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Abstract

LetK be a centered convex body of volume 1 in Rn. A direction θ ∈ Sn−1

is called sub-Gaussian forK with constant b > 0 if ‖〈·, θ〉‖Lψ2
(K) 6 b‖〈·, θ〉‖2.

We show that if K is isotropic then most directions are sub-Gaussian with

a constant which is logarithmic in the dimension. More precisely, for any

a > 1 we have

‖〈·, θ〉‖Lψ2
(K) 6 C(logn)3/2 max

{√
logn,

√
a
}
LK

for all θ in a subset Θa of Sn−1 with σ(Θa) > 1 − n−a, where C > 0 is an

absolute constant.

1 Introduction

Let K be a centered convex body of volume 1 in Rn; we say that K is centered if

it has its barycenter at the origin. A direction θ ∈ Sn−1 is a ψα-direction (where

1 6 α 6 2) for K with constant b > 0 if

‖〈·, θ〉‖Lψα (K) 6 b‖〈·, θ〉‖2,

where

‖〈·, θ〉‖Lψα (K) := inf

{
t > 0 :

∫
K

exp
(
(|〈x, θ〉|/t)α

)
dx 6 2

}
.

From Markov’s inequality it is clear that if K satisfies a ψα-estimate with constant

b in the direction of θ then for all t > 1 we have |{x ∈ K : |〈x, θ〉| > t‖〈·, θ〉‖2}| 6
2e−t

a/bα . Conversely, it is a standard fact that tail estimates of this form imply

that θ is a ψα-direction for K.

From the Brunn-Minkowski inequality it follows that every θ ∈ Sn−1 is a ψ1-

direction for K with an absolute constant C. The starting point of this note is

a question posed by V. Milman: is it true that there exists an absolute constant

C > 0 such that every K has at least one sub-Gaussian direction (ψ2-direction)
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with constant C? Klartag proved in [11] that for every centered convex body K of

volume 1 in Rn there exists θ ∈ Sn−1 such that

|{x ∈ K : |〈x, θ〉| > ct‖〈·, θ〉‖2}| 6 e
− t2

[log(t+1)]2a

for all t > 1, where a = 3 (equivalently, ‖〈·, θ〉‖Lψ2
(K) 6 C(log n)a‖〈·, θ〉‖2). This

estimate was later improved by Giannopoulos, Paouris and Valettas in [8] and

[9] (see also [7]). They considered the body Ψ2(K) with support function y 7→
‖〈·, y〉‖Lψ2

(K) and showed that for every centered convex body K of volume 1 in

Rn, one has

c1 6

(
|Ψ2(K)|
|Z2(K)|

)1/n

6 c2
√

log n, (1.1)

where {Zq(K)}q>1 is the family of the Lq-centroid bodies of K, and c1, c2 > 0 are

absolute constants (background information on isotropic convex bodies and their

centroid bodies is provided in Section 2). An immediate consequence of (1.1) is the

existence of at least one sub-Gaussian direction for K with constant b 6 C
√

log n.

A natural question that arises is to consider a suitable position T (K), T ∈
SL(n), of the body K and to study the distribution of the ψ2-norm ‖〈·, θ〉‖Lψ2

(K)

with respect to the rotationally invariant probability measure σ on the sphere.

Klartag [11] offers a result of this type: if K has volume 1 and barycenter at the

origin, then there exists T ∈ SL(n) such that the body K1 = T (K) has the following

property: there exists Θ ⊆ Sn−1 with measure σ(Θ) > 4
5 such that, for every θ ∈ Θ

and every t > 1,

|{x ∈ K1 : |〈x, θ〉| > ct‖〈·, θ〉‖1}| 6 exp

(
− ct2

log2 n log5 (t+ 1)

)
.

Exploiting Klartag’s ideas we give a short proof of an analogous statement.

Proposition 1.1. Let K be a centered convex body of volume 1 in Rn, with barycen-

ter at the origin, such that Ψ2(K) has minimal mean width among all its linear

images of the same volume. Then, for any δ ∈ (0, 1) we may find Θδ ⊆ Sn−1 with

measure σ(Θδ) > 1−δ such that every θ ∈ Θδ is a ψ2-direction for K with constant

Cδ−1(log n)3/2.

Note that Ψ2(T (K)) = T (Ψ2(K)) for all T ∈ SL(n), and hence there exists a

position K1 = T (K) of K such that Proposition 1.1 applies for K1. A more natural

and interesting case to consider is when K is in the isotropic position. Our main

result provides logarithmic bounds for ‖〈·, θ〉‖Lψ2
(K) with probability polynomially

close to 1.

