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Abstract

We propose a program for establishing a conjectural extension to the class of
(origin-symmetric) log-concave probability measures µ, of the classical (dual) Su-
dakov Minoration on the expectation of the supremum of a Gaussian process:

M(Zp(µ), C

∫

‖x‖K dµ ·K) ≤ exp(Cp) ∀p ≥ 1. (0.1)

Here K is an origin-symmetric convex body, Zp(µ) is the Lp-centroid body asso-
ciated to µ, M(A,B) is the packing-number of B in A, and C > 0 is a universal
constant. The Program consists of first establishing a Weak Generalized Sudakov
Minoration, involving the dimension n of the ambient space, which is then self-
improved to a dimension-free estimate after applying a dimension-reduction step.
The latter step may be thought of as a conjectural “small-ball one-sided” variant
of the Johnson–Lindenstrauss dimension-reduction lemma. We establish the Weak
Generalized Sudakov Minoration for a variety of log-concave probability measures
and convex bodies (for instance, this step is fully resolved assuming a positive an-
swer to the Slicing Problem). The Separation Dimension-Reduction step is fully
established for ellipsoids and, up to logarithmic factors in the dimension, for cubes,
resulting in a corresponding Generalized (regular) Sudakov Minoration estimate for
these bodies and arbitrary log-concave measures, which are shown to be (essentially)
best-possible. Along the way, we establish a regular version of (0.1) for all p ≥ n
and provide a new direct proof of Sudakov’s Minoration via The Program.
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1 Introduction

Let γn denote the standard Gaussian measure on R
n, and let K ⊂ R

n denote a convex
body, that is a convex compact set with non-empty interior. For simplicity, we assume
that K is origin-symmetric, K = −K, and denote by ‖·‖K the associated norm whose
unit-ball is K. The dual norm is denoted ‖·‖∗K . Given two compact sets A,B ⊂ R

n, we
denote by M(A,B) the packing number of B in A, i.e. the maximal integer M so that
there exist {xi}i=1,...,M ⊂ A with xi +B mutually disjoint (“{xi} are B-separated”).

This paper is dedicated to the study of a conjectural generalized version of the clas-
sical Sudakov Minoration estimate [55] and its dual version (due to Pajor–Tomczak-
Jaegermann [44], see also [34]):

Theorem (Sudakov and Dual Sudakov Minoration).

(1) Sudakov Minoration for ℓ∗(K) :=
∫

‖x‖∗K dγn(x):

M(K, tBn
2 ) ≤ exp(Cℓ∗(K)/t2) ∀t > 0.

(2) Dual Sudakov Minoration for ℓ(K) :=
∫

‖x‖K dγn(x):

M(Bn
2 , tK) ≤ exp(Cℓ(K)/t2) ∀t > 0.

Here and throughout this work, C,C ′,C ′′,c, etc... denote positive universal constants,
independent of any other parameter (and in particular the dimension n), whose value may
change from one occurrence to the next. We use A ≃ B to signify that c ≤ A/B ≤ C.
The Euclidean unit-ball is denoted by Bn

2 .

Sudakov’s Minoration plays a key-role in the proof of M. Talagrand’s “Majorizing
Measures” theorem [56, 57, 58], which gives two-sided bounds on the expected supremum
of a Gaussian process in terms of a certain geometric parameter associated with the
indexing set. Subsequently (see [58] and the references therein), Talagrand extended his
characterization to more general processes sampled from i.i.d. Bernoulli random variables
and measures of the form exp(−∑n

i=1 |xi|
p)dx, p ∈ [1,∞], and the case of general log-

concave product measures (with moderate tail decay) was obtained by R. Lata la [31].
Recall that a probability measure µ on R

n is called log-concave if µ = exp(−V (x))dx
with V : R

n → R ∪ {+∞} convex. Motivated by an attempt to extend Talagrand’s
characterization to more general log-concave measures, Lata la [32] and independently
the authors (unpublished) conjectured the following Generalized Sudakov Minoration
bounds:

Conjecture. For any origin-symmetric log-concave probability measure µ on R
n and

origin-symmetric convex body K ⊂ R
n:
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(1) Generalized Sudakov Minoration for I∗1 (µ,K) :=
∫

‖x‖∗K dµ(x):

M(K,CI∗1 (µ,K)Bp(µ)) ≤ exp(Cp) ∀p ≥ 1.

(2) Generalized Dual Sudakov Minoration for I1(µ,K) :=
∫

‖x‖K dµ(x):

M(Zp(µ), CI1(µ,K)K) ≤ exp(Cp) ∀p ≥ 1.

Here Bp(µ) denotes the unit-ball of the norm given by:

‖x‖Bp(µ)
:=

(
∫

|〈y, x〉|p dµ(y)

)1/p

,

and Zp(µ) denotes the polar-body Bp(µ)◦, defined by ‖·‖Zp(µ)
= ‖·‖∗Bp(µ)

. Up to normal-

ization, the Zp(µ) bodies coincide with the Lp centroid-bodies introduced by E. Lutwak
and G. Zhang [36], and have played a pivotal role in the development of our understand-
ing of the volumetric properties of log-concave measures in the last decade (e.g. [10]).
Note that when µ = γn, since Zp(γn) ≃ √

pBn
2 , the above conjecture precisely coincides

with the classical Sudakov Minoration and its dual version. We refer to [57, 31, 32, 37]
for further partial results confirming this conjecture in particular cases and additional
applications. Let us presently only mention that the Generalized Sudakov Minoration
conjecture has been confirmed by Lata la in [31] for all log-concave (and in-fact, only
regular) product measures, for all log-concave measures when the extremal points of K
are antipodal pairs with disjoint supports, when µ = exp(−ϕ(‖x‖p))dx, p ∈ [1,∞], with
ϕ : [0,∞) → R ∪ {+∞} non-decreasing and convex, and for all p ≥ 2n log(e+ n).

1.1 Johnson–Lindenstrauss Lemma

In this work, we choose to concentrate on the conjectured Generalized Dual Sudakov
estimate, and propose a novel program for establishing it. The Program is based on a
conjectural dimension reduction step, which may be thought of as a “one-sided Johnson–
Lindenstrauss lemma”. Recall that the classical lemma of W. B. Johnson and J. Linden-
strauss [22] asserts that if {xi}i=1,...,ek is a collection of (say distinct) points in Euclidean
space X = (Rn, |·|) and ǫ ∈ (0, 1), then there exists a map T : X → Y , Y = (Rm, |·|)
Euclidean, so that:

1 − ǫ ≤ ‖Txi − Txj‖Y
‖xi − xj‖X

≤ 1 + ǫ ∀i 6= j (1.1)

with m ≤ Ck/ǫ2. Moreover, T may be chosen to be linear, and a random (appropriately
rescaled) orthogonal projection does the job with very high-probability (see Lemma 3.4).

For The Program, we will require an extension of this classical result to more general
normed spaces. Such a question was studied by Johnson and A. Naor [23], who showed
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that this is essentially impossible - even for a fixed ǫ ∈ (0, 1), if the normed space Y is
an m-dimensional subspace of X with m ≤ Cǫk, the distance-preservation property (1.1)
for a linear map T implies that X must be essentially Hilbertian (see [23] for the precise
formulation, and also [23, Section 4, Remark 7] for the case that Y is not assumed to be
a subspace of X). It follows that when X = (Rn, ‖·‖K), we cannot in general hope for a
two-sided estimate (1.1).

However, for our purposes, we will only need to satisfy the left-hand-side inequality
in (1.1): if the points {xi} are well-separated in X, so should their images {Txi} be in Y
(“Separation Dimension Reduction”). Of course, without some additional requirement,
this is always possible, simply be scaling the norm of Y or the map T in the numerator
above. The additional requirement which replaces the right-hand-side inequality in (1.1)
is that the unit-ball of Y be “massive enough”, as measured with respect to T∗µ :=
µ ◦ T−1, the push-forward of the measure µ by T , thereby precluding trivial rescaling
attempts. In a sense, this is an averaged variant (with respect to the given measure µ) of
the pointwise right-hand-side requirement in (1.1). This conjectural “one-sided Johnson–
Lindenstrauss” separation dimension-reduction is in our opinion a fascinating question,
which will be explored more in depth elsewhere; it constitutes Part 1 (or more precisely,
Part 1’) of our proposed program. We are now ready to describe it and the remaining
parts of The Program in more detail; for simplicity, we describe here a simplified version,
postponing a description of the full version to Section 5.

1.2 The Program - Simplified Version

Our proposed program consists of three parts, which we first describe in general terms.
Part 1 is a conjectural dimension-reduction step, already eluded to above: if Zp(µ) is
separated by ek translates of K, then there should be a linear map T : Rn → R

m with
m ≃ k so that TZp(µ) = Zp(T∗µ) is separated by ek translates of another star-body
L ⊂ R

m, which we may choose at our discretion from a family of candidates Lm, with
the only requirement being that it should be massive enough with respect to T∗µ. Part
2 consists of establishing a weak version of the Generalized Dual Sudakov estimate for
the pair Zp(T∗µ) and L, which is allowed to depend (in an appropriate manner) on
the dimension m of the ambient space. Part 3 consists of establishing the Generalized
Dual Sudakov estimate for the latter pair when p is larger than m. By means of a
bootstrap argument, we will shortly show that confirmation of these three parts would
imply the Generalized Dual Sudakov Minoration Conjecture. We begin with describing
(a simplified version of) The Program in greater detail.

A compact set L ⊂ R
n having the origin in its interior is called a star-body if tL ⊂ L

for all t ∈ [0, 1]. Given an absolutely continuous probability measure µ on R
n, denote

mq(µ,L) := sup {s > 0;µ(sL) ≤ e−q} so that µ(mq(µ,L)L) = e−q.
Fix an origin-symmetric convex body K ⊂ R

n, origin-symmetric log-concave measure
µ on R

n and p ≥ 1. It is known (see Lemma 2.1) that in such a case I1(µ,K) ≃ m1(µ,K),
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and so up to universal constants we need not distinguish between these two parameters.
The following simplified version of The Program for establishing the Generalized Dual
Sudakov estimate:

µ(K) ≥ 1

e
⇒ M(Zp(µ), RK) ≤ exp(CA,B,ϕp), (1.2)

consists of establishing the following three parts for some constants R,A,B ≥ 1 and a cer-
tain function ϕ, described below. For all m = 1, . . . , n, set Mm := {T∗µ ; T : Rn → R

m linear},
which is a family of log-concave measures on R

m by the Prékopa–Leindler theorem (e.g.
[13]). In addition, let Lm denote some family of origin-symmetric star-bodies in R

m,
with Ln = {K}. Below k is a positive real number.

(1) Part 1 (Massive Separation Dimension Reduction).
If M(Zp(µ), RK) = ek with µ(K) ≥ 1

e and 2B ≤ k ≤ n/A, show that there exists
a linear map T : Rn → R

m and L ∈ Lm, with m ≤ Ak, so that:

(a) M(TZp(µ), L) ≥ ek (“Separation Dimension Reduction”).

(b) T∗µ(L) ≥ exp(−qm), 1 ≤ qm ≤ k/2 (“L is sufficiently massive”).

(2) Part 2 (Weak Generalized Dual Sudakov).
For all m = 1, . . . , n, L ∈ Lm and ν ∈ Mm, show that:

1 ≤ p ≤ m , ν(L) ≥ exp(−qm) ⇒ M(Zp(ν), L) ≤ exp(qm +mϕ(p/m)),

where ϕ : [0, 1] → R+ is an increasing function with ϕ(0) = 0 and x 7→ ϕ(x)/x
non-increasing (which is independent of all other parameters).

(3) Part 3 (Large p).
For all m = 1, . . . , n, L ∈ Lm and ν ∈ Mm, show that:

p ≥ m , ν(L) ≥ exp(−qm) ⇒ M(Zp(ν), L) ≤ exp(qm +Bp).

Remark 1.1. The following linear version of Part 1 should be kept in mind:

(1’) Part 1’ - Linear Version
If {xi}i=1,...,ek ⊂ R

n is a collection of K-separated points with µ(K) ≥ 1
e and

2B ≤ k ≤ n/A, show that there exists a linear map T : Rn → R
m and L ∈ Lm,

with m ≤ Ak, so that:

(a) {T (xi)}i=1,...,ek ⊂ R
m are 1

RL-separated (“One-sided Johnson–Lindenstrauss”).

(b) T∗µ(L) ≥ exp(−qm), 1 ≤ qm ≤ k/2 (“L is sufficiently massive”).
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By applying this linear version of Part 1 to the maximal collection of K-separated points
{xi} in 1

RZp(µ), it is evident that establishing Part 1’ is sufficient for establishing Part
1 of The Program. However, this is not an equivalent reformulation, and we will also
see in Section 10 an example where a non-linear combinatorial argument is required for
establishing Part 1.

