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Abstract

We study the question whether every centered convex body K of volume
1 in Rn has “supergaussian directions”, which means θ ∈ Sn−1 such that∣∣∣∣{x ∈ K : |〈x, θ〉| > t

∫
K

|〈x, θ〉|dx

}∣∣∣∣ > e−ct2 ,

for all 1 6 t 6
√

n, where c > 0 is an absolute constant. We verify that a
“random” direction is indeed supergaussian for isotropic convex bodies that
satisfy the hyperplane conjecture. On the other hand, we show that if, for
all isotropic convex bodies, a random direction is supergaussian then the
hyperplane conjecture follows.

1 Introduction

A well known conjecture in the theory of convex bodies is the hyperplane conjecture:
there exists c > 0 such that for any n > 1 and any convex body K of volume 1 in
Rn with centre of mass at the origin, there exists θ ∈ Sn−1 such that

(1.1) |K ∩ θ⊥| > c.

This question was posed explicitly in [9]. A classical reference is the paper of
Milman and Pajor [45] (see also [22]). In the late 80’s, J. Bourgain verified the
conjecture in the case of “ψ2” bodies. These are the convex bodies for which every
direction is subgaussian: if µ is the uniform measure on K, a direction θ ∈ Sn−1 is
called subgaussian for µ with constant r > 0, if

(1.2) µ ({x : |〈x, θ〉| > tmθ}) 6 e−
t2

r2 ,

for all 1 6 t 6 r
√
n, where mθ is the median of |〈·, θ〉| with respect to µ. The best

possible value of r > 0 for which (1.2) holds true is the subgaussian constant bµ(θ) of
µ in the direction of θ. Bourgain provided a lower bound in (1.1), depending on the
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parameter supθ bµ(θ) (see [10], [11], [16]). The main idea that the uniform measure
µ on K may “resemble” the Gaussian measure became a central and fruitful line
of research: a central limit theorem for convex bodies (proposed in [2], [14]) was
proved (see [29], [30], [21], [18], [20]), various concentration results ([49], [50]) have
appeared, and several strong conjectures have been proposed ([27], [6], [39], [19])
and have been verified in special cases ([54], [32], [43]).

In this setting, the following question was posed by V. Milman: is it true that
every convex body has at least one “subgaussian” direction? An affirmative answer
was given by Bobkov and Nazarov ([7], [8]) for the class of 1-unconditional convex
bodies; the same is true for the class of zonoids (see [48]). For a general convex
body, B. Klartag ([31]) established the existence of a “subgaussian” direction up to
a logarithmic in the dimension factor (see also [23]). The best known estimate is
infθ bµ(θ) = O(

√
log n) [24].

In this paper we consider the following “dual” question: is it possible to find at
least one “supergaussian” direction on every convex body? We say that a direction
θ ∈ Sn−1 is supergaussian for µ with constant r > 0 if, for all 1 6 t 6

√
n

r ,

(1.3) µ ({x : |〈x, θ〉| > tmθ}) > e−r2t2 .

The best possible value of r > 0 for which (1.3) holds true is called the supergaussian
constant of µ in the direction of θ and will be denoted by sgµ(θ). The question
about supergaussian directions was considered in a recent paper of P. Pivovarov
[52], who gave an affirmative answer (up to a logarithmic in the dimension factor)
for the class of 1-unconditional bodies.

The first main result of this paper provides an affirmative answer to the question
for all convex bodies that satisfy the hyperplane conjecture. In fact, we show
that, for isotropic convex bodies which satisfy the hyperplane conjecture, a random
direction is supergaussian. Here, the randomness is with respect to the rotation
invariant probability measure σ on Sn−1. In order to give the precise formulation,
we recall that an isotropic convex body K in Rn is a convex body of volume 1 which
has centre of mass at the origin and satisfies

(1.4)
∫

K

|〈x, θ〉|2dx = L2
K

for all θ ∈ Sn−1 and some constant LK > 0. The question if the isotropic constant
LK of K is uniformly bounded from above is an equivalent formulation of the
hyperplane conjecture. This is based on the fact, proved by Hensley [25], that if K
has volume 1 and centre of mass at the origin, then

(1.5)
∫

K

|〈x, θ〉|2dx ' |K ∩ θ⊥|−2.

for all θ ∈ Sn−1. We write E(sgµ) for the expectation of sgµ(θ) with respect to σ.
Then, we have the following:
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Theorem 1.1. Let K be a convex body in Rn with centre of mass at the origin and
volume 1. Assume that LK = O(1). Then, there exists θ ∈ Sn−1 such that

(1.6)
∣∣∣∣{x ∈ K : 〈x, θ〉| > t

∫
K

|〈x, θ〉|dx
}∣∣∣∣ > e−c1t2

for all 1 6 t 6
√
n. More generally, for any isotropic convex body K in Rn, one

has

(1.7) E(sgK) 6 c2LK ,

where c1, c2 > 0 are absolute constants.

The best known upper bound for LK is due to B. Klartag: LK 6 O( 4
√
n) (see

[28]), although the hyperplane conjecture has been verified for a large variety of
classes of convex bodies: 1-unconditional bodies [45], projection bodies and polars of
projections bodies[26], [4], intersection bodies [36], unit balls of the Schatten classes
[37], polytopes with few vertices [1], various random polytopes [34], [17]. Therefore,
Theorem 1.1 shows that, at least in all these cases, there exists a supergaussian
direction.