Theorem 1.2. Let K be an isotropic convex body in Rn. Then, for any a > 1 we

have

‖〈·, θ〉‖Lψ2
(K) 6 C(log n)3/2 max

{√
log n,

√
a
}
LK

for all θ in a subset Θa of Sn−1 with σ(Θa) > 1− n−a, where C > 0 is an absolute

constant.
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Theorem 1.2 shows that ‖〈·, θ〉‖Lψ2
(K) 6 C(log n)2LK with probability greater

than 1− 1
n . This allows us to estimate the expectation of ‖〈·, θ〉‖Lψ2

(K) on Sn−1:

Theorem 1.3. Let K be an isotropic convex body in Rn. Then,∫
Sn−1

‖〈·, θ〉‖Lψ2
(K)dσ(θ) 6 C(log n)2LK ,

where C > 0 is an absolute constant.

The previously known general estimate was Eσ(‖〈·, θ〉‖Lψ2
(K)) 6 C 4

√
nLK (see

[9]). Regarding the optimal expected result, it is useful to mention a number of

sharp results for special classes of convex bodies. Bobkov and Nazarov (see [2] and

[3]) have proved that if K is an isotropic unconditional convex body in Rn then,

for every θ ∈ Rn,

‖fθ‖Lψ2
(K) 6 c

√
n‖θ‖∞,

where c > 0 is an absolute constant. It follows that∫
Sn−1

‖〈·, θ〉‖Lψ2
(K)dσ(θ) 6 C

√
log n (1.2)

in the unconditional case. In particular, the upper bound of (1.2) holds true the

normalized `np -balls B
n

p for all 1 6 p 6 ∞. The estimate is sharp in the case

of the normalized `n1 -ball B
n

1 : one has Eσ(‖〈·, θ〉‖Lψ2
(B

n
1 )) '

√
log n. Therefore,

the estimate of Theorem 1.3 is best possible up to the power of log n, and one

cannot expect a general upper bound independent from the dimension. A very

precise description of the behavior of linear functionals on the `np -balls, for all

1 6 p 6∞, can be found in the article [1] of Barthe, Guédon, Mendelson and Naor;

in particular, they show that in the case 2 6 p 6 ∞ one has ‖〈·, θ〉‖Lψ2
(B

n
p ) 6 C

for every θ ∈ Sn−1, where C > 0 is a constant independent from p and n.

The main new tool for the proof of Theorem 1.2 and Theorem 1.3 is a recent

result of E. Milman on the mean width w(Zq(K)) of the Lq-centroid bodies Zq(K)

of an isotropic convex body K in Rn.

Theorem 1.4 (E. Milman [15]). Let K be an isotropic convex body in Rn. Then,

for all q > 1 one has

w(Zq(K)) 6 C log(1 + q) max

{
q log(1 + q)√

n
,
√
q

}
LK

where C > 0 is an absolute constant.

The proofs of the main results are given in Section 3.
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2 Notation and background information

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote the

corresponding Euclidean norm by ‖ · ‖2, and write Bn2 for the Euclidean unit ball,

Sn−1 for the unit sphere, and σ for the rotationally invariant probability measure on

Sn−1. Volume is denoted by |·|. The letters ci, Ci denote absolute positive constants

whose value may change from line to line. Whenever we write a ' b, we mean that

there exist absolute constants c1, c2 > 0 such that c1a 6 b 6 c2a. We will often use

the fact that |Bn2 |1/n ' 1/
√
n; to see this, recall that |Bn2 | = πn/2/Γ

(
n
2 + 1

)
and

use Stirling’s formula.

A convex body in Rn is a compact convex set A ⊂ Rn with non-empty interior.

We say that A is symmetric if x ∈ A implies that −x ∈ A. We say that A is

unconditional with respect to an orthonormal basis of Rn if x = (x1, . . . , xn) ∈ A
implies that (ε1x1, . . . , εnxn) ∈ A for every choice of signs εi ∈ {−1, 1}. The

volume radius of A is the quantity vrad(A) = (|A|/|Bn2 |)
1/n

. Integration in polar

coordinates shows that if the origin is an interior point of A then the volume radius

of A can be expressed as

vrad(A) =

(∫
Sn−1

‖θ‖−nA dσ(θ)

)1/n

,

where ‖θ‖A = min{t > 0 : θ ∈ tA}. The support function of A is defined by

hA(y) := max
{
〈x, y〉 : x ∈ A

}
, and the mean width of A is the average

w(A) :=

∫
Sn−1

hA(θ) dσ(θ) (2.1)

of hA on Sn−1. The radius R(A) of A is the smallest R > 0 such that A ⊆ RBn2 .

