5.16]). Combining the above we get the result. 2

Theorem 1.2 (and thus Theorem 1.1) will follow from the next fact, which generalizes the work of Dafnis,
Giannopoulos and Tsolomitis [10] to the not necessarily symmetric setting.

Theorem 3.3. Let β ∈ (0, 1). There exist a constant α = α(β) > 1 depending only on β and absolute
constants c1, c2 > 0 with the following property: if K is a centered convex body of volume 1 in Rn, N > αn,
and x1, . . . , xN are independent random points uniformly distributed in K then for q = c1β log(N/n) the
inclusion

(3.2) conv({x1, . . . , xN}) ⊇ c2Z+
q (K)

holds with probability greater than 1− e−N1−βnβ .

Our proof of (3.2) uses the family of one-sided Lq-centroid bodies of K. In particular, we need the
following estimate (the idea of the proof can be traced back in [10]; see also [24]).

Lemma 3.4. There exists an absolute constant C > 1 with the following property: for every n > 1, every
centered convex body K of volume 1 in Rn and every q > 2,

inf
θ∈Sn−1

µK

({
x : 〈x, θ〉 > 1

2hZ+
q (K)(θ)

})
> C−q,

where µK is the Lebesgue measure on K.

Proof. Let K be a centered convex body of volume 1 in Rn, let q > 2 and let θ ∈ Sn−1. We apply the
Paley-Zygmund inequality

(3.3) P
(
g > tE (g)

)
> (1− t)2 [E (g)]2

E (g2)
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for the non-negative random variable
gθ(x) = 2〈x, θ〉q+

on (K,µK). Applying (3.1) with r = 2q we see that

E (g2θ) = h2q
Z+

2q(K)
(θ) 6 Cq1h

2q

Z+
q (K)

(θ) = Cq1 [E (gθ)]
2,

where C1 > 0 is an absolute constant. From (3.3) we get

µK({x : 〈x, θ〉 > thZ+
q (K)(θ)}) = µK({x : 〈x, θ〉 > t [E (gθ)]

1/q}) = µK({x : 〈x, θ〉+ > t [E (gθ)]
1/q})

= µK({x : 〈x, θ〉q+ > tq E (gθ)}) = µK({x : gθ(x) > 2tq E (gθ)})

> (1− 2tq)2
[E (gθ)]

2

E (g2θ)
>

(1− 2tq)2

Cq1

for every t ∈ (0, 2−
1
q ). Choosing t = 1

2 we get the lemma with C = 4C1. 2

Proof of Theorem 3.3. Let q > 2 and consider the random polytope CN := conv{x1, . . . , xN}. With
probability equal to one, CN has non-empty interior and, for every J = {j1, . . . , jn} ⊂ {1, . . . , N}, the points
xj1 , . . . , xjn are affinely independent. Write HJ for the affine subspace determined by xj1 , . . . , xjn and H+

J ,
H−J for the two closed halfspaces whose bounding hyperplane is HJ .

If 1
2Z

+
q (K) 6⊆ CN , then there exists x ∈ 1

2Z
+
q (K) \ CN , and hence, there is a facet of CN defining some

affine subspace HJ as above that satisfies the following: either x ∈ H−J and CN ⊂ H+
J , or x ∈ H+

J and
CN ⊂ H−J . Observe that, for every J , the probability of each of these two events is bounded by(

sup
θ∈Sn−1

µK

({
x : 〈x, θ〉 6 1

2hZ+
q (K)(θ)

}))N−n
6
(
1− C−q

)N−n
,

where C > 0 is the constant in Lemma 3.4. It follows that

P
(
1
2Z

+
q (K) 6⊆ CN

)
6 2

(
N

n

)
(1− C−q)N−n.

Since
(
N
n

)
6
(
eN
n

)n
, this probability is smaller than exp(−N1−βnβ) if(

2eN

n

)n
(1− C−q)N−n <

(
2eN

n

)n
e−C

−q(N−n) < exp(−N1−βnβ),

and the second inequality is satisfied if

(3.4)
N

n
− 1 > Cq

[(
N

n

)1−β

+ log

(
2eN

n

)]
.