We give two different proofs of Theorem 1.1. The first one is based on inequali-
ties for the volume of Lp–centroid bodies, proved by Lutwak, Zhang and Yang [42].
The second proof is based on the techniques developed in [49], [50]. Actually, the
proof can be carried out in a setting much broader than the one of log-concave
measures. This is somehow expected: a recent result of B. Klartag [33] shows that
any non-degenerate n-dimensional measure has at least one direction which behaves
in a “supergaussian way” on a non-trivial interval.

The second main result of this paper shows that if, for all isotropic convex
bodies, a random direction is supergaussian, then the hyperplane conjecture follows:

Theorem 1.2. There exists an absolute constant c > 0 such that for every n > 1,

(1.8) sup
K isotropic in Rn

LK 6 c sup
K isotropic in Rn

[E(sgK)]3
√

log [E(sgK)]2.

The proof of Theorem 1.2 is based on the techniques developed in [16]. The paper
is organized as follows: In §2 we introduce notation, terminology and some back-
ground material which is needed for the rest of the paper. In §3 we show some basic
properties of the supergaussian constant. In §4 we give a first proof of Theorem
1.1. In §5 we give a second proof of Theorem 1.1 and the proof of Theorem 1.2.
Acknowledgments. I would like to thank Apostolos Giannopoulos for many
interesting discussions.

2 Preliminaries

2.1 Basic notation. We work in Rn, which is equipped with a Euclidean structure
〈·, ·〉. We denote by ‖ · ‖2 the corresponding Euclidean norm, and write Bn

2 for the
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Euclidean unit ball, and Sn−1 for the unit sphere. Volume is denoted by | · |.
We write ωn for the volume of Bn

2 and σ for the rotationally invariant probability
measure on Sn−1. The Grassmann manifold Gn,k of k-dimensional subspaces of
Rn is equipped with the Haar probability measure µn,k. We also write Ã for the
homothetic image of volume 1 of a compact set A ⊆ Rn, i.e. Ã := A

|A|1/n .
The letters c, c′, c1, c2 etc. denote absolute positive constants which may change

from line to line. Whenever we write a ' b, we mean that there exist absolute
constants c1, c2 > 0 such that c1a 6 b 6 c2a. Also, if K,L ⊆ Rn we will write
K ' L if there exist absolute constants c1, c2 > 0 such that c1K ⊆ L ⊆ c2K.

2.2 Probability measures. We denote by P[n] the class of all probability measures
on Rn which are absolutely continuous with respect to the Lebesgue measure. The
density of µ ∈ P[n] is denoted by fµ. A probability measure µ ∈ P[n] is called
symmetric if fµ is an even function on Rn. We say that µ ∈ P[n] is centered if for
all θ ∈ Sn−1,

(2.1)
∫

Rn

〈x, θ〉dµ(x) = 0.

A measure µ on Rn is called log-concave if for any Borel sets A,B and any λ ∈ (0, 1),

(2.2) µ(λA+ (1− λ)B) > µ(A)λµ(B)1−λ.

A function f : Rn → [0,∞) is called log-concave if log f is concave on its support
{f > 0}. It is known that if µ is log-concave and if µ(H) < 1 for every hyperplane
H, then µ ∈ P[n] and its density fµ is log-concave (see [13]).

2.3 Convex bodies. A convex body in Rn is a compact convex subset C of Rn

with non-empty interior. We say that C is symmetric if x ∈ C implies that −x ∈ C.
We say that C is centered if it has centre of mass at the origin:

∫
C
〈x, θ〉 dx = 0

for every θ ∈ Sn−1. The support function hC : Rn → R of C is defined by
hC(x) = max{〈x, y〉 : y ∈ C}. The mean width of C is defined by

(2.3) W (C) =
∫

Sn−1
hC(θ)σ(dθ).

For each −∞ < p <∞, p 6= 0, we define the p-mean width of C by

(2.4) Wp(C) =
(∫

Sn−1
hp

C(θ)σ(dθ)
)1/p

.

The radius of C is the quantity R(C) = max{‖x‖2 : x ∈ C} and, if the origin is an
interior point of C, the polar body C◦ of C is

(2.5) C◦ := {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ C}.

Note that if K is a convex body in Rn then the Brunn-Minkowski inequality implies
that 1K̃ is the density of a log-concave measure. We refer to the books [53], [46] and
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[51] for basic facts from the Brunn-Minkowski theory and the asymptotic theory of
finite dimensional normed spaces.

2.4 Lq–centroid bodies. Let µ ∈ P[n]. For every q > 1 and θ ∈ Sn−1 we define

(2.6) hZq(µ)(θ) :=
(∫

Rn

|〈x, θ〉|qf(x) dx
)1/q

,

where f is the density of µ. If µ is log-concave then hZq(µ)(θ) <∞ for every q > 1
and every θ ∈ Sn−1. We define the Lq-centroid body Zq(µ) of µ to be the centrally
symmetric convex set with support function hZq(µ).

Lq–centroid bodies were introduced, with a different normalization, in [41] (see
also [42] where an Lq affine isoperimetric inequality was proved). Here we follow
the normalization (and notation) that appeared in [49]. The original definition
concerned the class of densities 1K where K is a convex body of volume 1. In this
case, we also write Zq(K) instead of Zq(1K).