Remark 1.2. Note that using ϕ(t) = t in Part 2 with m = n precisely corresponds to
establishing the Generalized Dual Sudakov Minoration conjecture. Part 2 provides the
added flexibility of using a weaker function ϕ. For instance, using ϕ(t) = tq for some
q ∈ (0, 1) corresponds to establishing M(Zp(ν), L) ≤ exp(qm + m1−qpq), i.e. a weak
dimension-dependent confirmation of the conjecture for ν ∈ Mm and L ∈ Lm.

Theorem 1.3 (The Program Yields Generalized Dual Sudakov). Establishing The Pro-
gram above yields the Generalized Dual Sudakov Estimate (1.2).

Proof. Assume that µ(K) ≥ 1/e. We will show that:

ek := M(Zp(µ), RK) ≤ exp(CA,B,ϕp) , CA,B,ϕ := max

(

2B,
1

Aϕ−1(1/(2A))

)

. (1.3)

Since p ≥ 1, we may assume that k ≥ CA,B,ϕ ≥ 2B, otherwise there is nothing to
prove. We now claim there exists a linear map T : Rn → R

m and L ∈ Lm for some
m ≤ min(n,Ak), so that M(TZp(µ), L) ≥ ek and T∗µ(L) ≥ exp(−qm), 1 ≤ qm ≤ k/2.
Indeed, if k < n/A this follows from Part 1, whereas if k ≥ n/A this is actually trivial
by using m = n, T = Id, L = K and qm = 1. Denoting ν = T∗µ ∈ Mm, note that
TZp(µ) = Zp(ν). Consequently, if p ≥ m then by Part 3:

exp(k) ≤M(Zp(ν), L) ≤ exp(qm +Bp) ≤ exp(k/2 +Bp),

implying that k ≤ 2Bp, as required. Alternatively, if p ≤ m then by Part 2 and the
assumption that x 7→ ϕ(x)/x is non-increasing:

exp(k) ≤M(Zp(ν), L) ≤ exp(qm +mϕ(p/m)) ≤ exp(k/2 +Akϕ(p/(Ak))).

It follows since ϕ is increasing from 0 that:

p

Ak
≥ ϕ−1

(

1

2A

)

> 0,

implying that k ≤ CA,B,ϕp, and concluding the proof.

1.3 Results

Besides introducing The Program, our main results in this work are as follows:
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(1) As a warm-up, we demonstrate in Section 3 the usefulness of The Program by
running an analogous version which yields a new proof of the classical Sudakov
Minoration (in fact, an improved version, known to experts). To take care of
the Separation Dimension-Reduction step (Part 1), we simply employ the usual
Johnson–Lindenstrauss Lemma, while for Parts 2 and 3 we invoke an elementary
weak volumetric estimate based on Urysohn’s inequality.

(2) In Section 4, we establish Part 3 of The Program in full generality, for all (origin-
symmetric) log-concave measures ν and star-bodies L in R

m. In fact, we obtain
the following regular version thereof:

p ≥ m ⇒ M(Zp(ν), Ctmq(ν, L)L) ≤ exp(1 + q +
p

t
) ∀t, q > 0. (1.4)

(3) In Section 5, we formulate the full version of The Program, which extends the
simplified one presented above in two aspects: first, in Part 1, we allow the packing
number after dimension reduction to drop from ek down to el for l ≥ k/D (where
D ≥ 1 is an additional parameter); and second, we introduce a regularity parameter
t > 0 whose role is to scale the bodies K and L. We prove an analogue of Theorem
1.3, stating that establishing Parts 1 and 2 of The (full) Program, together with
the regular version of Part 3 established in (1.4), yields a Generalized Regular Dual
Sudakov upper bound on M(Zp(µ), tm1(µ,K)K) for all t > 0.

(4) In Section 6, we establish Part 2 of The Program for the case that L is an (origin-
symmetric) ellipsoid, by invoking a weak volumetric estimate involving all intrinsic
volumes of Zp(ν).

(5) In Section 7, we establish the remaining Part 1 of The Program for the case that K
is an ellipsoid, by decoupling the separation dimension-reduction and massiveness
requirements using a general probabilistic argument, and applying a small-ball one-
sided variant of the Johnson–Lindenstrauss Lemma. Running The Program, we
obtain the following estimate:

M(Zp(µ), tm1(µ, E)E) ≤ exp
(

C
( p

t2
+
p

t

))

∀t > 0, (1.5)

for any (origin-symmetric) ellipsoid E ⊂ R
n. We verify in Section 11 that for

general log-concave measures µ and ellipsoids E , this estimate is best-possible (up
to numeric constants) for all p ∈ [1, n] and t ≥

√

p/n. When µ has identity
covariance matrix (“µ is isotropic”) and E = Bn

2 , we have m1(µ, E) ≃ √
n, and

so the estimate (1.5) precisely coincides with the one obtained in [16] for isotropic
log-concave measures and Euclidean balls. In the isotropic case, further improved
packing estimates (for an appropriate range of p, t) were obtained in [40, Subsection
3.3].
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(6) In Section 8, we introduce the class of h-pure log-concave probability measures µ,
which includes several important sub-families, such as unconditional, sub-Gaussian
and super-Gaussian log-concave measures. In particular, a log-concave measure
is called 1-pure if all of its lower-dimensional marginals have uniformly bounded
isotropic constant (see Section 8). A regular packing estimate for M(Bn

2 , tZn(µ))
when µ is an isotropic 1-pure log-concave probability measure was obtained by
Giannopoulos–Milman in [14], and we extend it here to general h-pure measures,
as it plays an important role in the subsequent section.

(7) In Section 9, we use the previous results to establish Part 2 of The Program in a
variety of scenarios, such as when the log-concave measure ν is assumed h-pure, or
when Zm(ν) or L ∈ Lm are assumed to have regular small-diameter, such as for
type-2 convex bodies, sub-Gaussian convex bodies or unconditional convex bodies
with small-diameter, and in particular for ℓmq unit-balls, q ∈ [2,∞]. In particular,
in view of Remark 1.2, this confirms the Generalized Dual Sudakov Minoration con-
jecture for such ν and L up to non-trivial, but unfortunately dimension-dependent,
constants.

(8) In Section 10 we establish Part 1 of (the full version of) The Program for K =
Bn

∞, the n-dimensional cube, with additional logarithmic terms in the dimension.
Running The Program, this yields for all p ≥ 1 and t > 0:

M(Zp(µ), tC log log(e+ n)m1(µ,B
n
∞)Bn

∞) ≤ exp
(

C log(e+ n)
( p

t2
+
p

t

))

. (1.6)

In Section 11, we verify that for general log-concave measures µ and up to the
above logarithmic terms, this estimate is best-possible (up to numeric constants)
for all p ∈ [1, n] and t ≥ min(1,

√

p/nα), for any fixed α ∈ (0, 1). Removing these
logarithmic terms would establish the Generalized Dual Sudakov conjecture in full
generality, since any origin-symmetric convex-body K ⊂ R

n may be approximated
by an n-dimensional section of BN

∞ as N → ∞ (in fact, using N = en would be
enough). So from an optimistic perspective, we are only log n far from establishing
the conjecture. A similar argument verifies that (1.6) also holds with Bn

∞ replaced
by any origin-symmetric polytope with nβ facets, for any fixed β ≥ 1.

In Section 11 we present some further concluding remarks.

2 Notation

We work in Euclidean space (Rn, |·|), where |·| denotes the standard Euclidean norm.
The Euclidean unit-ball is denoted by Bn

2 and the Euclidean unit-sphere by Sn−1. We
also use |A| to denote the volume (or Lebesgue measure) of a Borel set A ⊂ R

n in its m-
dimensional affine hull (there will be no ambiguity with this standard double role of |·|);
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the volume-radius of A is then defined as vrad(A) := (|A| / |Bm
2 |)1/m. It is well-known

that |Bm
2 |1/m ≃ 1/

√
m.

The Grassmannian of all m-dimensional linear subspaces of Rn is denoted by Gn,m,
m = 1, . . . , n. All homogeneous spaces G of the group of rotations SO(n) are equipped
with their Haar probability measures σG, and in particular σ = σSn−1 denotes the
corresponding Haar probability measure on Sn−1. Given F ∈ Gn,m, we denote by PF

the orthogonal projection onto F , and set B2(F ) := Bn
2 ∩F and S(F ) := Sn−1∩F . Given

a Borel measure µ on R
n, its marginal πFµ is defined as the push-forward (PF )∗(µ) =

µ ◦ P−1
F . A consequence of the Prékopa–Leindler celebrated extension of the Brunn–

Minkowski inequality (e.g. [13]), is that the marginal πFµ of a log-concave measure µ is
itself log-concave on F .

The support function of a compact set L is defined as hL(θ) := max {〈x, θ〉 ;x ∈ L},
θ ∈ Sn−1. Recall that a star-body L ⊂ R

n is a compact set containing the origin in its
interior so that tL ⊂ L for all t ∈ [0, 1]. We denote ‖x‖L := min {t > 0;x ∈ tL}. The
radial function ρL(θ) is defined as 1/ ‖θ‖L for θ ∈ Sn−1. When K is an origin-symmetric
convex body, ‖·‖K is a genuine norm whose unit-ball is precisely K, and its support
function coincides with the dual-norm hK(θ) = ‖θ‖∗K . The Minkowski sum of two
compact sets A,B ⊂ R

n is defined as the compact set A+B := {a+ b ; a ∈ A , b ∈ B},
and satisfies hA+B = hA + hB . We will write L1 ≃ L2 if cL2 ⊂ L1 ⊂ CL2 for some
universal constants c, C > 0.

2.1 Quantiles of log-concave probability measures

Given an absolutely continuous probability measure µ on R
n, a star-body L ⊂ R

n and
q > 0, recall that:

mq(µ,L) := sup
{

s > 0;µ(sL) ≤ e−q
}

,

so that µ(mq(µ,L)L) = e−q. In addition, given q > −1, we define:

Iq(µ,L) := (

∫

‖x‖qL dµ(x))1/q .

Lemma 2.1. Let K be an origin-symmetric convex body and let µ denote a log-concave
probability measure on R

n. Then for all q ≥ 1:

ce−qm1(µ,K) ≤ mq(µ,K) ≤ m1(µ,K) ≃ I1(µ,K) ≤ Iq(µ,K) ≤ CqI1(µ,K).

Proof. The first inequality follows by a Kahane–Khintchine-type inequality for negative
moments due to O. Guédon [19], which asserts that under our assumptions:

µ(ǫ m1(µ,K)K) ≤ 2 ln(
e

e− 1
)ǫ ∀ǫ ∈ [0, 1].

The second inequality is trivial. The inequality m1(µ,K) ≤ e
e−1I1(µ,K) follows directly

by the Markov-Chebyshev inequality. The reverse inequality I1(µ,K) ≤ Cm1(µ,K)
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follows again by Markov-Chebyshev in conjunction with the negative moment com-
parison I1(µ,K) ≤ CqIq(µ,K) for all q ∈ (−1, 0] established in [19]. The inequal-
ity I1(µ,K) ≤ Iq(µ,K) is immediate by Jensen’s inequality. Finally, the Kahane–
Khintchine-type inequality Iq(µ,K) ≤ CqI1(µ,K) is a known consequence of Borell’s
lemma [6] (e.g. [41], [42, Appendix III] or [10]).

2.2 Centroid Bodies

Recall that the Lp (p ≥ 1) centroid-bodies Zp(µ) associated to a log-concave probability
measure µ on R

n are defined by:

hZp(µ)(θ) =

(
∫

|〈x, θ〉|p dµ(x)

)1/p

, θ ∈ Sn−1.

Note that T (Zp(µ)) = Zp(T∗µ) for any linear mapping T , and in particular PFZp(µ) =
Zp(πFµ) for all F ∈ Gn,m. It is well-known that:

1 ≤ p ≤ q ⇒ Zp(µ) ⊂ Zq(µ) ⊂ C
q

p
Zp(µ), (2.1)

for some constant C ≥ 1. The first inequality is simply Jensen’s inequality, whereas the
second one is due to Berwald [5], or may be deduced as in Lemma 2.1 as a consequence
of Borell’s Lemma [6]. In fact, it was noted by Lata la and Wojtaszczyk [33, Proposition
3.8] that when µ is origin-symmetric, one may use C = 1 above (note that the argument
in [33] applies to the entire range 1 ≤ p ≤ q).

Lemma 2.2. For any probability measure µ, origin-symmetric convex body K and p ≥ 1:

Zp(µ) ⊂ Ip(µ,K)K.

Proof. For all θ ∈ Sn−1:

hpZp(µ)
(θ) =

∫

|〈x, θ〉|p dµ(x) ≤
∫

‖x‖pK dµ(x) hpK(θ) .