For notational convenience we write A for the homothetic image of volume 1 of a

convex body A ⊆ Rn, i.e. A := |A|−1/nA.

The polar body A◦ of a symmetric convex body A in Rn is defined by

A◦ :=
{
y ∈ Rn : 〈x, y〉 6 1 for all x ∈ A

}
. (2.2)

The Blaschke-Santaló inequality states that |A||A◦| 6 |Bn2 |2, with equality if and

only if A is an ellipsoid. The reverse Santaló inequality of Bourgain and V. Milman

[5] states that there exists an absolute constant c > 0 such that, conversely,

(|A||A◦|)1/n > c/n. (2.3)

A convex body K in Rn is called isotropic if it has volume 1, it is centered, i.e. its

barycenter is at the origin, and if its inertia matrix is a multiple of the identity

matrix: there exists a constant LK > 0 such that∫
K

〈x, θ〉2dx = L2
K (2.4)
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for every θ in the Euclidean unit sphere Sn−1. The hyperplane conjecture asks if

there exists an absolute constant C > 0 such that

Ln := max{LK : K is isotropic in Rn} 6 C (2.5)

for all n > 1. Bourgain proved in [4] that Ln 6 c 4
√
n logn, while Klartag [10]

obtained the bound Ln 6 c 4
√
n. A second proof of Klartag’s bound appears in [12].

Let K be a convex body of volume 1 in Rn. For every q > 1 we consider the

q-th moment of the Euclidean norm

Iq(K) =

(∫
K

‖x‖q2dx
)1/q

.

Note that if K is isotropic then I2(K) =
√
nLK . For every q > 1 and every y ∈ Rn

we set

hZq(K)(y) := ‖〈·, y〉‖q =

(∫
K

|〈x, y〉|qdx
)1/q

. (2.6)

The Lq-centroid body Zq(K) of K is the centrally symmetric convex body with

support function hZq(K). Note that K is isotropic if and only if it is centered

and Z2(K) = LKB
n
2 . Also, if T ∈ SL(n) then Zq(T (K)) = T (Zq(K)). From

Hölder’s inequality it follows that Z1(K) ⊆ Zp(K) ⊆ Zq(K) ⊆ Z∞(K) for all

1 6 p 6 q 6 ∞, where Z∞(K) = conv{K,−K}. Using Borell’s lemma (see [6,

Chapter 1]) one can check that

Zq(K) ⊆ c1
q

p
Zp(K) (2.7)

for all 1 6 p < q. In particular, if K is isotropic, then R(Zq(K)) 6 c1qLK . One

can also check that if K is centered, then Zq(K) ⊇ c2Z∞(K) for all q > n (this

was observed in [17]). An asymptotic approach to the family of centroid bodies was

developed by Paouris in [19] and [20].

We refer the reader to the article of V. Milman and Pajor [16] and to the book [6]

for an updated exposition of isotropic log-concave measures and more information

on the hyperplane conjecture.

3 Proof of the results

Recall that Ψ2(K) is the symmetric convex body with support function hΨ2(K)(y) =

‖〈·, y〉‖Lψ2
(K). One also has

hΨ2(K)(y) ' sup
q>2

hZq(K)(y)
√
q

' sup
26q6n

hZq(K)(y)
√
q
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because hZq(K)(y) ' hZn(K)(y) for all q > n. Taking into account the fact that if

2s 6 q < 2s+1 then

hZq(K)(y)
√
q

6
hZ2s+1 (K)(y)

2s/2
6
√

2
hZ2s+1 (K)(y)

2(s+1)/2
,

we can further simplify and write

hΨ2(K)(y) ' max
16s6m

hZ2s (K)(y)

2s/2
(3.1)

where m = blog2 nc (for all the above see [6, Chapter 5]).