If K is a compact set in Rn and |K| = 1, it is easy to check that Z1(K) ⊆
Zp(K) ⊆ Zq(K) ⊆ Z∞(K) for all 1 6 p 6 q 6 ∞, where Z∞(K) = conv({K,−K}).
Note that if T ∈ SLn then Zp(T (K)) = T (Zp(K)). Moreover, if K is convex body,
as a consequence of the Brunn–Minkowski inequality (see, for example, [49]), one
can check that

(2.7) Zq(K) ⊆ c0 q Z2(K)

for every q > 2 and, more generally,

(2.8) Zq(K) ⊆ c0
q

p
Zp(K)

for all 1 6 p < q, where c0 > 1 is an absolute constant. Also, if K has its centre of
mass at the origin, then

(2.9) Zq(K) ⊇ cK

for all q > n, where c > 0 is an absolute constant. For a proof of this fact and
additional information on Lq–centroid bodies, we refer to [48] and [50].

2.5 Isotropic probability measures. Let µ be a centered measure in P[n]. We
say that µ is isotropic if Z2(µ) = Bn

2 . We say that a centered convex body K
is isotropic if Z2(K) is a multiple of the Euclidean ball. We define the isotropic
constant of K by

(2.10) LK :=
(
|Z2(K)|
|Bn

2 |

)1/n

.

So, K is isotropic if and only if Z2(K) = LKB
n
2 . Note that K is isotropic if and only

if Ln
K1 K

LK

is isotropic. We define the isotropic constant of µ ∈ P[n] by Lµ := f(0)
1
n .

We refer to [45], [22] and [50] for additional information on isotropic convex bodies.
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2.6 The bodies Kp(µ). A natural way to pass from log-concave measures to
convex bodies was introduced by K. Ball in [3]. Here, we will give the definition in
a somewhat more general setting: Let µ ∈ P[n] and assume that 0 ∈ supp(µ). For
every p > 0 we define a set Kp(µ) as follows:

(2.11) Kp(µ) :=
{
x ∈ Rn : p

∫ ∞

0

fµ(rx)rp−1dr > fµ(0)
}
.

It is clear that Kp(µ) is a star shaped body with gauge function

(2.12) ‖x‖Kp(µ) :=
(

p

fµ(0)

∫ ∞

0

fµ(rx)rp−1dr

)−1/p

.

2.7 The parameter k∗(C). Let C be a symmetric convex body in Rn. Define
k∗(C) as the largest positive integer k 6 n for which

µn,k

(
F ∈ Gn,k :

1
2
W (C)(Bn

2 ∩ F ) ⊆ PF (C) ⊆ 2W (C)(Bn
2 ∩ F )

)
>

n

n+ k
.

Thus, k∗(C) is the maximal dimension k such that a “random” k-dimensional pro-
jection of C is 4-Euclidean.

The parameter k∗(C) is completely determined by the global parameters W (C)
and R(C): There exist absolute constants c1, c2 > 0 such that

(2.13) c1n
W (C)2

R(C)2
6 k∗(C) 6 c2n

W (C)2

R(C)2

for every symmetric convex body C in Rn. The lower bound appears in Milman’s
proof of Dvoretzky’s theorem (see [44]) and the upper bound was proved in [47].

We will need the following result (see [40], [35], [38] for a proof):

Proposition 2.1. Let C be a symmetric convex body in Rn and p > 0. Then,

(i) Wp(C) 'W (C) for all p 6 k∗(C).

(ii) Wp(C) '
√
p/nR(C) for all k∗(C) 6 p 6 n.

(iii) Wp(C) ' R(C) for all p > n.

(iv) W−cp0(C) 'Wp0(C), where p0 = k∗(C) and c > 0 is an absolute constant.

2.8 The parameters q∗(µ), q−c(µ). Let µ ∈ P[n] and p > −n, p 6= 0. We define
the quantities Ip(µ) by

(2.14) Ip(µ) :=
(∫

Rn

‖x‖p
2dµ(x)

)1/p

.

As before, if K is a compact set of volume 1, we write Ip(K) instead of Ip(1K).
The following result is proved in [50]:
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Proposition 2.2. Let µ be a log-concave centered measure on Rn and let 1 6 p 6
n/2. Then,

(2.15) I−p(µ) '
√
n

p
W−p(Zp(µ))

and

(2.16) Ip(µ) '
√
n

p
Wp(Zp(µ)).

It is known (see [50, Proposition 4.7]) that for any convex body K of volume 1 and
for all p > −n/2, p 6= 0,

(2.17) Ip(K) > Ip(B̃n
2 ) '

√
n.

Then, Proposition 2.2 implies that

(2.18) W (Zp(K)) > W−p(Zp(K)) > c
√
p,

for 1 6 p 6 n/2, where c > 0 is an absolute constant.
Let µ be a centered log-concave measure in Rn and let δ > 1. The parameters

(2.19) q−c(µ, δ) := sup
{

0 < r 6
n

2
: I−r(µ) >

1
δ
I2(µ)

}
and

(2.20) q∗(µ, δ) := sup
{

0 < r 6 n : k∗(Zr(µ)) >
r

δ

}
played a crucial role in [49], [16]. In the sequel, we collect some basic facts for these
two parameters.

Lemma 2.3. Let C be a symmetric convex body in Rn and assume that p, δ > 1
satisfy W (C) > 1

δWp(C). Then, k∗(C) > c p
δ2 .

Proof. We may assume that p > k∗(C) (otherwise, we have nothing to prove).
Then,

(2.21) δW (C) > Wp(C) '
√
p/nR(C).

But this implies that

(2.22) p 6 cδ2n

(
W (C)
R(C)

)2

.

This completes the proof. 2
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We say that the centered convex body K of volume 1 has small diameter (with
constant α > 1) if

(2.23) R(K) 6 α I2(K).