We choose q = β
2 logC log

(
N
n

)
and α1(β) := C4/β . Note that if N > α1(β)n then q > 2 and that (3.4)

becomes

(3.5)
N

n
− 1 >

(
N

n

)1− β2
+

(
N

n

) β
2

log

(
2eN

n

)
.

Since
lim

t→+∞

[
t− 1− t1−

β
2 − t

β
2 log(2et)

]
= +∞,

we may find α2(β) such that (3.5) is satisfied for all N > α2(β)n. Setting α = max{α1(β), α2(β)} we see

that the assertion of the theorem is satisfied with probability greater that 1−e−N1−βnβ for all N > αn, with
c1 = 1

2 logC and c2 = 1
2 . 2
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Proof of Theorem 1.2. Let β ∈ (0, 1) and let α = α(β) be the constant from Theorem 3.3. Let
αn 6 N 6 en and let x1, . . . , xN be independent random points uniformly distributed in K. Applying
Lemma 3.2 with q = n we see that hZ+

n (K) > c1hK(θ) for all θ ∈ Sn−1, and hence

Z+
n (K) ⊇ c1K,

where c1 > 0 is an absolute constant. From Theorem 3.3 we know that if q = c2β log(N/n) (note also that
q 6 n) then

CN = conv({x1, . . . , xN}) ⊇ c3Z+
q (K)

with probability greater than 1 − exp(−N1−βnβ), where c2, c3 > 0 are absolute constants. From (3.1) we
see that

Z+
n (K) ⊆ c4n

q

(
2e− 2

e

) 1
q−

1
n

Z+
q (K) ⊆ 2c4n

q
Z+
q (K),

where c4 > 0 is an absolute constant. Combining the above we get that

CN = conv({x1, . . . , xN}) ⊇
c5q

n
K ⊇ c6β log(N/n)

n
K

with probability greater than 1− exp(−N1−βnβ), where c5, c6 > 0 are absolute constants. 2

4 Generalized vertex index

Let K be a convex body in Rn. From the definition of the vertex index that we gave in the introduction, we
may clearly assume that K is centered, and then

vi(K) = inf
{ N∑
j=1

pK(yj) : K ⊆ conv({y1, . . . , yN})
}
,

where pK is the Minkowski functional of K. Since every origin symmetric convex body is centered, our
definition coincides with the one given by Bezdek and Litvak in [6] for the symmetric case.

It is also easy to check that the vertex index is invariant under invertible linear transformations. For
every convex body K in Rn and any T ∈ GL(n) one has

vi(T (K)) = vi(K).

Another useful observation is that the vertex index is stable under a variant of the Banach-Mazur distance.
Recall that the Banach-Mazur distance between two convex bodies K and L in Rn is the quantity

d(K,L) = inf{t > 0 : T (L+ y) ⊆ K + x ⊆ t(T (L+ y))},

where the infimum is over all T ∈ GL(n) and x, y ∈ Rn. Given two centered convex bodies K and L, we set

d̃(K,L) = inf{t > 0 : T (L) ⊆ K ⊆ tT (L)},

where the infimum is over all T ∈ GL(n). Note that if K and L are symmetric convex bodies then d̃(K,L) =
d(K,L). With this definition we easily check that if K and L are centered convex bodies in Rn then

vi(K) 6 d̃(K,L) vi(L).

The main result of this section is the upper bound in Theorem 1.3.

Proof of Theorem 1.3. We may assume that K is isotropic. By Theorem 1.1 we can find N 6 αn and
x1, . . . , xN ∈ K such that

K ⊆ Cn conv({x1, . . . , xN}),
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where α,C > 0 are absolute constants. We set yj = Cnxj , 1 6 j 6 N . Then, K ⊆ conv({y1, . . . , yN}) and
pK(yj) = CnpK(xj) 6 Cn, therefore

vi(K) 6
N∑
j=1

pK(yj) 6 CnN 6 Cαn2.

The result follows with C1 = Cα.
For the lower bound we just check that the argument of [6] remains valid in the not necessarily symmetric

case. By the linear invariance of the vertex index we may assume that Bn2 is the ellipsoid of minimal volume
which contains conv(K,−K). In other words, K ⊆ conv(K,−K) ⊆ Bn2 and(

|Bn2 |
|conv(K,−K)|

)1/n

= ovr(conv(K,−K)).

