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Abstract

We study the slicing inequality for the surface area instead of volume. This is the question whether
there exists a constant αn depending (or not) on the dimension n so that

S(K) 6 αn|K|
1
n max
ξ∈Sn−1

S(K ∩ ξ⊥)

where S denotes surface area and | · | denotes volume. For any fixed dimension we provide a negative
answer to this question, as well as to a weaker version in which sections are replaced by projections
onto hyperplanes. We also study the same problem for sections and projections of lower dimension
and for all the quermassintegrals of a convex body. Starting from these questions, we also introduce a
number of natural parameters relating volume and surface area, and provide optimal upper and lower
bounds for them. Finally, we show that, in contrast to the previous negative results, a variant of
the problem which arises naturally from the surface area version of the equivalence of the isomorphic
Busemann–Petty problem with the slicing problem has an affirmative answer.

1 Introduction

In this article we study the question whether it is possible to have a version of the slicing inequality for the
surface area instead of volume. More precisely, the question (which has been formulated by Koldobsky [28])
can be stated as follows: Is it true that there exists a constant αn depending (or not) on the dimension n so
that

(1.1) S(K) 6 αn|K|
1
n max
ξ∈Sn−1

S(K ∩ ξ⊥)

for every centrally symmetric convex body K in Rn? Here, S(A) denotes surface area and |A| denotes volume
of a convex body in the appropriate dimension, and ξ⊥ = {x ∈ Rn : 〈x, ξ〉 = 0} is the (n − 1)-dimensional
subspace orthogonal to ξ ∈ Sn−1. A lower dimensional slicing problem may be also formulated; for any
2 6 k 6 n− 1 one may ask for a constant αn,k such that

(1.2) S(K) 6 αkn,k|K|
k
n max
H∈Gn,n−k

S(K ∩H)

for every centrally symmetric convex body K in Rn, where Gn,s is the Grassmann manifold of all s-
dimensional subspaces of Rn. Moreover, one may replace surface area by any other quermassintegral and
pose the corresponding question (see Section 2 for definitions and background information).

The slicing problem and its variants. In order to put our question into context we start by recalling the
classical Busemann-Petty problem [7]: Let K and D be centrally symmetric convex bodies in Rn and assume
that |K ∩ ξ⊥| 6 |D ∩ ξ⊥| for every ξ ∈ Sn−1. Is it then true that |K| 6 |D|? It is known that the answer is
affirmative if n 6 4 and negative if n > 5; see [13] and [22] for the history and the solution of the problem.
An isomorphic version of the Busemann-Petty problem was introduced in [31]. Does there exist an absolute
constant C1 so that for any dimension n and any pair of centrally symmetric convex bodies K and D in Rn
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satisfying |K ∩ ξ⊥| 6 |D ∩ ξ⊥| for all ξ ∈ Sn−1 we have that |K| 6 C1|D|? The isomorphic Busemann-Petty
problem is equivalent to the slicing problem which asks if there exists an absolute constant C2 > 0 such that
for every n > 2 and every convex body K in Rn with barycenter at the origin (we call these convex bodies
centered) one has

|K|
n−1
n 6 C2 max

ξ∈Sn−1
|K ∩ ξ⊥|.

It is well-known that this problem is equivalent to the question if there exists an absolute constant C3 > 0
such that

Ln := max{LK : K is isotropic in Rn} 6 C3

for all n > 1, where LK is the isotropic constant of K. Bourgain proved in [3] that Ln 6 c1 4
√
n logn,

and Klartag [20] improved this bound to Ln 6 c2 4
√
n. A breakthrough on this problem has been recently

announced by Y. Chen [10]; from his results it follows that Ln 6 C · exp(c
√

log n ·
√

log(log n)) = o(nε) for
any ε > 0 as the dimension n grows to infinity. From the equivalence of the two questions it follows that

|K|
n−1
n 6 c3Ln max

ξ∈Sn−1
|K ∩ ξ⊥|

for every centered convex body K in Rn. The lower dimensional slicing problem can be posed in the following
way: Let 1 6 k 6 n − 1 and let αn,k be the smallest positive constant α > 0 such that, for every centered
convex body K in Rn,

|K|
n−k
n 6 αk max

H∈Gn,n−k
|K ∩H|.