We denote by Cov(µ) the covariance matrix of µ, defined as Cov(µ) :=
∫

x⊗x dµ(x)−
∫

x dµ(x) ⊗
∫

x dµ(x). We will say that µ is isotropic if its barycenter is at the origin
and Cov(µ) is the identity matrix Id. It is easy to see that by applying an affine trans-
formation, any absolutely continuous probability measure may be brought to isotropic
“position”, which is unique up to orthogonal transformations. We will always assume
that µ has barycenter at the origin, so that µ is isotropic if and only if Z2(µ) = Bn

2 ; more
generally, we always have Z2(µ) = Cov(µ)1/2(Bn

2 ), so that |Z2(µ)| = |Bn
2 | (det Cov(µ))1/2

(where we identified between a matrix and its associated linear operator).

10



2.3 Packing and Covering Numbers

Recall that given two compact sets A,B ⊂ R
n, the packing number M(A,B) of B in A

is defined as the maximal integer M so that there exist {xi}i=1,...,M ⊂ A with xi + B
mutually disjoint (“{xi} are B-separated”) - note that a more standard definition in the
literature is to assume that xi − xj /∈ B, differing from our preferred definition by a
factor of 2. The covering number N(A,B) of A by B is defined as the minimal integer N
so that there exist {xi}i=1,...,N with A ⊂ ∪N

i=1(xi + B). The following relation between
packing-numbers and covering-numbers is well-known (see e.g. [50, 1]):

N(A,B −B) ≤M(A,B) ≤ N(A,−B).

When B is an origin-symmetric convex body K, it follows that:

N(A, 2K) ≤M(A,K) ≤ N(A,K), (2.2)

and so up to this immaterial factor of 2, we need not distinguish between packing and
covering numbers.

Note that Lemma 2.2 implies that N(Zp(µ), Ip(µ,K)K) = 1. The Dual General-
ized Sudakov Conjecture asserts that for log-concave measures, it is possible to replace
Ip(µ,K) by CI1(µ,K), and still cover Zp(µ) with exp(Cp) copies of CI1(µ,K)K.

Clearly M(A,B) and N(A,B) are both invariant under simultaneously applying a
non-singular linear transformation to both A and B, and under translation of A or B.
We will frequently use the following obvious volumetric estimates:

|A|
|B| ≤ N(A,B) , M(A,B) ≤ |A+B|

|B| . (2.3)

In particular, when K ⊂ R
n is an origin-symmetric convex body, we have the standard

volumetric estimate:
(

1

t

)n

≤ N(K, tK) ≤M(K, (t/2)K) ≤
(

1 + t/2

t/2

)n

≤
(

1 +
2

t

)n

∀t ∈ (0, 1]. (2.4)

Lemma 2.3. Assume that for some compact A and convex body K in R
n:

N(A, tK) ≤ exp(nϕ(t)) ∀t ≥ t0,

for some function ϕ : [t0,∞) → R+. Then the same estimate holds for all t > 0 after
defining:

ϕ(t) := ϕ(t0) + log(1 + (2t0)/t) , t ∈ (0, t0).

Proof.
N(A, tK) ≤ N(A, t0K)N(t0K, tK) ≤ exp(nϕ(t0))(1 + (2t0)/t)n.

11



The following triangle inequality for covering numbers is obvious for all compact
A,B,D:

N(A,B) ≤ N(A,D)N(D,B).

Note that the following variant also holds for packing numbers:

Lemma 2.4.
M(A,B) ≤ N(A,D)M(D,B).

Proof. Let Z denote a B-separated set in A of cardinality M , and assume that A ⊂
∪N
i=1(xi +D). Clearly (Z − xi) ∩D is a B-separated subset of D, and hence:

M = #Z ≤
N
∑

i=1

#(Z ∩ (xi +D)) ≤ NM(D,B).

3 Warm Up - Sudakov’s Minoration via The Program

In this section, we demonstrate the usefulness of The Program by applying an analogous
program which yields a new proof of Sudakov’s Minoration Inequality. Given a compact
set K ⊂ R

n, denote (half) the mean-width of K by:

M∗
Rn(K) = M∗(K) :=

∫

Sn−1

hK(θ)dσ(θ).

Theorem 3.1 (Improved Sudakov Minoration). For any compact K ⊂ R
n, one has:

M(K,CtM∗(K)Bn
2 ) ≤ exp

(

n

max(t, t2)

)

∀t > 0,

for some universal constant C ≥ 1.

Remark 3.2. Note that M∗(K) is invariant under taking the convex hull of K, and so
we may as well assume that K is a convex body above. In that case, it is well-known (e.g.
[42]) and easy to check by polar-integration that I∗1 (γn,K) ≃ √

nM∗(K). Translating
the classical Sudakov Minoration stated in the Introduction using the present notation,
it asserts that the left-hand-side is majorized by exp(n/t2). The improved version above
for t ∈ (0, 1) is known to experts, and follows from an elementary volumetric argument,
reproduced below. The term “minoration” refers to the resulting lower bound on M∗(K)
as a function of the packing numbers.

The simplest text-book proof of Sudakov’s Minoration we are aware of is obtained
by first establishing a dual version using a covering estimate of Talagrand, and then
applying a duality argument due to Tomczak-Jaegermann (see [34, 1]). The proof we

12



provide below is very different: we work with the primal version directly; we first establish
the easy “weak” covering estimate exp(n/t) from elementary volumetric considerations
(taking care of the analogues of Part 2 and Part 3 of The Program); and finally self-
improve this estimate when t ≥ 1 by employing dimension reduction (Part 1 of The
Program) via the usual Johnson–Lindenstrauss lemma.

Lemma 3.3 (Weak Sudakov Inequality, folklore). For any convex body K ⊂ R
n:

M(K, tM∗(K)Bn
2 ) ≤ exp

(n

t

)

∀t > 0.

Proof. By linearity of the support functions we have M∗(K+tL) = M∗(K)+tM∗(L) for
all t ≥ 0. We invoke Urysohn’s inequality [18, 53], which states that vrad(K) ≤M∗(K).
Coupled with the standard volumetric covering estimate (2.3), we obtain:

M(K, tM∗(K)Bn
2 ) ≤ |K + tM∗(K)Bn

2 |
|tM∗(K)Bn

2 |
≤
(

M∗(K + tM∗(K)Bn
2 )

tM∗(K)

)n

=

(

1 + t

t

)n

≤ exp
(n

t

)

.

Lemma 3.4 (Johnson–Lindenstrauss Lemma [22]). Let F ∈ Gn,m be a random m-
dimensional subspace of Euclidean space (Rn, |·|) distributed according to the Haar prob-
ability measure on Gn,m, m = 1, . . . , n, and let PF denote the orthogonal projection onto
F . Then for all x ∈ Sn−1:

(1)

P

(
∣

∣

∣

√

n/m |PFx| − 1
∣

∣

∣
≥ ǫ
)

≤ C exp(−cmǫ2) ∀ǫ > 0.

(2) Let {xi}i=1,...,M ⊂ R
n be a collection of (say distinct) points. Then:

P

(

1 − ǫ ≤
√

n/m |PFxi − PFxj|
|xi − xj|

≤ 1 + ǫ ∀i 6= j

)

≥ 1 −
(

M

2

)

C exp(−cmǫ2).

Proof Sketch. The first assertion follows from concentration on the sphere and the fact
that for a fixed F0 ∈ Gn,m, Sn−1 ∋ x 7→ |PF0x| is a 1-Lipschitz function. The second
part follows immediately from the first part, linearity, and the union-bound.

Proof of Theorem 3.1. When t ∈ (0, C0], where C0 ≥ 1 is a large-enough constant to be
determined, the assertion follows from Lemma 3.3. When t ≥ C0, we proceed as follows.
Set:

ek := M(K, tM∗(K)Bn
2 ),

Lemma 3.3 ensures that k ≤ n/C0, and since the packing number is an integer, we may
assume that k ≥ log 2 (otherwise k = 0 and there is nothing to prove). Let {xi}i=1,...,ek

denote the maximal collection of points in K which are tM∗(K)Bn
2 -separated. By the

13



Johnson–Lindenstrauss Lemma 3.4, we may choose C0 large enough so that setting m :=
⌈C0k⌉ ∈ [C0 log 2, n], an orthogonal projection PF onto a randomly selected F ∈ Gn,m

with respect to its Haar probability measure σGn,m , will satisfy with probability at least

1 −
(ek

2

)

C exp(−cm(1/2)2) > 1/2 that:

{PF (xi)} are
1

2
tM∗(K)

√

m

n
B2(F )-separated. (3.1)

In addition, since hPFK = hK |F , note that:

M∗(K) =

∫

Sn−1

hK(θ)dσSn−1(θ) =

∫

Gn,m

∫

S(F )
hK(θ)dσS(F )(θ)dσGn,m(F )

=

∫

Gn,m

M∗
F (PFK)dσGn,m(F ),

and so by the Markov–Chebyshev inequality,

M∗
F (PFK) ≤ 2M∗(K) (3.2)

with probability at least 1/2 (in fact, it follows by a result of Klartag–Vershynin [30,
Section 3] that this holds with much higher probability, but this is not required here).
By the union bound, it follows that there exists a subspace F ∈ Gn,m for which both
(3.1) and (3.2) hold. Hence, applying Lemma 3.3 to PFK in F ∈ Gn,m:

ek ≤M(K, tM∗(K)Bn
2 ) ≤M

(

PFK,
1

4
tM∗

F (PFK)

√

m

n
B2(F )

)

≤ exp

(

4
m

t
√

m/n

)

.

Using that m ≤ C0k + 1 ≤ (C0 + 1/ log(2))k and solving for k, we obtain:

k ≤ C ′ n

t2
,

and hence:
M(K, tM∗(K)Bn

2 ) = ek ≤ exp
(

C ′ n

t2

)

∀t ≥ C0,

concluding the proof.

4 Part 3 - the case p ≥ n

In this section, we establish a regular version of Part 3 of The Program. Specifically:

Theorem 4.1. Let µ denote an origin-symmetric log-concave probability measure on
R
n, and let L ⊂ R

n denote a star-body. Then for any p ≥ n, we have:

M(Zp(µ), Ctmq(µ,L)L) ≤ exp(1 + q +
p

t
) ∀t, q > 0

In particular, if µ(L) ≥ e−p with p ≥ n then M(Zp(µ), CL) ≤ exp(3p).
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For the proof, we require a bit of preparation, emphasizing that L need not be
convex but only be star-shaped, which might prove useful for establishing Part 1 of The
Program. We start with the following variation on Talagrand’s proof of the dual Sudakov
Minoration (e.g. [34, 1]), which was already used by Hartzoulaki in her PhD Thesis [21]
and subsequently employed by other authors as well (cf. [35, 16]).

Recall that λK denotes the uniform probability measure on the convex body K.

Proposition 4.2. Let K denote a convex body and let L denote a star-body in R
n. Then:

M(K, 2tmq(λK , L)) ≤ exp(1 + q +
n

t
) ∀q, t > 0.

For the proof, we will utilize the following auxiliary probability measure on R
n, which

may be associated to any star-body K ⊂ R
n:

µK :=
1

n! |K|e
−‖x‖Kdx.

Lemma 4.3. With the same assumptions as in Proposition 4.2:

M(K, tmq(µK , L)L) ≤ exp(q +
1

t
) ∀q, t > 0.

Proof. Let us show the following equivalent formulation:

M(K, rL) ≤ exp(s/r)

µK(sL)
∀r, s > 0. (4.1)

By definition, there exists M := M(K, rL) points z1, . . . , zM ∈ K so that the sets
{zi + rL} are mutually disjoint. Hence, for all s > 0, the sets

{

s
rzi + sL

}

are also
mutually disjoint. In addition, by convexity of K:

µK(
s

r
zi + sL) =

1

n! |K|

∫

sL
e−‖

s
r
zi+x‖

Kdx ≥ 1

n! |K|e
− s

r
‖zi‖K

∫

sL
e−‖x‖Kdx ≥ e−

s
rµK(sL).

Consequently:

1 ≥
M
∑

i=1

µK(
s

r
zi + sL) ≥Me−

s
rµK(sL),

establishing (4.1), as required.

Lemma 4.4. For all star-bodies K,L ⊂ R
n and q > 1, we have:

mq−1(λK , L) ≥ 1

2n
mq(µK , L).
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Proof. For all s > 0:

µK(sL) =
1

n! |K|

∫

sL
e−‖x‖Kdx =

1

n! |K|

∫ ∞

0
|tK ∩ sL| e−tdt =

1

n!

∫ ∞

0
tne−tλK(

s

t
L)dt.

Applying this to s := mq(µK , L), we obtain:

e−q = µK(sL) =
1

n!