Proof of Proposition 1.1. Since Ψ2(T (K)) = T (Ψ2(K)) for every T ∈ SL(n),

we may find T ∈ SL(n) such that K1 = T (K) has the property that Ψ2(K1) has

minimal mean width among all its linear images of the same volume. It is well

known (see [21] or [6, Chapter 1]) that in this case one has the estimate

w(Ψ2(K1)) 6 C1(log n) [vrad(Ψ2(K1))],

where C1 > 0 is an absolute constant. On the other hand, we may write∫
Sn−1

hΨ2(K1)(θ)

hZ2(K1)(θ)
dσ(θ) 6

(∫
Sn−1

h2
Ψ2(K1)(θ) dσ(θ)

) 1
2
(∫

Sn−1

h−2
Z2(K1)(θ) dσ(θ)

) 1
2

6

(∫
Sn−1

h2
Ψ2(K1)(θ) dσ(θ)

) 1
2
(∫

Sn−1

h−nZ2(K1)(θ) dσ(θ)

) 1
n

6 C2w(Ψ2(K1))vrad(Z◦2 (K1)) = C2
w(Ψ2(K1))

vrad(Z2(K1))
,

where we have used Cauchy-Schwarz inequality, Hölder’s inequality, the equality

vrad(Z2(K1))vrad(Z◦2 (K1)) = 1 which holds true because Z2(K1) is an ellipsoid,

and the equivalence of the L1 and the L2 norm of the function hΨ2(K1) on Sn−1

(this is a well-known Kahane-Khintchine type inequality; in fact, one can view it

as a special case of the stronger inequality (3.2), due to Litvak, V. Milman and

Schechtman [13]).

Combining the previous estimates we conclude that∫
Sn−1

hΨ2(K1)(θ)

hZ2(K1)(θ)
dσ(θ) 6 C3 log n

(
|Ψ2(K1)|
|Z2(K1)|

)1/n

6 C4(log n)3/2,

where in the last step we have used (1.1). An application of Markov’s inequality

shows that for any δ ∈ (0, 1) we may find Θδ ⊆ Sn−1 with measure σ(Θδ) > 1− δ
such that every θ ∈ Θδ is a ψ2-direction for K1 with constant C4δ

−1(log n)3/2. 2

We proceed to the proof of Theorem 1.2 and Theorem 1.3. First, we give a

simple argument that leads to the upper bound of Theorem 1.3 for

w(Ψ2(K)) =

∫
Sn−1

‖〈·, θ〉‖Lψ2
(K)dσ(θ).
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Let K be an isotropic convex body in Rn. By (3.1), for any y ∈ Sn−1 we have

hΨ2(K)(y) 6 C1 max
16s6m

hZ2s (K)(y)

2s/2
6 C1

m∑
s=1

hZ2s (K)(y)

2s/2

where m = blog2 nc. It trivially follows that

w(Ψ2(K)) 6 C1

m∑
s=1

w(Z2s(K))

2s/2
.

From Theorem 1.4 we know that

w(Z2s(K)) 6 C2s2
s/2 max

{
s2s/2√
n
, 1

}
LK .

Therefore, denoting by k the largest integer for which k22k 6 n, and using summa-

tion by parts in the final step, we see that

w(Ψ2(K)) 6 C3

m∑
s=1

smax

{
s2s/2√
n
, 1

}
LK 6 C3

(
k∑
s=1

s+
1√
n

m∑
s=k+1

s22s/2

)
LK

6 C4

(
k2 +

m22m/2√
n

)
LK 6 C5m

2 LK 6 C(log n)2LK ,

where C > 0 is an absolute constant.

A more careful use of the theory of centroid bodies, given below, leads to the

probability estimate of Theorem 1.2 and to a second proof of Theorem 1.3.

Proof of Theorem 1.2 and Theorem 1.3. We will use the following observations

that can be found e.g. in [6, Chapter 5]: given a symmetric convex body A in Rn,

if we set k = k∗(A) = n
(
w(A)
R(A)

)2

then

wk(A) :=

(∫
Sn−1

hkA(θ) dσ(θ)

)1/k

6 C1w(A) (3.2)

where C1 > 0 is an absolute constant; this is a result of Litvak, V. Milman and

Schechtman from [13]. If A = Zq(K) then the results of Paouris in [19] (or, earlier,

in [18]) show that, for all 2 6 q 6
√
n,

w(Zq(K)) > c1wq(Zq(K)) > c2
√
q/n Iq(K) > c2

√
q/n I2(K) = c2

√
qLK .