Then the question is if there exists an absolute constant C4 > 0 such that αn,k 6 C4 for all n and k.
The slicing problem can be posed for a general measure in place of volume. Let g be a locally integrable

non-negative function on Rn. For every Borel subset B ⊆ Rn we define

µ(B) =

∫
B

g(x)dx,

where, if B ⊆ H for some subspace H ∈ Gn,s, 1 6 s 6 n− 1, integration is understood with respect to the
s-dimensional Lebesgue measure on H. Then, for any 1 6 k 6 n− 1 one may define αn,k(µ) as the smallest
constant α > 0 with the following property: For every centered convex body K in Rn one has

µ(K) 6 αk |K| kn max
H∈Gn,n−k

µ(K ∩H).

Koldobsky proved in [25] that if K is a centrally symmetric convex body in Rn and if g is even and continuous
on K then

µ(K) 6 γn,1
n

n− 1

√
n |K| 1n max

ξ∈Sn−1
µ(K ∩ ξ⊥),

where, more generally, γn,k = |Bn2 |
n−k
n /|Bn−k2 | < 1 for all 1 6 k 6 n − 1. In [26], Koldobsky obtained

estimates for the lower dimensional sections: if K is a centrally symmetric convex body in Rn and g is even
and continuous on K then

µ(K) 6 γn,k
n

n− k
(
√
n)k |K| kn max

H∈Gn,n−k
µ(K ∩H)

for every 1 6 k 6 n− 1. A different proof of this fact was given in [9]: the method in this work allows one
to drop the symmetry and continuity assumptions: Let K be a convex body in Rn with 0 ∈ int(K). Let g
be a bounded non-negative measurable function on Rn and let µ be the measure on Rn with density g. For
every 1 6 k 6 n− 1,

µ(K) 6
(
c4
√
n− k

)k
|K| kn max

H∈Gn,n−k
µ(K ∩H),
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In fact, the proof leads to the stronger estimate

µ(K) 6
(
c5
√
n− k

)k
|K| kn

(∫
Gn,n−k

µ(K ∩H)n dνn,n−k(H)

) 1
n

.

In this work we study the slicing problem for the surface area and other quermassintegrals of convex bodies.
In Section 3 we recall related results regarding the surface area of projections of convex bodies. However, the
natural generalization of the slicing problem for sections that we stated in the beginning of this introduction
has not been studied. As far as we know there are no general inequalities comparing the surface area S(K)
of a convex body K in Rn to the average or maximal surface area of its hyperplane or lower dimensional
sections.

Main results. Our first main result states that it is not possible to have an inequality such as (1.1).

Theorem 1.1. For any n > 2 one has that

sup
{ S(K)

|K| 1n max
ξ∈Sn−1

S(K ∩ ξ⊥)
: K is a centrally symmetric convex body in Rn

}
= +∞.

For the proof of Theorem 1.1 we show that for any α > 0 one may construct a centrally symmetric
ellipsoid E such that

S(E) > α|E| 1n max
ξ∈Sn−1

S(E ∩ ξ⊥).

In order to do this, for a given ellipsoid E in Rn we need to know the (n− 1)-dimensional section of E that
has the largest surface area. This is a natural question of independent interest, which we answer in Section 4.
We show that if E is an origin symmetric ellipsoid in Rn, and if a1 6 a2 6 · · · 6 an are the lengths and
e1, e2, . . . , en are the corresponding directions of its semi-axes, then

S(E ∩ ξ⊥) 6 S(E ∩ e⊥1 )

for every ξ ∈ Sn−1. Then, we combine this information with a formula of Rivin [35] for the surface area of
an ellipsoid: If E is an ellipsoid in Rn with semi-axes a1 6 a2 6 · · · 6 an in the directions of e1, . . . , en then

(1.3) S(E) = n |E|
∫
Sn−1

( n∑
i=1

ξ2i
a2i

)1/2
dσ(ξ).