∫ ∞

0
tne−tλK

(s

t
L
)

dt ≥ λK

( s

2n
L
) 1

n!

∫ 2n

0
tne−tdt ≥ 1

e
λK

( s

2n
L
)

,

where the very rough estimate
∫ 2n
0 tne−tdt ≥ 1

e

∫∞
0 tne−tdt is standard and may be easily

verified by direct calculation (or e.g. by Markov’s inequality when n ≥ 4). It follows
that s

2n ≤ mq−1(λK , L), as asserted.

Proof of Proposition 4.2. Applying the previous two lemmas, the proof is immediate:

M(K, 2tmq(λK , L)) ≤M(K,
t

n
mq+1(µK , L)) ≤ exp(1 + q +

n

t
).

One final ingredient we require for the proof of Theorem 4.1 involves the following
star-body, introduced by K. Ball [3]. Given a probability measure µ on R

n with continu-
ous and exponentially-decaying density fµ with fµ(0) > 0 (“non-degenerate measure”),
and p ≥ 1, denote by Kp(µ) ⊂ R

n the star-body with radial function:

ρKp(µ)(θ) =

(

p

max fµ

∫ ∞

0
rp−1fµ(rθ)dr

)
1
p

, θ ∈ Sn−1.

Note our slightly non-standard normalization involving max fµ instead of fµ(0), which
seems more convenient. Integration in polar coordinates immediately verifies that |Kn(µ)| =

1
max fµ

, and that (cf. [47]):

Zp(λKn+p(µ)) =

( |Kn(µ)|
|Kn+p(µ)|

)1/p

Zp(µ). (4.2)

Lemma 4.5. For any star-body L ⊂ R
n:

µ(L) ≤ λKn(µ)(L).

In particular, for all q > 0:

mq(µ,L) ≥ mq(λKn(µ), L).
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Proof. Simply note that for all θ ∈ Sn−1:

∫ ρL(θ)

0
rn−1fµ(rθ)dr ≤ min((max fµ)

ρnL(θ)

n
,

∫ ∞

0
rn−1fµ(rθ)dr)

=
max fµ
n

min(ρnL(θ), ρnKn(µ)
(θ)) =

max fµ
n

ρnKn(µ)∩L
(θ).

Integrating the above ray-wise inequality on Sn−1, we obtain:

µ(L) =

∫

Sn−1

∫ ρL(θ)

0
rn−1fµ(rθ)drdθ ≤ max fµ

∫

Sn−1

∫ ρKn(µ)∩L(θ)

0
rn−1drdθ

= max fµ |Kn(µ) ∩ L| = λKn(µ)(L),

as required.

Remarkably, it was observed by K. Ball [3] that when µ is an origin-symmetric log-
concave probability measure, Kp(µ) is in fact a convex body for all p ≥ 1; this was
extended in [24] to the non-symmetric case (assuming that fµ(0) > 0). Consequently,
Proposition 4.2 immediately yields the following:

Corollary 4.6. For any log-concave probability measure µ on R
n so that fµ(0) > 0,

star-body L ⊂ R
n, and q, t > 0:

M(Kn(µ), 2tmq(µ,L)L) ≤M(Kn(µ), 2tmq(λKn(µ), L)L) ≤ exp(1 + q +
n

t
).

It remains to pass from Kn(µ) to Zn(µ) in the packing estimate above. This is
standard, but for completeness, and in order to prove an additional estimate we will
require later on, we provide a proof. First, it is known [45] that:

Zn(λK) ≃ conv(K ∪ −K), (4.3)

for any convex body K ⊂ R
n. It is also known (see [4, 3, 41] for the even case and

[24, Lemmas 2.5,2.6] or [49, Lemma 3.2 and (3.12)] for the general one, noting our non-
standard normalization) that for any log-concave measure µ on R

n whose barycenter is
at the origin, we have:

1 ≤ p ≤ q ⇒ Kp(µ) ⊂ Kq(µ) ⊂ Γ(q + 1)1/q

Γ(p+ 1)1/p
e
n( 1

p
− 1

q
)
Kp(µ). (4.4)

In particular, Kn(µ) ≃ K2n(µ). Combining this with (4.2) and (4.3), we obtain for an
origin-symmetric log-concave measure µ (for which fµ(0) = max fµ > 0):

Zn(µ) =

( |K2n(µ)|
|Kn(µ)|

)1/n

Zn(λK2n(µ)) ≃ Zn(λK2n(µ)) ≃ K2n(µ) ≃ Kn(µ). (4.5)
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Note that the origin-symmetry of µ was crucially used to ensure Zn(λK2n(µ)) ≃ K2n(µ).
It is possible to dispose of this restriction by employing the one-sided variants Z+

n (µ)
introduced in [20], but we do not pursue this here.

Summarizing, we deduce from Corollary 4.6 and (4.5) that for an appropriate con-
stant C > 0, we have under the assumptions of Theorem 4.1:

M(Zn(µ), Ctmq(µ,L)L) ≤M(Kn(µ), 2tmq(µ,L)L) ≤ exp(1 + q +
n

t
),

concluding the theorem for the case p = n. When p ≥ n, simply use (2.1):

Zp(µ) ⊂ p

n
Zn(µ),

and conclude:

M(Zp(µ), Ctmq(µ,L)L) ≤M(Zn(µ), Ct
n

p
mq(µ,L)L) ≤ exp(1 + q +

p

t
).

The proof of Theorem 4.1 is complete.

Before concluding this section, we also record for future use the following well-known
fact (cf. [29, 26, 25, 49]); as we did not find a precise reference, we provide a proof for
completeness.

Lemma 4.7. For any log-concave probability measure µ on R
n with barycenter at the

origin we have:
I1(µ,Zn(µ)) ≤ In(µ,Zn(µ)) ≤ C.

Proof. As in the proof of (4.2), it is immediate to verify by polar-integration that for
any non-degenerate measure ν and star-body L in R

n:

Ip(ν, L) =

( |Kn+p(ν)|
|Kn(ν)|

)1/p

Ip(λKn+p(ν), L).

Applying this to ν = µ, L = Zn(µ) and p = n, and using that K2n(µ) ≃ Kn(µ) by (4.4),
we obtain:

In(µ,Zn(µ)) ≤ C ′In(λK2n(µ), Zn(µ)).

It remains to use as in (4.5) that (without any symmetry assumptions):

Zn(µ) =

( |K2n(µ)|
|Kn(µ)|

)1/n

Zn(λK2n(µ)) ⊃ Zn(λK2n(µ)) ⊃ c Conv(K2n(µ)∪−K2n(µ)) ⊃ cK2n(µ).

Consequently:

In(µ,Zn(µ)) ≤ C ′

c
In(λK2n(µ),K2n(µ)) ≤ C ′

c
,

concluding the proof.
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5 The Program - Full Version

We are now ready to state the full version of The Program. The full version extends the
simplified one presented in the Introduction in two aspects. First, in Part 1, we allow
the packing number after dimension reduction to drop by a D-th root, where D ≥ 1 is an
additional parameter we introduce; this additional flexibility will be crucial for applying
The Program to the case of the cube K = Bn

∞, analyzed in Section 10. Second, we also
introduce a regularity parameter t > 0, whose role is to scale the bodies K and L; this
is important for obtaining a regular version of the Generalized Dual Sudakov estimate
for ellipsoids in Section 7, which is later used for establishing a Weak Generalized Dual
Sudakov estimate (Part 2 of The Program) for more general convex bodies in Section 9.

As usual, we fix an origin-symmetric convex body K ⊂ R
n, origin-symmetric log-

concave measure µ on R
n and p ≥ 1, and fix an additional scaling parameter t > 0. The

Program for establishing the Generalized Regular Dual Sudakov estimate:

µ(K) ≥ 1

e
⇒ M(Zp(µ), tRK) ≤ exp(CA,B,D,ϕt,tp), (5.1)

consists of establishing the first 2 parts below for some constants R,A,B,D ≥ 1 and
a certain function ϕt, described below. For all m = 1, . . . , n, set as usual Mm :=
{T∗µ ; T : Rn → R

m linear}, which is a family of log-concave measures on R
m by the

Prékopa–Leindler theorem. In addition, let Lm denote some family of origin-symmetric
star-bodies in R

m, with Ln = {K}.

(1) Part 1 (Massive Partial Separation Dimension Reduction).
If M(Zp(µ), tRK) = ek with µ(K) ≥ 1

e and 4BD ≤ k ≤ n/A, show that there
exists l ∈ [k/D, k] and a linear map T : Rn → R

m and L ∈ Lm, with m ≤ Al, so
that:

(a) M(TZp(µ), tL) ≥ el (“Partial Separation Dimension Reduction”).

(b) T∗µ(L) ≥ exp(−qm), 1 ≤ qm ≤ l/2 (“L is sufficiently massive”).

(2) Part 2 (Weak Generalized Regular Dual Sudakov).
For all m = 1, . . . , n, L ∈ Lm and ν ∈ Mm, show that:

1 ≤ p ≤ m , ν(L) ≥ exp(−qm) ⇒ M(Zp(ν), tL) ≤ exp(B + qm +mϕt(p/m)),

where ϕt : [0, 1] → R+ is an increasing function with ϕt(0) = 0 and x 7→ ϕt(x)/x
non-increasing (depending only on t and independent of all other parameters).

(3) Part 3 (Large p).
For all m = 1, . . . , n, L ∈ Lm and ν ∈ Mm, Theorem 4.1 verifies that:

p ≥ m , ν(L) ≥ exp(−qm) ⇒ M(Zp(ν), tL) ≤ exp
(

1 + qm + C
p

t

)

,

for some universal constant C ≥ 1.
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Remark 5.1. As in the Introduction, we state the following linear version of Part 1:

(1’) Part 1’ - Linear Version
If {xi}i=1,...,ek ⊂ R

n is a collection of K-separated points with µ(K) ≥ 1
e and

4BD ≤ k ≤ n/A, show that there exists l ∈ [k/D, k] and a linear map T : Rn → R
m

and L ∈ Lm, with m ≤ Al, so that:

(a) There exists I ⊂
{

1, . . . , ek
}

with #I ≥ el so that {T (xi)}i∈I ⊂ R
m are

1
RL-separated (“Partial One-sided Johnson–Lindenstrauss”).

(b) T∗µ(L) ≥ exp(−qm), 1 ≤ qm ≤ l/2 (“L is sufficiently massive”).

By applying this linear version of Part 1 to the maximal collection of K-separated points
{xi} in 1

tRZp(µ), it is evident that establishing Part 1’ is sufficient (but not necessary)
for establishing Part 1 of The (full) Program.

Theorem 5.2. Establishing The (full) Program above yields the Generalized Regular
Dual Sudakov Estimate (5.1) with:

CA,B,D,ϕt,t := Dmax

(

4 max(C,C ′B
R )

t
,

1

Aϕ−1
t ( 1

4A)

)

. (5.2)

Proof. We assume that µ(K) ≥ 1/e. We will first show that:

ek := M(Zp(µ), tRK) ≤ exp

(

Dmax

(

4C

t
,

1

Aϕ−1
t ( 1

4A)

)

p

)

, (5.3)

under the assumption that k ≥ 4BD.
Under this assumption, there exists l ∈ [k/D, k] and a linear map T : Rn → R

m and
L ∈ Lm for some m ≤ min(n,Al), so that M(TZp(µ), tL) ≥ el and T∗µ(L) ≥ exp(−qm),
1 ≤ qm ≤ l/2. Indeed, if k < n/A this follows from Part 1, whereas if k ≥ n/A this
is actually trivial by using m = n, l = k, T = Id, L = K and qm = 1. Denoting
ν = T∗µ ∈ Mm, note that TZp(µ) = Zp(ν). Also note that l/4 ≥ B ≥ 1. Consequently,
if p ≥ m then by Part 3:

exp(l) ≤M(Zp(ν), tL) ≤ exp(qm +Bp) ≤ exp(1 + l/2 + C
p

t
) ≤ exp(l/4 + l/2 + C

p

t
),

implying that k ≤ Dl ≤ 4DC p
t , as required. Alternatively, if p ≤ m then by Part 2 and

the assumption that x 7→ ϕt(x)/x is non-increasing:

exp(l) ≤M(Zp(ν), tL) ≤ exp(B + qm +mϕt(p/m)) ≤ exp(l/4 + l/2 +Alϕt(p/(Al))).