In fact, E. Milman and Klartag have obtained the stronger bound vrad(Zq(K)) >
c3
√
qLK for all 2 6 q 6 qH(K), where qH(K) > c4

√
n is a hereditary parameter

of K that was introduced and studied in [12] for this purpose. On the other hand,

R(Zq(K)) 6 C2qLK , and hence k∗(Zq(K)) > c5n/q for all 2 6 q 6
√
n. In the
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range
√
n 6 q 6 n one has the weaker bound w(Zq(K)) > vrad(Zq(K)) > c6

√
q

which follows from Urysohn’s inequality and a lower bound for vrad(Zq(K)) for the

full range 2 6 q 6 n, which is due to Lutwak, Yang and Zhang [14]; this results in

the estimate k∗(Zq(K)) > c7n/(qL
2
K).

Using Theorem 1.4 and (3.2) we get(∫
Sn−1

hk∗Zq(K)(θ) dσ(θ)

)1/k∗

6 C3 log(1 + q) max

{
q log(1 + q)√

n
,
√
q

}
LK

where k∗ := k∗(Zq(K)), and using Markov’s inequality we conclude that, for every

q 6 n there exists a subset Θq of Sn−1 such that σ(Sn−1 \Θq) 6 exp(−c8n/(qL2
K))

and

hZq(K)(θ) 6 C4
√
q log(1 + q) max

{√
q log(1 + q)
√
n

, 1

}
LK

for all θ ∈ Θq.

We fix a > 1 and define q0 = c8n
2aL2

K logn
. Then, for every q 6 q0 we have

σ(Sn−1 \Θq) 6 1
n2a . It follows that

σ
(
Sn−1 \

blog2 q0c⋂
s=1

Θ2s

)
6
c9 log n

n2a
6

1

na
.

If Θ :=
⋂blog2 q0c
s=1 Θ2s then, for every θ ∈ Θ and every q 6 q0 we have

hZq(K)(θ)√
q

6 C4 log(1 + q) max

{√
q log(1 + q)
√
n

, 1

}
LK (3.3)

6 C5(log n) max

{
log(1 + q0)√
aLK
√

log n
, 1

}
LK ,

while for q0 6 q 6 n we use (2.7) to write

hZq(K)(θ)√
q

6
C6q

q0

hZq0 (K)(θ)
√
q

= C6

√
q/q0

hZq0 (K)(θ)
√
q0

6 C6

√
n/q0 log(1 + q0) max

{
log(1 + q0)√
aLK
√

log n
, 1

}
LK

6 C7

√
a(log n)3/2 max

{√
log n√
aLK

, 1

}
L2
K .

Combining this estimate with (3.3) we see that

‖〈·, θ〉‖Lψ2
(K) 6 C8

√
a(log n)3/2 max

{√
log n√
aLK

, 1

}
L2
K

with probability greater that 1− n−a.
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Now, we use Theorem 3.1 from [8]: If K is an isotropic convex body in Rn,

there exists an isotropic convex body K1 such that LK1
6 C0, where C0 > 0 is an

absolute constant, and

Ψ2(K) ⊆ c10LKΨ2(K1).

Our previous reasoning, applied to K1, shows that, with probability greater than

1− n−a,

‖〈·, θ〉‖Lψ2
(K) 6 c10LK‖〈·, θ〉‖Lψ2

(K1) 6 C8c10LK
√
a(log n)3/2 max

{√
log n√
a

, 1

}
C2

0

6 C9LK
√
a(log n)3/2 max

{√
log n√
a

, 1

}
.

This proves Theorem 1.2. In particular, we have

‖〈·, θ〉‖Lψ2
(K) 6 C10(log n)2LK

with probability greater than 1 − 1
n . Since ‖〈·, θ〉‖Lψ2

(K) 6 C11
√
nLK for all θ ∈

Sn−1 (see e.g. [6]) this gives one more proof of Theorem 1.3. 2

Remark. Let K be an isotropic convex body in Rn. The function ψK : [1,∞)→ R
with

ψK(t) := σ
(
{θ ∈ Sn−1 : ‖〈·, θ〉‖Lψ2

(K) 6 ct
√

log nLK}
)

was introduced in [9], where it was shown that for every t > 1 one has

ψK(t) > exp(−cn/t2),

where c > 0 is an absolute constant. Theorem 1.3 provides much stronger informa-

tion; it implies that ψK(t) > 1/2 for t ' (log n)3/2.

Acknowledgement. We acknowledge support from the programme “APIΣTEIA

II – ATOCB – 3566” of the General Secretariat for Research and Technology of

Greece. We would also like to thank the referee for comments and valuable sugges-

tions on the presentation of the results of this article.

References
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