In fact, as we will see, for any k−dimensional subspace H and any 0 6 j 6 k − 1 we have that

Wj(E ∩ Fk) 6Wj(E ∩H) 6Wj(E ∩ Ek)

and
Wj(PFk(E)) 6Wj(PH(E)) 6Wj(PEk(E)),

where Fk = span{e1, . . . , ek}, Ek = span{en−k+1, . . . , en} and Wj denotes the j-th quermassintegral of a
convex body (see Section 2 for the necessary definitions). These results are the analogues of a known fact
for the maximal and minimal volume of k-dimensional sections and projections of ellipsoids (see Section 4
for further details and references). As a consequence we obtain a more general negative result about all the
quermassintegrals of sections and projections of convex bodies.

Theorem 1.2. Let n > 3, 1 6 k 6 n− 2 and 1 6 j 6 n− k − 1. Then,

sup

 Wj(K)

|K| kn max
H∈Gn,n−k

Wj(K ∩H)
: K is a convex body in Rn

 = +∞.
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In fact, we also have that

sup

 Wj(K)

|K| kn max
H∈Gn,n−k

Wj(PH(K))
: K is a convex body in Rn

 = +∞.

In Section 5 we provide some estimates, in the positive direction, for the surface area version of the
slicing problem. However, they depend on the parameter

t(K) =

(
|K|

|r(K)Bn2 |

) 1
n

where r(K) is the inradius of K, i.e. the largest value of r > 0 for which there exists x0 ∈ K such that
x0 + rBn2 ⊆ K. More precisely, we show:

Theorem 1.3. Let K be a convex body in Rn with barycenter at 0. Then,

S(K) 6
dn
dn−k

(c1LK)
k(n−k−1)
n−k t(K)|K| kn max

H∈Gn,n−k
S(K ∩H)

where ds = sω
1/s
s and c1 > 0 is an absolute constant.

Note that in the case k = 1 (the hyperplane case) we have dn
dn−1

(c1LK)
n−2
n−1 ≈ LK . We also provide a

variant of Theorem 1.3 for the ratio S(K)
|K| .

Theorem 1.4. Let K be a convex body in Rn with 0 ∈ int(K). Then, for all 1 6 k 6 n− 1 we have that

S(K)

|K|
6

n

n− k
t(K) max

H∈Gn,n−k

S(K ∩H)

|K ∩H|
.

Our proof of these results involves the Grinberg/Busemann-Straus inequality, an estimate for the dual
affine quermassintegrals of a convex body, and the classical Aleksandrov inequalities. In fact, the same more
or less argument leads to similar results for any quermassintegral and not only for surface area (the precise
statements are given in Section 5).

Our starting point in Section 6 are two simple inequalities relating the surface area of a convex body K
to its volume. One has

r(K)S(K) 6 n|K| 6 R(K)S(K),

where r(K) and R(K) denote the inradius and the circumradius of K respectively. In the case of an ellipsoid,
we observe that (1.3), the formula which is used for the proof of Theorem 1.1, can be rewritten as

S(E) = n|E|M2(E),

where M2
2 (E) =

∫
Sn−1 ‖ξ‖2Edσ(ξ) (and ‖ξ‖K denotes the Minkowski functional of a convex body K with

0 ∈ int(K)). Using the fact that M2(E) ≈M(E) =
∫
Sn−1 ‖ξ‖Edσ(ξ), we get

S(E) ≈ n|E|M(E).