It follows since ϕt is increasing from 0 that:

p

Al
≥ ϕ−1

(

1

4A

)

> 0,
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implying that k ≤ Dl ≤ D 1
Aϕ−1

t ( 1
4A

)
p, and establishing (5.3) under the assumption that

k ≥ 4BD.
To complete the proof, recall that Zp(µ) ⊂ Ip(µ,K)K by Lemma 2.2. Since Ip(µ,K) ≤

C ′p m1(µ,K) ≤ C ′p by Lemma 2.1, it follows that the left-hand-side of (5.3) is actually
1 (equivalently, k = 0) for t ≥ C ′p/R, in which case there is nothing to prove. On the
other hand, in the non-trivial range t ∈ (0, C ′p/R), we have 4DC ′B

R
1
t p ≥ 4BD, which

leads to the definition of CA,B,D,ϕt,t in (5.2) and confirms (5.1) for all t > 0.

6 Part 2 - Weak Generalized Dual Sudakov: Ellipsoids

Recall that:

Iq(µ,K) := (

∫

Rn

‖x‖qK dµ(x))1/q .

When K = Bn
2 , we simply denote Iq(µ) = Iq(µ,B

n
2 ).

Theorem 6.1. Let µ denote an origin-symmetric log-concave probability measure on R
n

and let E ⊂ R
n denote an (origin-symmetric) ellipsoid. Then for any p ∈ [1, n]:

M(Zp(µ), tI1(µ, E)E) ≤ exp

(

C
p2/3n1/3

t2/3
+ C

√
p
√
n

t

)

∀t > 0.

Since N(Zp(µ), tI1(µ, E)E) is invariant under simultaneously applying a linear trans-
formation to µ and E , we may and will reduce to the case E = Bn

2 . For the proof, our
strategy will be to invoke the standard volumetric estimate on the covering numbers (see
Section 2):

M(Zp(µ), tBn
2 ) ≤ |Zp(µ) + tBn

2 |
|tBn

2 |
∀t > 0.

To handle the numerator, we use Steiner’s classical formula [53], stating that for any
convex body K ⊂ R

n:

|K + tBn
2 | =

n
∑

k=0

(

n

k

)

Wk(K)tn−k,

where Wk(K) denotes the k-th quermassintegral (or mixed-volume) of K. Recall that
by Kubota’s formula (e.g. [53]), we have:

Wk(K) =
|Bn

2 |
∣

∣Bk
2

∣

∣

∫

Gn,k

|PFK| dσGn,k
(F ) = |Bn

2 |
∫

Gn,k

vrad(PFK)kdσGn,k
(F ), (6.1)

where σGn,k
denotes the Haar probability measure on Gn,k (with the interpretation when

k = 0 that W0(K) = |Bn
2 |).

To bound Wk(Zp(ν)), we will need the following averaged version of [15, Theorem
2.4],[40, Proposition 3.1]:
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Proposition 6.2. Let µ denote an origin-symmetric log-concave probability measure on
R
n. Then for all p ≥ 1 and k = 1, . . . , n:

Wk(Zp(µ))
1
k ≤ C max(

√
p, p/

√
k)Wk(Z2(µ))

1
k .

Proof. It was shown in [47, Theorem 6.2] (see also [40, Corollary 2.2]) that for any (say
origin-symmetric) log-concave probability measure η on R

k, one has:

vrad(Zp(η)) ≤ C
√
p detCov(η)

1
2k ∀1 ≤ p ≤ k.

When p ≥ k, since Zp(η) ⊂ p
kZk(η), it follows that:

vrad(Zp(η)) ≤ p

k
vrad(Zk(η)) ≤ C

p√
k

detCov(η)
1
2k ∀p ≥ k.

Finally, noting that detCov(η)
1
2k = vrad(Z2(η)) as Z2(η) is an ellipsoid, we obtain:

vrad(Zp(η)) ≤ C max(
√
p, p/

√
k)vrad(Z2(η)) ∀p ≥ 1.

Applying the above to η = πFµ, using that Zq(πFµ) = PFZq(µ), integrating over F ∈
Gn,k and applying Kubota’s formula (6.1), the assertion readily follows.

The quermassintegrals of the ellipsoid Z2(µ) are particularly easy to compute using
elementary linear algebra, and one may show that (Wk(Z2(µ))/ |Bn

2 |)2/k is closely related
to the k-th root of the k-th symmetric elementary polynomial in the eigenvalues of Cov(µ)
(appropriately normalized). However, we will only require:

Lemma 6.3. For all log-concave probability measures µ on R
n:

det Cov(µ)
1
2n ≤

(

Wk(Z2(µ))

|Bn
2 |

)
1
k

≤
(

1

n
tr Cov(µ)

)
1
2

∀k = 1, . . . , n.

Proof. By the Alexandrov-Fenchel inequalities for the quermassintegrals [53], we have:

(

Wn(Z2(µ))

|Bn
2 |

)
1
n

≤
(

Wk(Z2(µ))

|Bn
2 |

)
1
k

≤ W1(Z2(µ))

|Bn
2 |

,

so it is enough to calculate the expressions on either side. Indeed:

W1(Z2(µ))

|Bn
2 |

=

∫

Sn−1

hZ2(µ)(θ)dσ(θ) ≤
(
∫

Sn−1

h2Z2(µ)
(θ)dσ(θ)

)
1
2

=

(
∫

Sn−1

〈Cov(µ)θ, θ〉 dσ(θ)

)
1
2

=

(

1

n
tr Cov(µ)

)
1
2

,

while:
(

Wn(Z2(µ))

|Bn
2 |

)
1
n

=

( |Z2(µ)|
|Bn

2 |

)
1
n

= det Cov(µ)
1
2n .
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Finally, it is useful to note that by Lemma 2.1:

(tr Cov(µ))
1
2 =

(
∫

Rn

|x|2 dµ(x)

)
1
2

= I2(µ) ≃ I1(µ).

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1.

M(Zp(µ), tI1(µ)Bn
2 ) ≤ |Zp(µ) + tI1(µ)Bn

2 |
|tI1(µ)Bn

2 |
=

n
∑

k=0

(

n

k

)

Wk(Zp(µ))

(tI1(µ))k |Bn
2 |
.

Employing Proposition 6.2 and Lemma 6.3, we know that:

(

Wk(Zp(µ))

|Bn
2 |

)1/k

≤ Cmax(
√
p, p/

√
k)
I1(µ)√
n

∀k = 1, . . . , n.

Using the standard estimate
(

n
k

)

≤
(

en
k

)k
, we obtain:

M(Zp(µ), tI1(µ)Bn
2 ) ≤ 1 +

n
∑

k=1

(

C
e
√
n

tk
max(

√
p, p/

√
k)

)k

= 1 +

⌊p⌋
∑

k=1

(

C
ep
√
n

tk3/2

)k

+

n
∑

k=⌊p⌋+1

(

C
e
√
p
√
n

tk

)k

= 1 +

⌊p⌋
∑

k=1

(

C ′ p
2/3n1/3

t2/3k

)
3
2
k

+

n
∑

k=⌊p⌋+1

(

C
e
√
p
√
n

tk

)k

≤
∞
∑

m=0

1

m!

(

C ′′ p
2/3n1/3

t2/3

)m

+

∞
∑

k=0

1

k!

(

C ′′

√
p
√
n

t

)k

= exp

(

C ′′ p
2/3n1/3

t2/3
+ C ′′

√
p
√
n

t

)

.

The assertion is thus established for E = Bn
2 , and hence for arbitrary ellipsoids, as

explained above. The proof is complete.

7 Part 1 - Separation Dimension Reduction: Ellipsoids

7.1 The Probabilistic Approach

The following proposition decouples the question of separation dimension reduction and
the massiveness requirement of Part 1 of The Program. Not surprisingly, this is achieved
by introducing some randomness.
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Proposition 7.1. Let K ⊂ R
n denote a star-body, and assume that {xi}i=1,...,M ⊂ R

n

is a collection of K-separated points. Let T : Rn → R
m denote a random linear map

and L,S ⊂ R
m denote two random star-bodies defined on a common probability space,

so that L = LT and S = ST are measurable functions of T (when equipping the family
of star-bodies with the Hausdorff metric). Assume that:

(1) If x /∈ K then P(Tx ∈ LT ) ≤ pout.

(2) If x ∈ K then P(Tx ∈ ST ) ≥ pin.

Then for any Borel probability measure µ on R
n, if:

M2pout ≤ µ(K)pin, (7.1)

then there exists a linear map T 0 : R
n → R

m and star-bodies L0, S0 ⊂ R
m so that

{

T 0(xi)
}

i=1,...,M
are L0-separated and T 0

∗ (µ)(S0) ≥ 1
2µ(K)pin.

Proof. We may assume that pin, pout, µ(K) > 0. By linearity and the union-bound, the
random set {T (xi)}i=1,...,M is clearly LT -separated with probability at least:

1 −
(

M

2

)

pout > 1 − M2

2
pout,

so it remains to verify the second requirement. Denoting GT := T∗(µ)(ST ), note that:

E(GT ) = E

(
∫

Rn

1{Tx∈ST }dµ(x)

)

=

∫

Rn

P(Tx ∈ ST )dµ(x) ≥
∫

K
P(Tx ∈ ST )dµ(x) ≥ µ(K)pin =: q.

Since 0 ≤ GT ≤ 1 and E(GT ) ≥ q, it follows that P(GT ≥ q/2) ≥ q/2. Consequently, the
assumption (7.1) guarantees that the event that {T (xi)}i=1,...,M are LT -separated and
the one that GT ≥ q/2 have non-empty intersection, yielding the claim.

7.2 Part 1’ For Ellipsoids

In view of Proposition 7.1, Part 1’ of The Program will follow from the following one-sided
variant of the Johnson–Lindenstrauss lemma, which pertains to small-ball probability,
see e.g. [43, Fact 3.2] or [10, Lemma 8.1.15]:

Lemma 7.2. Let T : Rn → R
m denote a random orthogonal projection, that is T = P ◦U

where U is uniformly distributed on SO(n) and P is the canonical projection on the first
m coordinates, m = 1, . . . , n. Then for all x ∈ Sn−1:

P

(

√

n/m |Tx| ≤ ǫ
)

≤ (C ′ǫ)m ∀ǫ ∈ [0, 1].
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Corollary 7.3 (Part 1’ for Euclidean Ball). Let {xi}i=1,...,ek ⊂ R
n be a collection of Bn

2 -
separated points, k ∈ [1, n], and let µ denote a Borel probability measure with µ(Bn

2 ) ≥
e−q ≥ e−k. Set m = ⌈k⌉, and denote L :=

√
2
√

m/nBm
2 . Then there exists an orthogonal

projection T : Rn → R
m (as above) so that:

(1) {T (xi)}i=1,...,ek ⊂ R
m are L/C-separated.

(2) T∗(µ)(L) ≥ 1
4e

−q.

Proof. By appropriately choosing c > 0, we may ensure that:

(1) P(|Tx| ≤ c
√

m/n) ≤ pout := 1
2e

−3m for any x /∈ Bn
2 .

(2) P(|Tx| ≤
√

2
√

m/n) ≥ pin := 1
2 for any x ∈ Bn

2 .

Indeed, the first estimate is ensured by Lemma 7.2, while the second one follows by simply
noting that E |Tx|2 = m

n |x|2 and applying the Markov–Chebyshev inequality (or by
invoking the Johnson–Lindenstrauss Lemma 3.4, but this is actually unnecessary). The
assertion then follows by Proposition 7.1 with C =

√
2/c, LT ≡ L/C and ST ≡ L.

7.3 Running The Program for Ellipsoids

Running (the regular version of) The Program of Section 5, we can finally obtain:

Theorem 7.4 (Generalized Regular Dual Sudakov For Ellipsoids). For any origin-
symmetric log-concave measure µ on R

n and any (origin-symmetric) ellipsoid E ⊂ R
n,

we have:
M(Zp(µ), tm1(µ, E)E) ≤ exp

(

C
( p

t2
+
p

t

))

∀p ≥ 1 ∀t > 0.

Proof. Since the expression on the left-hand-side is invariant under simultaneously ap-
plying a linear transformation to µ and E , it is enough to establish it for the case that
E = Bn

2 . Since this expression is also invariant under scaling µ, we may assume that
m1(µ,B

n
2 ) = 1.

Given p ≥ 1 and t > 0, we run The Program for K = Bn
2 , with Lm consisting of

(centered) Euclidean balls in R
m. Corollary 7.3 applied with q = 1 verifies Part 1’ of The

Program regarding Massive Separation Dimension Reduction (with say D = 1, B = 1,
qm = 3, A = 5/4 and R ≤ C ′). Part 2 of The Program regarding Weak Generalized
Regular Dual Sudakov, with parameters qm = 3 and ϕt(x) = C ′′ max((x/t)2/3,

√
x/t),

is established by Theorem 6.1 in conjunction with Lemma 2.1 (which implies that
m3(ν, L) ≃ I1(ν, L) for all ν ∈ Mm and L ∈ Lm). Since ϕ−1

t (y) ≃ min(y3/2t, y2t2),
we have ϕ−1

t (1/(4A)) ≃ min(t, t2), and Theorem 5.2 yields the asserted estimate.