Let K be a centered convex body of volume 1 in Rn. We define V = K∩4I2(K)Bn
2

and K̄ = Ṽ . It is easy to check that K̄ is a body of small diameter and I2(K) '
I2(K̄). Moreover, we have the following.

Lemma 2.4. Let K be a centered convex body of volume 1 in Rn and let 1 6 q 6
n/2. Then,

(2.24) I−q(K) 6 2I−q(K̄).

Proof. Recall that K̄ := |V |− 1
nV , where V := K ∩ 4I2(K)Bn

2 . Note that |V | > 15
16 .

So, we have that

(2.25) I−q
−q (K̄) =

∫
K̄

1
‖x‖q

2

dx =
|V |

q
n

|V |

∫
V

1
‖x‖q

2

dx 6
1

|V |1− q
n

I−q
−q (K).

This implies that I−q(K) 6 2I−q(K̄). 2

Proposition 2.5. Let K be a centered convex body of volume 1 in Rn and let δ > 1.
Then,

(i) q∗(K̄, c1δ2) > q−c(K̄, δ) > q−c(K, c2δ).

(ii) q−c(K, cδ) > q∗(K,δ)
cδ .

(iii) If p > q∗(K, δ) then I2(K) 6 cR(Zp(K)) 6 R(K).

(iv) If p2 > p1 > q∗(K̄, δ) then k∗(Zp2(K̄)) > ck∗(Zp1(K̄)).

(v) If δ1, δ2 > 1 and q∗(K̄, δ1δ2) 6 cn, then q∗(K̄, δ1δ2) > δ2q∗(K̄, δ1).

(vi) If K is isotropic, then q∗(K, δ) > c
√
n.

(vii) q−c(K, cL(K)) > n/2 and q∗(K̄, cL(K)2) > n,

where L(K) := I2(K)√
n

.

Proof. We first note that since K̄ has small diameter we have

(2.26) Wp(Zp(K̄)) '
√
p

n
Ip(K̄) ' √

pL(K)

for all 1 6 p 6 n.
(i) Let q := q−c(K̄, δ). Then,

W (Zq(K̄)) > W−q(Zq(K̄)) '
√
q/nI−q(K̄)

>
√
q/n

√
nL(K̄)
δ

'
√
qL(K̄)
δ

' Wq(Zq(K̄))
δ

.
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Then, Lemma 2.3 shows that k∗(Zq(K̄)) > c q
δ2 , and this implies that q∗(K̄, c1δ2) >

q = q−c(K̄, δ).
Moreover, by Lemma 2.4 we have that q−c(K̄, δ) > q−c(K, c2δ).

(ii) Let r := q∗(K, δ) (we may assume that r > 2δ). Then, k∗(Zr(K)) > r/δ. So,√
r

δn

√
nL(K) 6

√
r

δn
I r

δ
(K) 'W r

δ
(Z r

δ
(K))

6 W r
δ
(Zr(K)) 6 cW−c r

δ
(Zr(K))

6 cδW−c r
δ
(Zc r

δ
(K)) 6 cδ

√
r

δn
I−c r

δ
(K).

This implies that q−c(K, cδ) > q∗(K,δ)
cδ as claimed.

(iii) Since

(2.27)
√

p

δn

√
nL(K) 6

√
p

δn
I p

δ
(K) 'W p

δ
(Z p

δ
(K)) '

√
p

δn
R(Zp(K)),

we get (iii).
(iv) From (iii) we see that, for p > q∗(K̄, δ), we have R(Zp(K̄)) '

√
nL(K). It

follows that, for p2 > p1 > q∗(K̄, δ),

(2.28) k∗(Zp2(K̄)) ' W (Zp2(K̄))2

L(K)2
> c

W (Zp1(K̄))2

L(K)2
' k∗(Zp1(K̄)).

(v) Let r1 := q∗(K̄, δ1). Then, k∗(Zr1(K̄)) > r1
δ1

. We may assume that, if r2 :=
q∗(K̄, δ1δ2), then k∗(Zr2(K̄)) = r2

δ1δ2
. The result follows from (iv).

(vi) From (iii) we see that
√
nLK 6 cq∗(K, δ)LK .

(vii) For 1 6 p 6 n
2 we have

(2.29) I−p(K) > I−p(B̃n
2 ) '

√
n ' I2(K)

L(K)
,

and hence, q−c(K, cL(K)) > n/2. Moreover, using (iii), (2.13) and (2.18), we have
that for p > q∗(K̄, δ),

(2.30) k∗(Zp(K̄)) >
W (Zp(K̄))2

L(K)2
>

cp

L(K)2
.

This completes the proof. 2

Finally, we will need the main result of [16]:

Proposition 2.6. There exists an absolute constant c > 0 such that for every n > 1
and δ > 1,

(2.31) sup
K isotropic in Rn

LK 6 sup
K isotropic in Rn

cδ

√
n

q−c(K̄, δ)

√
log c

n

q−c(K̄, δ)
.
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3 Supergaussian directions

Let µ be a probability measure on Rn, and let θ ∈ Sn−1 and 1 6 p 6 n. We define
the supergaussian constant sgµ,p(θ) in the direction of θ at level p, as the least
value of r > 0 for which

(3.1) µ ({x ∈ Rn : |〈x, θ〉| > tmθ}) > e−r2t2

for all 1 6 t 6
√

p

r . We also write mθ for the median of |〈·, θ〉| with respect to µ.
In the case p = n we simply write sgµ(θ); we call this value “supergaussian

constant of θ”. If C is a compact set of volume 1 we write sgC(θ) instead of
sg1C

(θ).
Let µ be a log-concave centered probability measure in Rn and let 1 6 p 6 n. We
define a quantity ḡµ,p(θ) as follows:

(3.2) ḡµ,p(θ) := inf
{
δ > 0 : hZq(µ)(θ) >

√
q

δ
hZ1(µ)(θ) for all 1 6 q 6 p

}
.