For any N ∈ N and y1, . . . , yN such that K ⊆ conv({y1, . . . , yN}) we consider the absolute convex hull
Q = conv({±y1, . . . ,±yN}) ⊇ conv(K,−K) of y1, . . . , yN . Then,

Q◦ = {x ∈ Rn : |〈x, yj〉| 6 1 for all j = 1, . . . , N},

and a result of Ball and Pajor [2] provides the lower bound

|Q◦| >

(
n∑N

j=1 ‖yj‖2

)1/n

for its volume. Using the Blaschke-Santaló inequality we get

|conv(K,−K)| 6 |Q| 6 |B
n
2 |2

|Q◦|
6 |Bn2 |2

(∑N
j=1 ‖yj‖2
n

)n
.

It follows that

1 6

(
|Bn2 |

|conv(K,−K)|

)1/n

|Bn2 |1/n
∑N
j=1 ‖yj‖2
n

6
ovr(conv(K,−K)))

cn3/2

N∑
j=1

‖yj‖2

for some absolute constant c > 0. Since K ⊆ Bn2 , we have ‖yj‖2 6 pK(yj) for all j = 1, . . . , N . Therefore,

N∑
j=1

pK(yj) >
cn3/2

ovr(conv(K,−K))
,

and taking the infimum over all N and all such N -tuples (y1, . . . , yN ) we get the lower bound for vi(K). 2
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[14] O. Guédon and E. Milman, Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave
measures, Geom. Funct. Anal. 21 (2011), 1043–1068.

[15] C. Haberl, Lp intersection bodies, Adv. Math. 217 (2008), 2599–2624.

[16] F. John, Extremum problems with inequalities as subsidiary conditions, Courant Anniversary Volume, Inter-
science, New York (1948), 187–204.

[17] R. Kannan, L. Lovász and M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma,
Discrete Comput. Geom. 13 (1995), 541-559.

[18] B. Klartag, On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal. 16 (2006), 1274–
1290.

[19] B. Klartag and E. Milman, Centroid Bodies and the Logarithmic Laplace Transform – A Unified Approach, J.
Funct. Anal. 262 (2012), 10–34.

[20] E. Lutwak, D. Yang and G. Zhang, Lp affine isoperimetric inequalities, J. Differential Geom. 56 (2000), 111–132.

[21] V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed
n-dimensional space, in Geom. Aspects of Funct. Analysis, Lecture Notes in Mathematics 1376, Springer,
Berlin (1989), 64–104.

[22] G. Paouris, Concentration of mass in convex bodies, Geom. Funct. Anal. 16 (2006), 1021–1049.

[23] G. Paouris, Small ball probability estimates for log-concave measures, Trans. Amer. Math. Soc. 364 (2012),
287–308.

[24] G. Paouris and E. Werner, Relative entropy of cone measures and Lp-centroid bodies, Proc. Lond. Math. Soc.
104 (2012), 253-286.

[25] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Second expanded edition. Encyclopedia of Math-
ematics and Its Applications 151, Cambridge University Press, Cambridge, 2014.

[26] N. Srivastava, On contact points of convex bodies, in Geom. Aspects of Funct. Analysis, Lecture Notes in
Mathematics 2050, Springer, Berlin (2012), 393–412.

10



Keywords: Convex bodies, isotropic position, centroid bodies, random polytopal approximation.

2010 MSC: Primary 52A23; Secondary 52A35, 46B06, 60D05.

Silouanos Brazitikos: Department of Mathematics, National and Kapodistrian University of Athens, Panepis-
timiopolis 157-84, Athens, Greece.

E-mail: silouanb@math.uoa.gr

Giorgos Chasapis: Department of Mathematics, National and Kapodistrian University of Athens, Panepistimiopo-
lis 157-84, Athens, Greece.

E-mail: gchasapis@math.uoa.gr

Labrini Hioni: Department of Mathematics, National and Kapodistrian University of Athens, Panepistimiopolis
157-84, Athens, Greece.

E-mail: lamchioni@math.uoa.gr

11


	Introduction
	Notation and background
	Random approximation of convex bodies
	Generalized vertex index