8 Pure Measures

In this section, we introduce the class of pure log-concave probability measures, and
study their properties.
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8.1 Definitions

Recall that the isotropic constant of a probability measure µ on R
n having log-concave

density fµ is defined as the following affine-invariant quantity:

Lµ := (max fµ)
1
n (det Cov(µ))

1
2n . (8.1)

It is well-known (e.g [41, 26]) that Lµ ≥ c for some universal constant c > 0. See Bourgain
[7, 8], Milman–Pajor [41], Ball [2] and Brazitikos–Giannopoulos–Valettas–Vritsiou [10]
for background on the yet unresolved Slicing Problem, which is concerned with obtaining
a dimension independent upper-bound on Lµ. The current best-known estimate Lµ ≤
Cn1/4 is due to B. Klartag [24], who improved the previous estimate Lµ ≤ Cn1/4 log(1+
n) of J. Bourgain [8] (proved when µ is the uniform measure on an origin-symmetric
convex body, but applies to general log-concave probability measures, see [2, 24]); see
also Klartag–Milman [28] and Vritsiou [59] for subsequent refinements.

The following key estimate, which plays a fundamental role in previous groundbreak-
ing works of Paouris [47, 49] and Klartag [26], relates between |Zn(µ)| and Lµ (see e.g.
the proof of [40, Theorem 2.1]):

Theorem 8.1 (Paouris, Klartag). Let µ denote a log-concave probability measure on R
n

with barycenter at the origin. Then:

vrad(Zn(µ)) ≃
√
n

Lµ
vrad(Z2(µ)) =

√
n

det Cov(µ)
1
2n

Lµ
=

√
n

max f
1/n
µ

.

In other words, if µ is isotropic then |Zn(µ)|1/n ≃ 1
Lµ

.

Definition 8.2 (h-pure measure). Let µ denote a log-concave probability measure on R
n

with barycenter at the origin. We will say that µ is h-pure (h = 1, . . . , n), with constants
(A,B), if the following two conditions hold:

(1) Zn(µ) ⊃ 1
A

√
hZ2(µ).

(2) For all E ∈ Gn,m with m = h, . . . , n, we have that LπEµ ≤ B.

When µ is h-pure with some universally bounded constants A,B ≤ C < ∞, we will
simply say that µ is h-pure (with implicitly bounded constants).

Note that in the second condition, only the marginals of µ of dimension not smaller
than h are taken into account. For example, if µ is isotropic and Zn(µ) ⊃ 1

A

√
nBn

2 , it
follows from Theorem 8.1 that Lµ ≤ CA, and hence µ is n-pure (with constants (A,CA)).
On the other, if all marginals of µ (of arbitrary dimension) have isotropic constant
bounded by a universal constant C > 0, since Zn(µ) ⊃ Z2(µ) (if n ≥ 2, and up to a
constant otherwise), we see that µ is 1-pure (with constants (1, C)). The Slicing Problem

26



may be equivalently restated as asking whether all log-concave probability measures
on R

n (n ≥ 2) are 1-pure with constants (1, C), for some universal constant C > 0
independent of n.

The following is immediate from the definition:

Lemma 8.3. If µ is both h1-pure and h2-pure with 1 ≤ h1 < h2 ≤ n, then it is also
h-pure for all h = h1, . . . , h2.

8.2 Families of Pure Measures

We now provide several useful examples of families of log-concave measures which are
pure. For simplicity, we restrict our attention to origin-symmetric measures. Recall
that a measure is called unconditional if it is invariant under reflections with respect
to all coordinate hyperplanes. A probability measure µ on R

n is called Ψ2 or sub-
Gaussian if Zp(µ) ⊂ C

√
pZ2(µ) for some universal constant C ≥ 1 and all p ≥ 2. It

is called super-Gaussian if Zp(µ) ⊃ c
√
pZ2(µ) for some universal constant c > 0 and

all p ∈ [2, n]. It is immediate to verify (see e.g. [20]) that if µ̃ is an isotropic origin-
symmetric log-concave probability measure and γn is the standard Gaussian measure,
then the convolved measure µ = µ̃ ∗ γn is log-concave and super-Gaussian. We refer
to [10] for missing additional definitions, which will not be required for the rest of this
work.

Proposition 8.4. The following families of log-concave measures are n-pure:

(1) Super-Gaussian measures.

(2) Uniform measures on 2-convex bodies.

Proof. If µ is super-Gaussian we have by definition that Zn(µ) ⊃ c
√
nZ2(µ). If µ is the

uniform measure on a 2-convex body K (see [27] for missing definitions), it was shown
in [27] that Zn(µ) ⊃ c

√
nZ2(µ) for some universal constant c > 0 (depending only on

the 2-convexity constant of K). In either case, we deduce by Theorem 8.1 that Lµ ≤ C,
establishing both properties of an n-pure measure.

Proposition 8.5. The following families of log-concave measures are 1-pure:

(1) Super-Gaussian measures.

(2) Sub-Gaussian (Ψ2) measures.

(3) Unconditional measures.

Furthermore, the class of 1-pure measures is closed under taking marginals.

Proof. We may assume that all measures in question are isotropic.

27



(1) If µ is super-Gaussian, we have for all E ∈ Gn,m:

Zm(πEµ) = PEZm(µ) ⊃ c
√
mB2(E),

so that 1
LπEµ

≃ |Zm(πEµ)|1/m ≥ c′ > 0, as asserted.

(2) Similarly, if µ is Ψ2 then for all E ∈ Gn,m and p ≥ 2:

Zp(πEµ) = PEZp(µ) ⊂ C
√
pB2(E),

confirming that πEµ is also Ψ2 (with the same universal bound C on its Ψ2 con-
stant). It is well-known [9, 28] that a Ψ2 measure has bounded isotropic constant,
confirming the assertion in this case.

(3) If µ is an isotropic unconditional measure and χ is the uniform measure on the
cube [−1, 1]n, it was noted in [11, p. 2829] following Lata la that Zp(µ) ⊃ cZp(χ)
for all p ≥ 1. It follows as before that if E ∈ Gn,m then:

Zm(πEµ) = PEZm(µ) ⊃ cPEZm(χ) = cZm(πEχ).

Taking volumes, we deduce:

1

LπEµ
≃ |Zm(πEµ)|1/m ≥ c |Zm(πEµ)|1/m ≃ c

LπEχ
.

But since χ is a Ψ2 measure, we know that LπEχ is universally bounded above,
establishing (3).

The closure under marginals is immediate from the definition and the fact that Zm(µ) ⊃
cZ2(µ) for all m ≥ 1 by (2.1).

Remark 8.6. It was shown by Paouris in [48] that product measures (having arbitrarily
many factors) of sub-Gaussian or super-Gaussian log-concave measures are 1-pure.

Remark 8.7. A well-known argument due to V. Milman involving the M-position [1, 51],
in combination with K. Ball’s observation that the isotropic position is an M-position
if the isotropic constant is bounded [2], shows that if µ is an origin-symmetric isotropic
log-concave probability measure with Lµ ≤ C, then with high-probability, a random
marginal πFµ with F ∈ Gn,n/2 is n/2-pure with universal constants (A,B) depending
solely on C. Moreover, it may be shown that with high-probability, a random marginal
as above is super-Gaussian, and therefore h-pure for all h = 1, . . . , n/2 with universal
constants (A,B) depending solely on C.
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8.3 Properties of Pure Measures

Given a convex body K ⊂ R
n and m = 1, . . . , n, we use the following notation:

v−m(K) := inf {vrad(PE(K));E ∈ Gn,m} ,
em(Bn

2 ,K) := inf {t > 0 ; N(Bn
2 , tK) ≤ 2m} .

We will need the following crucial estimate on the regularity of dual covering numbers of
pure isotropic log-concave measures, essentially established by Giannopoulos and Milman
in [14]:

Theorem 8.8. Let µ denote a h-pure isotropic log-concave probability measure (with
constants (A,B)). Then for all k = 1, . . . , n:

v−k (Zn(µ)) ≥ max

(

1

A

√
h,

c

B

√
k

)

. (8.2)

Furthermore, for all k = 1, . . . , n we have:

ek(Bn
2 , Zn(µ)) ≤ min

(

A√
h
,CA,B

1√
k

n

k
log(e+

n

k
)

)

, (8.3)

or equivalently, we have for all t > 0:

N(
√
nBn

2 , tZn(µ)) ≤







exp

(

C ′
A,B n

(

log(e+t)
t

)
2
3

)

t ≤ A
√

n/h

1 otherwise

. (8.4)

Proof Sketch. Since µ is assumed isotropic we have Z2(µ) = Bn
2 . The case h = 1 appears

explicitly in [14, Lemma 12 and Theorem 16]. For the general case, an inspection of the
proof of [14, Theorem 16] reveals that the only ingredient required to obtain an estimate
on ek(Bn

2 , Zn(µ)) is a lower bound on v−m(Zn(µ)) for m = 1, . . . , k.
When m ≤ h, we may simply use Zn(µ) ⊃ 1

A

√
hBn

2 and conclude that:

v−m(Zn(µ)) ≥ 1

A

√
h.

When m = h, . . . , n, [14, Lemma 12] ensures that:

v−m(Zn(µ)) ≥ c

sup {LπEµ;E ∈ Gn,m}
√
m,

for some universal constant c > 0, and so we see that one only needs to control the
isotropic constants of marginals of µ of dimension not smaller than h. Combining these
two estimates, (8.2) follows for a h-pure isotropic measure with constants (A,B).
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Now, according to [14, Corollary 9 and Remark 6], one has for any α > 0:

ek(Bn
2 ,K) ≤ Cα sup

m=1,...,k

(m

k

)α n

m
log
(

e+
n

m

) 1

v−m(K)
.

Applying this to K = Zn(µ) (with, say, α = 2), and plugging the estimate (8.2) on
v−m(K), we obtain:

ek(Bn
2 , Zn(µ)) ≤ CA,B

1
√

max(h, k)

n

k
log(e+

n

k
)

Combining this with the trivial estimate:

ek(Bn
2 , Zn(µ)) ≤ A√

h

(since Zn(µ) ⊃ 1
A

√
hBn

2 ), the asserted (8.3) follows (note that we replaced max(h, k) by
the looser k since we do not care here about the dependence of CA,B on (A,B)). The
equivalent (8.4) is obtained in the range t ≥ 1 by direct inspection of (8.3), and extended
to all t > 0 by Lemma 2.3 after adjusting the constant C ′

A,B .

9 Part 2 - Weak Generalized Dual Sudakov: Pure Mea-

sures and Regular Small-Diameter Bodies

It is naturally of interest to establish the Weak Generalized Dual Sudakov estimate for
general (say origin-symmetric) log-concave measures µ and convex bodies K. Unfortu-
nately, we have not been able to accomplish this in that generality. In this section, we
establish a Weak Generalized Dual Sudakov estimate when the log-concave measure µ is
assumed to be h-pure, or when K is assumed to have α-regular small-diameter (defined
below).

9.1 Part 2 for Pure Measures

Theorem 9.1. Let µ be a h-pure log-concave measure on R
n (with constants (A,B)),

and let p ∈ [1, n]. Then for any q > 0 and star-body L ⊂ R
n:

M

(

Zp(µ), t

√

p

n
mq(µ,L)L

)

≤ exp

(

1 + q + CA,Bn

(

log(e+ t)

t

)
1
3

)

∀t > 0.

In particular, if µ(L) ≥ exp(−p) with p ∈ [1, n] then:

M(Zp(µ), L) ≤ exp(C ′
A,Bn

5/6p1/6 log1/3(1 + n/p)).

This will follow from Part 3 of The Program together with the following:
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Theorem 9.2. Let µ be a h-pure log-concave measure (with constants (A,B)) and let
p ∈ [1, n]. Then:

N

(

Zp(µ), t

√

p

n
Zn(µ)

)

≤ exp

(

CA,Bn

(

log(e+ t)

t

)
1
2

)

∀t > 0.

Proof. Since the statement is invariant under linear transformations, we may assume
that µ is isotropic. By the triangle inequality for covering numbers, we have for all
s > 0:

N

(

Zp(µ), t

√

p

n
Zn(µ)

)

≤ N

(

Zp(µ),
t

s

√
pBn

2

)

N
(√
nBn

2 , sZn(µ)
)

.

The best known (essentially optimal) estimates on N(Zp(µ), Cr
√
pBn

2 ) for general
isotropic origin-symmetric log-concave probability measures were obtained by Giannopoulos–
Paouris–Valettas [16] (for the range r ∈ [1,

√

n/p log2(1+n)]) and Milman [40, Subsection
3.3] (for r ≥

√

n/p log2(1+n)). Note that since Zp(µ) ⊂ CpBn
2 , N(Zp(µ), Cr

√
pBn

2 ) = 1
for r ≥ √

p. To avoid a lengthy multiple case analysis, we will simply use:

N(Zp(µ), r
√
pBn

2 ) ≤ exp

(

C2
n

r2
+ C3

√
n
√
p

r

)

∀r > 0.