Again, we define ḡµ(θ) = ḡµ,n(θ) and if K is a centered convex body of volume
1, we write ḡK(θ) instead of ḡ1K

(θ). We have the following:

Lemma 3.1. Let µ be a log-concave centered probability measure on Rn. For all
1 6 p 6 n,

(3.3) sgµ,p(θ) ' ḡµ,p(θ).

Proof. Let 1 6 p 6 n and set r1 := ḡµ,p(θ) and r2 := sgµ,p(θ). For every q 6 p we
have

(3.4) hZq(µ)(θ) >
√
q

r
hZ1(K)(θ)

and

(3.5) hZ2q(µ)(θ) ' hZq(µ)(θ).

Using the Paley–Zygmund inequality we see that, for every q > 1,

(3.6) µ

({
x ∈ Rn : |〈x, θ〉| > 1

2
hZq(µ)(θ)

})
> e−q.

Under our assumptions, we have

(3.7) µ

({
x ∈ Rn : |〈x, θ〉| >

√
q

2r1
hZ1(K)(θ)

})
> e−q

for every 1 6 q 6 p.
We set t :=

√
q

2r1
. Then, if 1√

2r1
6 t 6

√
p

2r1
, we have that

(3.8) µ({x ∈ Rn : |〈x, θ〉| > thZ2(µ)(θ)}| > e−4r2
1t2 .
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This implies that r2 6 cr1. On the other hand, for all q > 2,

hq
Zq(µ)(θ) = qhq

Z2(µ)(θ)
∫ ∞

0

sq−1µ({x ∈ Rn : |〈x, θ〉| > shZ2(µ)(θ)})ds

> qhq
Z2(µ)(θ)

∫ √
p

r2

0

sq−1e−s2r2
2ds

> q
hq

Z2(µ)(θ)

rq
2

∫ √
p

0

sq−1e−s2
ds

=
(
hZ2(µ)(θ)

r2

)q

q

(∫ ∞

0

sq−1e−s2
ds−

∫ ∞

√
p

sq−1e−s2
ds

)

>

(
c

√
qhZ2(µ)(θ)

r2

)q

,

taking into account the fact that, for every β >
√

q
2 > 1,

(3.9) 2
∫ ∞

β

sq−1e−s2
ds 6 e−β2+1βq.

Since Z2(µ) ' Z1(µ), we conclude that r1 6 cr2. 2

Working with the quantities ḡµ,p(θ) instead of sgµ,p(θ) is much more convenient
for us. Lemma 3.1 shows that, in the case of log-concave measures, these two
quantities are equivalent up to an absolute constant.

We also define the following quantities:

Eḡµ,p :=
∫

Sn−1
ḡµ,p(θ)dσ(θ)

aµ,p := sup
θ∈Sn−1

ḡµ,p(θ)

ḡµ,p := inf
θ∈Sn−1

ḡµ,p(θ).

Note that the quantities ḡµ,p and aµ,p are SLn-invariant: for every T ∈ SLn, we
have

(3.10) ḡµ◦T,p = ḡµ,p , aµ◦T,p = aµ,p.

Indeed, one can easily check that if T ∈ SLn then ḡµ◦T (θ) = ḡµ(T̃ ∗θ), where
x̃ := x

‖x‖2 .

Intuitively, the directions in which a convex body has “large subgaussian con-
stant” are the ones in which K “resembles” a cone. In particular, it follows by a
result of Berwald (see [5]) that for all symmetric convex bodies of volume 1 and for
all 0 < p 6 q, one has that

(3.11)
hZq(K)(θ)
hZp(K)(θ)

6
hZq(Cθ)(θ)
hZp(Cθ)(θ)

,

11



where Cθ is a “double cone” in the direction of θ, i.e Cθ := conv{A, θ,−θ} for some
A ⊂ θ⊥, normalized to have volume 1.

On the other hand, the directions in which a convex body has “large super-
gaussian constant” are the ones in which K “resembles” a “cylinder” Qθ in the
direction of θ, i.e. Qθ := aA × rθ for some A ⊂ θ⊥, where |A| = 1 and a, r > 0
satisfy ar = 1. More precisely, we have the following:

Proposition 3.2. Let K be a symmetric convex body of volume 1 in Rn and let
θ ∈ Sn−1. Then,

(i) For all 0 < p 6 q,

(3.12)
hZq(K)(θ)
hZp(K)(θ)

>
hZq(Qθ)(θ)
hZp(Qθ)(θ)

=
(p+ 1)

1
p

(q + 1)
1
q

,

with equality if and only if K = Qθ.

(ii) For all 1 6 p 6 n,

(3.13) ḡK,p(θ) 6 ḡQθ,p(θ) 6 c
√
p,

where c > 0 is an absolute constant.

For the proof of Proposition 3.2 we will use the next lemma; a proof can be
found in [12].

Lemma 3.3. Let g be a non-negative, finite, not identically zero, integrable, strictly
decreasing on its support, convex function on [0,∞). Then, the function

(3.14) q 7→
(
q(q + 1)

∫ ∞

0

tq−1 g(t)
g(0)

dt

)1/q

is strictly increasing in (0,∞), unless if g(t) := a1[0,∞)(1− rt) for some a, r > 0.

Proof of Proposition 3.2. (i) Let t ∈ [0, hK(θ)]. We define a function g by

(3.15) g(t) := gK(t) := |{x ∈ K : |〈x, θ〉| > t}| = 2
∫ ∞

t

f(s)ds,

where f(s) := |{x ∈ K : 〈x, θ〉 = s}|. By the Brunn–Minkowski inequality, f is
log-concave and, since K is symmetric, f is decreasing and attains its maximum
at 0. So, g is a strictly decreasing convex function on its support. Note that
g(0) = |K| = 1. Moreover,

(3.16) hq
Zq(K)(θ) = q

∫ ∞

0

tq−1g(t)dt.

Note that gQθ
(t) := a1[0, 1

r ](1− rt) and hZq(Qθ)(θ) = (q + 1)−
1
q . So,

(3.17)
hZq(K)(θ)
hZq(Qθ)(θ)

=
(
q(q + 1)

∫ ∞

0

tq−1g(t)dt
)1/q

12



and the result follows from Lemma 3.3. Assertion (ii) follows from the definition of
ḡK,p(θ). 2

As an immediate consequence of Proposition 3.2 we get that, for all θ ∈ Sn−1,

(3.18) ḡK(θ) 6 c
√
n.

Intuition suggests that it is not possible that all directions are “cylindrical”. So, we
expect that there exist directions with supergaussian constant much smaller than√
n.

We conclude this section by pointing out the following immediate consequence
of the definitions: For all 1 6 q1 6 q2 6 n and θ ∈ Sn−1,

(3.19) ḡµ,q1(θ) 6 ḡµ,q2(θ) 6
√
q2
q1
ḡµ,q1(θ).

4 Proof of Theorem 1.1

We will use the Lp versions of the Blaschke–Santaló inequality and of the Busemann–
Petty inequality obtained by Lutwak–Zhang [41] and Lutwak, Yang and Zhang [42]
respectively (see also [15] for a proof in the convex case).

Theorem 4.1. Let K be a star-shaped, with respect to the origin, body of volume
1 in Rn. Then,

(4.1) |Z◦p (K)|1/n 6 |Z◦p (B̃n
2 )|1/n

and

(4.2) |Zp(K)|1/n > |Zp(B̃n
2 )|1/n,

with equality if and only if K is a centered ellipsoid of volume 1.

Using K. Ball’s bodies Kp(µ) we can extend Theorem 4.1 to the case of proba-
bility measures µ ∈ P[n].

We will use the following lemma (see [45, p.76] for a proof).

Lemma 4.2. Let f be a bounded measurable, non-negative function on [0,∞].
Then, for every 0 < p 6 q we have

(4.3)
(

p

‖f‖∞

∫ ∞

0

tp−1f(t)dt
)1/p

6

(
q

‖f‖∞

∫ ∞

0

tq−1f(t)dt
)1/q

.

There is equality if and only if f := ‖f‖∞1[0,a] for some a > 0.

Proposition 4.3. Let µ ∈ P[n] and let fµ be its density. If 0 ∈ supp(µ) and
‖fµ‖∞ 6 1, then

(4.4) |Zp(µ)| > |Zp(B̃n
2 )| and |Z◦p (µ)| 6 |Z◦p (B̃n

2 )|,

with equality if and only if fµ := 1E for some centered ellipsoid E of volume 1.

13



Proof. Recall that for any µ ∈ P[n], the set Kp(µ) is star-shaped with respect to
the origin and

(4.5) ‖x‖Kp(µ) :=
(

p

fµ(0)

∫ ∞

0

fµ(rx)rp−1dr

)−1/p

.

Integration in polar coordinates gives

(4.6) |Kn(µ)| = 1
fµ(0)

∫
Rn

fµ(x)dx =
1

fµ(0)

and

(4.7) Zp(K̃n+p(µ))|Kn+p(µ)|
1
p + 1

n fµ(0)1/p = Zp(µ).

Lemma 4.2 implies that if q > p > 1, then

(4.8) ‖x‖Kq(µ) 6

(
‖fµ‖∞
fµ(0)

) 1
p−

1
q

‖x‖Kp(µ).

We have equality only if fµ,x(r) := fµ(rx) is constant for every x ∈ Sn−1, or
equivalently, if fµ

‖fµ‖∞ is the indicator function of some star-shaped set in Rn. It
follows that

(4.9) |Kn+p(µ)| >
(
fµ(0)
‖fµ‖∞

)n( 1
n−

1
n+p )

|Kn(µ)| =
(
fµ(0)
‖fµ‖∞

) p
n+p 1

fµ(0)
,

which implies

(4.10) |Kn+p(µ)|
1
p + 1

n f
1
p
µ (0) >

(
fµ(0)
‖fµ‖∞

) 1
n

f
−n+p

np
µ (0)f

1
p
µ (0) = ‖fµ‖

− 1
n∞ .

This shows that

(4.11) Zp(µ) ⊇ ‖fµ‖
− 1

n∞ Zp(K̃n+p(µ)) and Z◦p (µ) ⊆ ‖fµ‖
1
n∞Z

◦
p (K̃n+p(µ)).

Taking volumes and using Theorem 4.1, we conclude that

(4.12) |Zp(µ)| > ‖fµ‖−1
∞ |Zp(B̃n

2 )| and |Z◦p (µ)| 6 ‖fµ‖∞|Z◦p (B̃n
2 )|.

This proves the Proposition. 2

Using Theorem 4.1 we can show that if K is an isotropic convex body, then
ḡK(θ) 6 CLK for a random direction θ.