For r ≥ C1 > 0, this estimate was proved in [16], and after adjustment of constants
it continues to hold for all r > 0 by Lemma 2.3. Note that since I1(µ,Bn

2 ) ≃ √
n for

isotropic µ, this estimate is a particular case of the Generalized Dual Sudakov estimate
for ellipsoids we obtained in Theorem 7.4 for general (not necessarily isotropic) origin-
symmetric log-concave measures.

Next, by Theorem 8.8 on the regularity of dual covering numbers for pure measures,
we have:

N(
√
nBn

2 , sZn(µ)) ≤ exp

(

CA,Bn

(

log(e+ s)

s

)
2
3

)

∀s > 0.

Setting r = t/s above and combining both estimates, we obtain for all s, t > 0:

N(Zp(µ), t
√

p/nZn(µ)) ≤ exp

(

C2
n

t2
s2 + C3

√
n
√
p

t
s+ CA,Bn

(

log(e+ s)

s

)
2
3

)

.

Optimizing on s, we set s = t3/4 log1/4(e+ t), yielding:

N(Zp(µ), t
√

p/nZn(µ)) ≤ exp

(

C ′
A,Bn

(

log(e+ t)

t

)1/2

+ C3

√
n
√
p

(

log(e+ t)

t

)1/4
)

∀t > 0.

However, note that since Zp(µ) ⊂ Zn(µ), the left-hand-side is exactly 1 for all t ≥
√

n/p, and that in the non-trivial range t ∈ (0,
√

n/p], the first term on the right-
hand-side always dominates the second one. Adjusting constants, the assertion is thus
established.
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Proof of Theorem 9.1. By the triangle inequality for packing numbers, we have for every
s > 0:

M

(

Zp(µ), t

√

p

n
mq(µ,L)L

)

≤ N

(

Zp(µ), s

√

p

n
Zn(µ)

)

M

(

Zn(µ),
t

s
mq(µ,L)L

)

.

Invoking Theorems 9.2 and 4.1 to estimate the terms on the right-hand-side, we obtain:

M

(

Zp(µ), t

√

p

n
mq(µ,L)L

)

≤ exp

(

CA,Bn

(

log(e+ s)

s

)1/2

+ 1 + q + C ′n
s

t

)

.

Optimizing on s > 0, we set s := t2/3 log1/3(e+ t). Adjusting constants, the assertion is
established.

9.2 Part 2 for Regular Small-Diameter Bodies

The only property we will require for the ensuing proof is encapsulated in the following:

Definition (Regular Small-Diameter). An origin-symmetric convex body K ⊂ R
n is

called α-regular (α ∈ (0, 2]) small-diameter (with constant R ≥ 1) if there exists T ∈ GLn

so that, denoting K0 = T (K):

(1) K0 ⊂ RBn
2 .

(2) N(Bn
2 , tK0) ≤ exp(n/tα) for all t > 0.

9.2.1 Examples of Regular Small-Diameter Bodies

Proposition 9.3. Assume that K ⊂ R
n is a origin-symmetric convex body so that λK ,

the uniform measure on K, is h-pure (with constants (A,B)). Assume in addition that
K ⊂ D

√
nZ2(λK). Then K is α-regular small-diameter with constant RA,B,D,α for all

α ∈ (0, 2/3).
In particular, the following families are 1

2-regular small-diameter:

(1) Sub-Gaussian (Ψ2) Convex-Bodies are
1
2 -regular small-diameter with constant R ≤

C.

(2) Unconditional Convex Bodies K satisfying K ⊂ D
√
nZ2(λK) are 1

2-regular small-
diameter with constant R ≤ CD.

Proof. We may assume that λK is isotropic, so that Z2(λK) = Bn
2 . Since Zn(λK) ≃ K

by origin-symmetry, if we define K1 = K/
√
n, Theorem 8.8 ensures that:

N(Bn
2 , tK1) ≤ exp(CA,B,αn/t

α) ∀t > 0,
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for any α ∈ (0, 2/3), while we are given that K1 ⊂ DBn
2 . It follows that K is α-regular

with constant R = C
1/α
A,B,αD.

In particular, if K is sub-Gaussian, Proposition 8.5 ensures that λK is 1-pure, while
it is also well-known (e.g. [46]) that K ≃ Zn(λK) ⊂ D

√
nZ2(λK) where D is the Ψ2

constant of K, which is assumed to be bounded by a universal constant. In addition,
Proposition 8.5 ensures that λK is 1-pure if K is unconditional, and so if in addition
K ⊂ D

√
nZ2(λK), then it is 1

2 -regular with constant R = CD.

To describe another important class of regular small-diameter bodies, recall that the
(Gaussian) type-2 constant of a normed space (X, ‖·‖) over R, denoted T2(X), is the
minimal T > 0 for which:

(

E‖
m
∑

i=1

Gixi‖2
)

1
2

≤ T

(

m
∑

i=1

‖xi‖2
)

1
2

for any m ≥ 1 and any x1, . . . , xm ∈ X, where G1, . . . , Gm denote independent real-
valued standard Gaussian random variables. We will often identify between a normed
space and its unit-ball, and given an origin-symmetric convex body K ⊂ R

n, refer to
the type-2 constant T2(XK) of the normed space XK whose unit-ball is K. We will not
distinguish between the Gaussian and the Rademacher type-2 constants, since it is well
known that the former constant is always majorized by the latter one (e.g. [42]), and all
our results will involve upper bounds in terms of the Gaussian type-2 constant.

Note that a Hilbert-space has type-2 constant exactly 1. It is also well-known (e.g.
[42]) that subspaces of Lp for p ≥ 2 have type-2 constant of the order of

√
p. In a

finite dimensional setting, it is clear by John’s theorem that T2(XK) ≤ √
n for all origin-

symmetric K ⊂ R
n. Since ℓn∞ is isomorphic to a subspace of Llogn, it similarly follows

that T2(ℓn∞) ≤ C
√

log n, and in fact this is the correct order.

Proposition 9.4. Every origin-symmetric convex body K ⊂ R
n is 2-regular small-

diameter with constant CT2(XK), for some universal constant C ≥ 1.

Proof. It was shown by W. J. Davis, V. Milman and N. Tomczak-Jaegermann [12] using
operator-theoretic notation, and in [39, Corollary 3.5] using a geometric argument, that
when Bn

2 is the minimal volume ellipsoid containing K (the Lowner position), then:

M(K) ≤M2(K) :=

(
∫

Sn−1

‖θ‖2K dσ(θ)

)1/2

≤ T2(XK).

Setting K0 := RK with R = CT2(XK) for an appropriate constant C ≥ 1, we have that
M(K0) ≤ 1

C , and hence by the Dual Sudakov Minoration:

N(Bn
2 , tK0) ≤ exp(n/t2) ∀t > 0.

Since K0 ⊂ RBn
2 , the assertion is established.
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Remark 9.5. Applying Proposition 9.3, we may conclude that the unit-balls Bn
q of ℓnq ,

which for all q ∈ [2,∞] are both Ψ2 and small-diameter unconditional, are 1/2-regular
with uniformly bounded universal constant C > 0. Note that by the previous remarks,
we cannot get a uniform estimate for the type-2 constant of ℓnq in the range q ∈ [2,∞], and
in particular ℓn∞ is not 2-regular small-diameter with dimension-independent constant.
However, using precise covering estimates due to C. Schutt [54], we know that in fact
Bn

∞ is (2 − ǫ)-regular small-diameter with constant Cǫ > 0 for all ǫ > 0, and the same
applies to all Bn

q for q ∈ [2,∞]. For simplicity, as this is not crucial for any of our
ensuing estimates, we will only use below that they are all 1-regular small-diameter with
a uniformly bounded universal constant C > 0 for all q ∈ [2,∞].

9.2.2 Weak Generalized Regular Dual Sudakov

Theorem 9.6. Let µ denote an origin-symmetric log-concave probability measure on
R
n, and let K ⊂ R

n denote an α-regular small-diameter convex body (with constants
α ∈ (0, 2] and R ≥ 1). Then for any p ∈ [1, n]:

N(Zp(µ), tm1(µ,K)K) ≤ exp
(

C(n(R/t)α)
2

2+α p
α

2+α +C(n(R/t)α)
1

1+α p
α

1+α

)

∀t > 0.

(9.1)
In particular:

N(Zp(µ), T2(XK)m1(µ,K)K) ≤ exp
(

C ′√n√p
)

,

and for all q ∈ [2,∞]:

N(Zp(µ), tm1(µ,Bn
q )Bn

q ) ≤ exp

(

C ′′ p
1/3n2/3

t2/3
+C ′′

√
p
√
n√
t

)

∀t > 0.

Proof. Since the statement is clearly invariant under applying (non-degenerate) linear
transformations on both µ and K, we may and will assume that K ⊂ RBn

2 and:

N(Bn
2 , tK) ≤ exp(n/tα) ∀t > 0.

The small-diameter property ensures that:

I1(µ) =

∫

|x| dµ(x) ≤ R

∫

‖x‖K dµ(x) = RI1(µ,K).

Together with the Generalized Regular Dual Sudakov estimate for ellipsoids (Theorem
7.4), we obtain for any s > 0:

N(Zp(µ), tI1(µ,K)K) ≤ N(Zp(µ), sI1(µ)Bn
2 )N(I1(µ)Bn

2 , (t/s)I1(µ,K)K)

≤ N(Zp(µ), sI1(µ)Bn
2 )N(Bn

2 , t/(Rs)K)

≤ exp

(

C
( p

s2
+
p

s

)

+ n
Rαsα

tα

)

.
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Optimizing on s > 0, we set s = C ′ max(s1+α, s2+α) where sβ :=
( p
n

(

t
R

)α)1/β
. Recalling

that I1(µ,K) ≃ m1(µ,K) by Lemma 2.1, we obtain the first assertion. Applying the
first part with α = 2, t = C ′′T2(XK) and invoking Proposition 9.4, the second assertion
follows after an adjustment of constants. The last assertion follows in view of Remark
9.5.

As a corollary, since we always have:

m1(µ,Zn(µ)) ≃ I1(µ,Zn(µ)) ≤ C,

by Lemma 4.7, and in addition N(Zp(µ), tZn(µ)) = 1 for all p ∈ [1, n] and t ≥ 1, so that
only the first term in the right-hand-side of (9.1) is relevant, we obtain:

Corollary 9.7. Let µ denote an origin-symmetric log-concave probability measure on
R
n, so that Zn(µ) has α-regular small-diameter (with constants α ∈ (0, 2] and R ≥ 1).

Then for p ∈ [1, n]:

N

(

Zp(µ), t

√

p

n
Zn(µ)

)

≤ exp

(

Cn
R

2α
2+α

t
2α
2+α

)

∀t > 0.

In particular:

N

(

Zp(µ), t

√

p

n
Zn(µ)

)

≤ exp

(

Cn
T2(XZn(µ))

t

)

∀t > 0.

In analogy with the previous subsection, we deduce:

Theorem 9.8. Let µ denote an origin-symmetric log-concave probability measure on
R
n, so that Zn(µ) has α-regular small-diameter (with constants α ∈ (0, 2] and R ≥ 1).

Then for p ∈ [1, n], q > 0 and star-body L ⊂ R
n:

M

(

Zp(µ), t

√

p

n
mq(µ,L)L

)

≤ exp

(

1 + q + Cn

(

R

t

)
2α

3α+2

)

∀t > 0.

In particular:

M(Zp(µ),mp(µ,L)L) ≤ exp
(

C ′
√

T2(XZn(µ))
√
n
√
p
)

.

Proof. By the triangle inequality for packing numbers, we have for every s > 0:

M

(

Zp(µ), t

√

p

n
mq(µ,L)L

)

≤ N

(

Zp(µ), s

√

p

n
Zn(µ)

)

M

(

Zn(µ),
t

s
mq(µ,L)L

)

.
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Invoking Corollary 9.7 and Theorem 4.1 to estimate the terms on the right-hand-side,
we obtain:

M

(

Zp(µ), t

√

p

n
mq(µ,L)L

)

≤ exp

(

Cn
R

2α
2+α

s
2α
2+α

+ 1 + q +C ′n
s

t

)

.

Optimizing on s > 0, we set s := t
α+2
3α+2R

2α
3α+2 , establishing the assertion after adjustment

of constants. The last part follows by Proposition 9.4.