Proposition 4.4. Let K be an isotropic convex body in Rn. Then, for every t > 1,

(4.13) σ{θ ∈ Sn−1 : ḡK(θ) 6 c1tLK} > 1− log2 n

tn
,

where C1 > 0 is an absolute constant.
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Proof. Since K is convex, we have that

(4.14) hZp(K)(θ) ' hZ2p(K)(θ),

for every p > 1 and θ ∈ Sn−1. So, we can write

(4.15) ḡK(θ) ' LK sup
k6log2 n

2
k
2

hZ2k (K)(θ)
,

where we have also used the fact that K is isotropic.
A direct computation shows that for p 6 n,

(4.16) |Z◦p (B̃n
2 )|1/n ' ω

1/n
n√
p
.

Using polar coordinates, we get from Theorem 4.1 that

(4.17) ωn

∫
Sn−1

dσ(θ)
hn

Zp(K)(θ)
6

ωn

cn(
√
p)n

.

By Markov’s inequality we get that, for every t > 1,

(4.18) σ

{
θ ∈ Sn−1 : hZp(K)(θ) 6

C

t

√
p

}
6

1
tn
.

This implies that

(4.19) σ

{
θ ∈ Sn−1 : hZ2k (K)(θ) >

C

tLK
2

k
2LK , k = 1, . . . , log2 n

}
> 1− log2 n

tn
,

and hence,

(4.20) σ{θ ∈ Sn−1 : ḡK(θ) 6 C1tLK} > 1− log2 n

tn
,

as claimed. 2

Proof of Theorem 1.1. Let K be an isotropic convex body in Rn. From Propo-
sition 3.2 we have that ḡK(θ) 6 c

√
n. Let

(4.21) A := {θ ∈ Sn−1 : g
K

(θ) 6 2c1LK}.

From Proposition 4.4 we have that σ(A) > 1− log2 n
2n . Therefore,

EḡK =
∫

Sn−1
ḡK(θ)dσ(θ)

=
∫

A

ḡK(θ)dσ(θ) +
∫

Sn−1\A
ḡK(θ)dσ(θ)

6 2c1LK + c
√
nσ(Sn−1 \A)

6 2c1LK +
√
n log2 n

2n

6 3c1LK ,
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since LK > c′ > 0 for all convex bodies (see [45]).
Moreover, if K is a centered convex body of volume 1 and Kiso is the isotropic
image of K, by (3.10) we have that

(4.22) gK = gKiso
= inf

θ∈Sn−1
gKiso

(θ) 6 E (ḡKiso) 6 3c1LK .

Now, Lemma 3.1 completes the proof. 2

Note. (i) Using Proposition 4.3 instead of Theorem 4.1 one can prove the same
result for any log-concave measure. Recall that Lµ = f(0)

1
n . We omit the details.

(ii) The only place where convexity is needed in the proof of Proposition 4.4 is
in assuming (4.14). So, the same result holds true for any µ ∈ P[n] which has some
“regularity” as the one expressed in (4.14).

5 Proof of Theorem 1.2

As we have already mentioned in the Introduction, J. Bourgain ([11]) has proved
that convex bodies for which every direction is subgaussian have bounded isotropic
constant (by a function which depends only on the subgaussian constant). We will
show that the same holds true in the “supergaussian” case; the proof is much easier.

Proposition 5.1. Let K be a convex body in Rn with volume 1 and centre of mass
at the origin. Let aK := supθ∈Sn−1 ḡK(θ). Then,

(5.1) LK 6 c1aK ,

where c1 > 0 is an universal constant.

Proof. Recall that aK is SLn-invariant. So, we can assume that K is isotropic.
Then, for every θ ∈ Sn−1,

(5.2) hK(θ) > c1hZn(K)(θ) > c2

√
nLK

ḡK(θ)
> c2

√
nLK

aK
.

Since |K| = 1, there exists θ0 ∈ Sn−1 such that

(5.3) hK(θ0) 6 h
B̃n

2
(θ0) '

√
n.

It follows that LK 6 c3aK . 2

Let K be an isotropic convex body in Rn. We write K̄ for the isotropic convex
body of small diameter created by K, i.e. the isotropic image of K ∩ 4

√
nLKB

n
2 .

Note that R(K̄) 6 c
√
nLK̄ . Moreover, if A ⊂ K with |A| > 1

2 , then for every p > 1
and θ ∈ Sn−1,

(5.4) hZp(K)(θ) >

(∫
A

|〈x, θ〉|pdx
) 1

p

= |A|
1
p + 1

nhZp(Ã)(θ) > chZp(Ã)(θ).
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In particular, we have that Zp(K̄) ⊆ cZp(K), where c > 0 is a universal constant.
Note that LK ' LK̄ . By the definition of ḡK,p, we have that for every p > 1,

(5.5) ḡK,p 6 cḡK̄,p.

Lemma 5.2. Let K be an isotropic convex body in Rn and let K̄ be defined as
above. Then,

(i) q∗
(
K̄, c1E2(ḡK̄)

)
> n,

(ii) For any δ > 2, E(ḡK̄,q∗(K̄,δ)) 6 c2
√
δ,

where c1, c2 > 0 are absolute constants.

Proof. (i) Let E := E(ḡK̄). By definition we have that, for all 1 6 p 6 n,

(5.6) hZp(K̄)(θ) >
√
p

ḡK̄(θ)
LK̄ .

Integrating over Sn−1 we see that
(5.7)

W−1
−1 (Zp(K̄)) =

∫
Sn−1

h−1
Zp(K̄)

(θ)dσ(θ) 6
1

√
pLK̄

∫
Sn−1

ḡK̄(θ)dσ(θ) =
E

√
pLK̄

.

By Hölder’s inequality we get that, for all 1 6 p 6 n,

(5.8) W (Zp(K̄)) > W−1(Zp(K̄)) >
√
pLK̄

E
.

Recall that

(5.9) R(Zp(K̄)) 6 R(conv({K̄,−K̄})) 6 c′
√
nLK̄ .

So, by Milman’s formula (2.13), for all 1 6 p 6 n,

(5.10) k∗(Zp(K̄)) ' n

(
W (Zp(K̄))
R(Zp(K̄))

)2

> c′′
p

E2
.

This proves assertion (i).
(ii) Let q1 := q∗(K̄, δ) and q0 := q∗(K̄, 2). Note that

√
n 6 q0 6 q1. For all

1 6 p 6 q0,

(5.11) W (Zp(K̄)) 'Wp(Zp(K̄)) '
√
p

n
Ip(K̄) > c

√
pLK̄ ,

where we have used Propositions 2.1 and 2.2.
Moreover,

(5.12) R(Zq0(K̄)) '
√
n

q0
Wq0(Zq0(K̄)) ' Iq0(K̄) > c

√
nLK̄ .
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By definition we have that, for all q0 6 p 6 q1, k∗(Zp(K̄)) > p
δ , or, using (2.13),

(5.13) W (Zp(K̄)) > c

√
p

n

R(Zp(K̄))√
δ

> c

√
p

n

R(Zq0(K̄))√
δ

> c′
√
pLK̄√
δ

.

Thereore, for all 1 6 p 6 q1,

(5.14) W (Zp(K̄)) > c

√
pLK̄√
δ

.

Moreover, recall that k∗(Zp(K̄)) >
√
n for all 1 6 p 6 n. A standard argument,

based on the concentration of measure on Sn−1, shows that for 1 6 p 6 q1,

(5.15) σ

(
{θ ∈ Sn−1 : hZp(K̄)(θ) > c′

√
pLK̄√
δ

}
)

> 1− e−c
√

n.

Since Zp(K̄) ' Z2p(K̄), we get

σ

({
θ ∈ Sn−1 : hZp(K̄)(θ) > c′

√
pLK̄√
δ

for all p ∈ [1, q1]
})

> 1− log2(q1)e
−c

√
n

> 1− e−c′
√

n.

In other words,

(5.16) σ
(
{θ ∈ Sn−1 : ḡK̄,q1

(θ) 6 c′′
√
δ}
)

> 1− e−c′
√

n.

Let

(5.17) A := {θ ∈ Sn−1 : ḡK̄,q1
(θ) 6 c′′

√
δ}.

Then,

E =
∫

Sn−1
ḡK̄,q1

(θ)dσ(θ)

=
∫

A

ḡK̄,q1
(θ)dσ(θ) +

∫
Sn−1\A

ḡK̄,q1
(θ)dσ(θ)

6 c
√
δ + σ(Sn−1 \A)

√
n

6 c′
√
δ.

This proves assertion (ii). 2

We can give now a second proof of Theorem 1.1.

Proposition 5.3. Let K be an isotropic convex body in Rn. Then,

(i) E(ḡK,
√

n) 6 c1,

(ii) E(ḡK) 6 c1 4
√
n,
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(iii) E(ḡK) 6 c2LK ,

where c1, c2 > 0 are absolute constants.

Proof. Let K̄ be defined as above. Using (5.5) we have that

(5.18) E(ḡK,p) 6 cE(ḡK̄,p)

for all 1 6 p 6 n. By Proposition 2.5 (vi) we have that q∗(K, c) >
√
n. Then,

Lemma 5.2 shows that

(5.19) E(ḡK,
√

n) 6 cE(ḡK̄,
√

n) 6 c1.

This proves (i), while (ii) follows from (i) and (3.19). Finally, using Proposition 2.5
(i) and (vii), we have that q∗(K, cL2

K) > n, and by Lemma 5.2,

(5.20) E(ḡK) 6 cE(ḡK̄) 6 c2LK .

This completes (iii). 2

Proposition 5.3 (iii) provides an alternative proof of Theorem 1.1, although the
reader may notice that the measure estimate for the directions in Sn−1 with super-
gaussian constant bounded by LK is much better in Proposition 4.4. Moreover, the
convexity plays more important role in the proof of the Proposition 5.3. The proof
of Proposition 5.3 can be certainly carried out in the case of log-concave measures.

Proof of Theorem 1.2. By Proposition 2.5 (ii) we have that, for any δ > 1,
q−c(K̄, δ) > q∗(K̄,cδ)

cδ . Then, by Lemma 5.2,

(5.21) q−c

(
K̄, c1E2(ḡK̄)

)
>
q∗
(
K̄, c1E2(ḡK̄)

)
c1E2(ḡK̄)

>
cn

c1E2(ḡK̄)
.

Now, we apply Proposition 2.6: we have

sup
K isotropic

LK 6 c sup
K isotropic

(
E2(ḡK̄)

√
n

q−c

(
K̄, c1E2(ḡK̄)

)√log
n

q−c

(
K̄, c1E2(ḡK̄)

))
6 c′ sup

K isotropic
E3(ḡK̄)

√
log E2(ḡK̄)

6 c′ sup
K isotropic

E3(ḡK)
√

log E2(ḡK).

This completes the proof. 2
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