10 Part 1 - Combinatorial Dimension Reduction: Cube

In this section, we establish Part 1 of The (full) Program for the case that K = Bn
∞, the

n-dimensional cube, albeit with D = C log(e+n) and R = C log log(e+n). Contrary to
the linear “One-Sided Johnson–Lindenstrauss” approach that worked well for K = Bn

2 ,
we employ a non-linear combinatorial dimension reduction, based on the fundamental
work of M. Rudelson and R. Vershynin [52] on the combinatorial dimension, extending
the work of Mendelson and Vershynin from [38].

10.1 Part 1 via Cell Content and Combinatorial Dimension

Denote by Gcrd the collection of all 2n coordinate subspaces of Rn (of arbitrary dimension
m = 0, 1, . . . , n). Given a convex body K ⊂ R

n, its cell content Σ(K) is defined as:

Σ(K) :=
∑

F∈Gcrd

number of integer cells contained in PFK,

where an integer cell is defined as a unit-cube with integer coordinates, i.e. x + [0, 1]m

with x ∈ Z
m. When F = {0}, the number of integer cells contained in PFK is defined

to be 1. The combinatorial dimension v(K) is defined to be:

v(K) := max {dim(F ) ; F ∈ Gcrd and PFK contains at least one integer cell} .

Recall that Bn
∞ := [−1, 1]n. The combinatorial information we will require is sum-

marized in the following theorem, which is a particular case of [52, Theorem 4.2]:

Theorem 10.1 (Rudelson–Vershynin). Let K ⊂ R
n denote a convex body so that

N(K,Bn
∞) ≥ exp(an), a > 0. Then for all ǫ > 0:

N(K,Bn
∞) ≤ Σ

(

C

ǫ
K

)Mǫ

, Mǫ := 4 logǫ(e+ 1/a).

We will also require an additional standard combinatorial lemma (see [52, Lemma
4.6]), which may be seen as an integer-valued extension of the Sauer-Shelah lemma:
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Lemma 10.2. If K ⊂ aBn
∞ then:

Σ(K) ≤
(

Can

v(K)

)v(K)

.

We can now state:

Theorem 10.3 (Part 1 for K = Bn
∞ with logarithmic factors). Let µ be an origin-

symmetric log-concave measure on R
n, let p ∈ [1, n] and t ≥ 1/n. Set:

D := C1 log(e+ n) , R := C2 log log(e+ n),

for appropriate universal constants C1, C2 ≥ 1. Assume that M(Zp(µ), tRBn
∞) = ek with

µ(Bn
∞) ≥ 1

e and 1 ≤ k ≤ n. Then there exists F ∈ Gcrd of dim(F ) = m ∈ [k/D, k], so
that:

(1) M(PFZp(µ), tPFB
n
∞) ≥ em (“Partial Separation Dimension Reduction”).

(2) πFµ(PFB
n
∞) ≥ µ(Bn

∞) ≥ 1
e (“PFB

n
∞ is sufficiently massive”).

Proof. We know that:

N

(

1

tR
Zp(µ), Bn

∞

)

≥M(Zp(µ), tRBn
∞) = ek,

and so by Theorem 10.1, we have for any ǫ > 0:

k ≤ 4 logǫ
(

e+
n

k

)

log Σ

(

C

tRǫ
Zp(µ)

)

. (10.1)

By Lemma 2.2 and 2.1, µ(Bn
∞) ≥ 1/e implies that:

Zp(µ) ⊂ Ip(µ,B
n
∞)Bn

∞ ⊂ C ′p m1(µ,B
n
∞)Bn

∞ ⊂ C ′pBn
∞,

and so C
tRǫZp(µ) ⊂ C′′p

tRǫ B
n
∞. Applying Lemma 10.2, we deduce that:

log Σ

(

C

tRǫ
Zp(µ)

)

≤ mǫ log

(

C3pn

tRǫmǫ

)

, mǫ := v

(

C

tRǫ
Zp(µ)

)

. (10.2)

Setting ǫ = 1/ log log(e + n) and C2 = 8C, we ensure by (10.1) and (10.2) that m :=
v( 1

8tZp(µ)) satisfies:

k ≤ 4em log

(

C3pn

tC2m

)

.

Since p ∈ [1, n] and t ≥ 1/n, by appropriately selecting C1 we may ensure that:

m ≥ k/D.
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This means that there exists F ∈ Gcrd of dim(F ) = m ≥ k/D so that 1
8tPFZp(µ) contains

an integer cell. In particular:

M(PFZp(µ), tPFB
n
∞) = M(

1

8t
PFZp(µ),

1

8
PFB

n
∞) ≥M(

1

2
PFB

n
∞,

1

8
PFB

n
∞) ≥ em.

Of course, by decreasing m if necessary, we may also always ensure that m ≤ k.
This concludes the proof of the first assertion. The second assertion is obvious since
πFµ(PFB

n
∞) = µ(P−1

F PFB
n
∞) ≥ µ(Bn

∞).

10.2 Running The Program For Cubes

Running The (full) Program, we finally obtain:

Theorem 10.4 (Generalized Regular Dual Sudakov For Cubes with Logarithmic Terms).
For any origin-symmetric log-concave measure µ on R

n, we have:

M(Zp(µ), tC log log(e+n)m1(µ,B
n
∞)Bn

∞) ≤ exp
(

C log(e+ n)
( p

t2
+
p

t

))

∀p ≥ 1 ∀t > 0.

Proof. Since the expression on the left-hand-side is invariant under scaling of µ, we may
assume that m1(µ,B

n
∞) = 1.

Given p ≥ 1 and t ≥ 1/n, we run The Program for K = Bn
∞, with Lm = {Bm

∞}.
Theorem 10.3 applied with q = 1 verifies Part 1 of The Program with D = C1 log(e+n),
R = C2 log log(e + n), A = 1, B = 1 and qm = 1. Part 2 of The Program regard-
ing Weak Generalized Regular Dual Sudakov, with parameters qm = 1 and ϕt(x) =
C ′ max(x1/3/t2/3,

√
x/

√
t), is established in Theorem 9.6 (recalling (2.2)). Since ϕ−1

t (y) ≃
min(y3t2, y2t), we have ϕ−1

t (1/(4A)) ≃ min(t, t2), and Theorem 5.2 yields the asserted
estimate in the range t ≥ 1/n. The estimate remains valid after adjustment of con-
stants (and in fact can be significantly improved) in the remaining non-interesting range
t ∈ (0, 1/n) by Lemma 2.3 and (2.2). This concludes the proof.

Since every origin-symmetric polytope K in R
n with 2N facets is the unit-ball of an

n-dimensional subspace E of ℓN∞ (in an appropriate basis), by applying Theorem 10.4 in
R
N to log-concave measures µk which weakly converge to a given log-concave measure

µ on E, we immediately obtain:

Corollary 10.5 (Generalized Regular Dual Sudakov For Polytopes with Few Facets and
Logarithmic Terms). For any origin-symmetric log-concave measure µ on R

n, and any
origin-symmetric polytope K with 2N facets, we have:

M(Zp(µ), tC log log(e+N)m1(µ,K)K) ≤ exp
(

C log(e+N)
( p

t2
+
p

t

))

∀p ≥ 1 ∀t > 0.
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11 Concluding Remarks

11.1 Generalized Regular Sudakov Minoration: Ellipsoids

Recall that the following estimate was established in Theorem 7.4:

M(Zp(µ), tm1(µ, E)E) ≤ exp
(

C
( p

t2
+
p

t

))

∀p ≥ 1 ∀t > 0, (11.1)

for any origin-symmetric log-concave measure µ on R
n and any (origin-symmetric) ellip-

soid E ⊂ R
n. Let us expand on some of the comments regarding this estimate given in

the Introduction.

In terms of sharpness, first recall that Zp(µ) ⊂ pI1(µ, E)E , and so the left-hand-side
is 1 for t ≥ C ′p and the estimate is of the correct order (up to the value of C > 0) in
that range. Moreover, our estimate yields the correct worst-case behavior in the range
t ∈ [1, C ′p] as well. This is easily seen by degenerating µ to a one-dimensional (two-sided)
exponential measure, in which case Zp(µ) approximates an interval of length of order p,
and m1(µ,B

n
2 ) is of the order of 1.

We now claim that (11.1) yields the correct worst-case behavior for all t ∈ [
√

p/n, 1].
To see this, set µ to be the standard Gaussian measure γn so that Zp(γn) ≃ √

pBn
2 , and

let E denote the cylinder
√
kBk

2 × R
n−k (which we think of as a degenerate ellipsoid, as

it can obviously be approximated by proper ones). Clearly m1(γn, E) ≃ I2(γn, E) = 1,
and we have by the volumetric estimate (2.4):

M(
√
pBn

2 , t0E) = M(
√
pBk

2 , t0
√
kBk

2 ) ≥ ek

for t0 = 1
2e

√

p/k. Consequently, we confirm that for an appropriate constant c > 0:

M(Zp(γn), c
√

p/k m1(γn, E)E) ≥ ek,

and letting k range from ⌈p⌉ to n, the sharpness of (11.1) for all t ∈ [
√

p/n, 1] is es-
tablished. When t ∈ (0,

√

p/n) the estimate is definitely loose, as simply seen by a
volumetric argument (as explained in Lemma 2.3); however, we do not try to improve
the estimate in this non-interesting range.

As already mentioned in the Introduction, when µ is isotropic and E = Bn
2 (and hence

m1(µ,B
n
2 ) ≃ √

n), the estimate (11.1) was already obtained by Giannopoulos–Paouris–
Valettas in [16] using a delicate refinement of Talagrand’s approach for proving the (dual)
Sudakov Minoration. An alternative proof of this particular case was obtained in [17]
using a very similar approach to the one we employ in this work, namely self-improving
a weak Sudakov Minoration estimate via dimension-reduction. For p ≥ √

n log2(1 + n),
improved covering estimates in the range t ∈ [log2(1+n), p/

√
n] have been obtain for the

isotropic case in [40, Subsection 3.3]. In the non-isotropic case, a general formula in terms
of the eigenvalues of Cov(µ) may also be obtained by employing Sudakov Minoration
and the estimate on M∗(Zp(µ)) from [40, Theorem 1.3].
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11.2 Generalized Regular Sudakov Minoration: Cubes

We now turn to the estimate established in Theorem 10.4:

M(Zp(µ), tC log log(e+n)m1(µ,B
n
∞)Bn

∞) ≤ exp
(

C log(e+ n)
( p

t2
+
p

t

))

∀p ≥ 1 ∀t > 0.

(11.2)
for any origin-symmetric log-concave measure µ on R

n. Up to the logarithmic terms
above, this estimate is again seen to be sharp in the range t ≥ 1, exactly as in the
preceding analysis for ellipsoids.

In the range t ∈ [
√

p/n, 1], the estimate (11.2) remains sharp up to these and perhaps
additional logarithmic terms in the dimension. To see this, set again µ to be the Gaussian
measure γn, for which it is well-known that m1(γn, B

n
∞) ≃

√

log(1 + n). Applying the
precise covering estimates of Schutt [54], we have:

M

(

Zp(γn), C

√

log(1 + n/k)
√

log(1 + n)

√
p√
k
m1(γn, B

n
∞)Bn

∞

)

≥M

(

Bn
2 , C

′

√

log(1 + n/k)√
k

Bn
∞

)

≥ ek,

for all log(1 + n) ≤ k ≤ n. This confirms the sharpness of (11.2) up to the logarithmic
terms for all t ∈ [

√

p/nα, 1] for any fixed α ∈ (0, 1). Curiously, it seems that this example
exhibits an additional advantageous log(1 + n) term in the range t ∈ [

√

p/n,
√

p/nα],
and we do not know whether this is indeed the worst-possible expected behaviour. As
in the case of ellipsoids, the estimate is definitely loose in the range t ∈ (0,

√

p/n) by a
simple volumetric estimate.

11.3 Completing The Program

The results we obtain in this work completely resolve Part 3 of The Program, and
almost entirely Part 2 as well. For instance, if the initial log-concave probability measure
µ is assumed 1-pure (e.g. super-Gaussian, sub-Gaussian or unconditional), then by
Proposition 8.5, so will be all of its marginals ν ∈ Mm, for which we have a Weak
Sudakov Minoration result by Theorem 9.1. In particular, up to the Slicing Problem,
Part 2 is completely established.

Consequently, it is clear that the main remaining challenge in completing The Pro-
gram lies in establishing Part 1 of The Program. This is a significant challenge even
for some specific convex bodies K besides ellipsoids, such as for K = Bn

1 . To carry out
this Separation Dimension-Reduction step, it seems that we would need to employ other
measures on the Grassmannian Gn,m besides the uniform Haar measure, upon which
most of the (Euclidean) Asymptotic Geometric Analysis theory is built. In our opinion,
this is a fascinating challenge, which will be explored in a separate work.
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