Note that r(K) 6M(K)−1 6 w(K) 6 R(K), where w(K) is the mean width of K. Therefore, for a convex
body K ⊂ Rn, we naturally introduce the parameters

p(K) =
S(K)

|K|M(K)
and q(K) =

w(K)S(K)

|K|
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and we ask for upper and lower bounds for them. Theorems 6.1 and 6.3 show that there are absolute
constants c1, c2 > 0 such that for every convex body K ∈ Rn we have

c1
√
n 6 p(K) 6 c2n

3/2.

Moreover, the order of n cannot be improved in both the upper and the lower bound. However, we prove
that if K is in a classical position, such as John’s position or the minimal surface area position or the
isotropic position, then these estimates can be improved. The situation is different with q(K). We show
that q(K) > n for every convex body K in Rn, while in general there can be no upper bound in any fixed
dimension: for any n > 2 one has sup{q(K) : K is a convex body in Rn} = +∞.

In Section 7 we study a variant of our main problem. Our starting point is a surface area variant of the
equivalence of the isomorphic Busemann–Petty problem with the slicing problem: Assuming that there is a
constant γn such that if K and D are centrally symmetric convex bodies in Rn that satisfy

S(K ∩ ξ⊥) 6 S(D ∩ ξ⊥)

for all ξ ∈ Sn−1, then S(K) 6 γnS(D), one can see that there is some constant c(n) such that

(1.4) S(K) 6 c(n)S(K)
1

n−1 max
ξ∈Sn−1

S(K ∩ ξ⊥)

for every convex body K in Rn. We show that an inequality of this type holds true in general.

Theorem 1.5. Let K be a convex body in Rn. Then,

S(K) 6 AnS(K)
1

n−1 max
ξ∈Sn−1

S(K ∩ ξ⊥)

where An > 0 is a constant depending only on n.

We obtain this result for an arbitrary ellipsoid; then, it is not hard to extend it to any convex body,
using John’s theorem. The value of the constant An that one can obtain in this way is clearly not optimal
and it would be interesting to determine its best possible dependence on the dimension n.

2 Notation and background information

We work in Rn, which is equipped with the standard inner product 〈·, ·〉. We denote by ‖ · ‖2 the Euclidean
norm, and write Bn2 for the Euclidean unit ball and Sn−1 for the unit sphere. Volume is denoted by | · |.
We write ωn for the volume of Bn2 and σ for the rotationally invariant probability measure on Sn−1. The
Grassmann manifold Gn,k of all k-dimensional subspaces of Rn is equipped with the Haar probability measure
νn,k. For every 1 6 k 6 n− 1 and H ∈ Gn,k we write PH for the orthogonal projection from Rn onto H.

The letters c, c′, c1, c2 etc. denote absolute positive constants which may change from line to line.
Whenever we write a ≈ b, we mean that there exist absolute constants c1, c2 > 0 such that c1a 6 b 6 c2a.
Also, if K,D ⊆ Rn we will write K ≈ D if there exist absolute constants c1, c2 > 0 such that c1K ⊆ D ⊆ c2K.

A convex body in Rn is a compact convex subset K of Rn with non-empty interior. We say that K is
centrally symmetric if x ∈ K implies that −x ∈ K, and that K is centered if its barycenter 1

|K|
∫
K
x dx is at

the origin. The support function of a convex body K is defined by hK(y) = max{〈x, y〉 : x ∈ K}, and the
mean width of K is

w(K) =

∫
Sn−1

hK(ξ) dσ(ξ).

The circumradius of K is the quantity R(K) = max{‖x‖2 : x ∈ K} i.e. the smallest R > 0 for which
K ⊆ RBn2 . We write r(K) for the inradius of K, the largest r > 0 for which there exists x0 ∈ K such that
x0 + rBn2 ⊆ K. If 0 ∈ int(K) then we define the polar body K◦ of K by

K◦ := {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ K}.
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The volume radius of K is the quantity vrad(K) = (|K|/|Bn2 |)
1/n

. Integration in polar coordinates shows
that if the origin is an interior point of K then the volume radius of K can be expressed as

vrad(K) =

(∫
Sn−1

‖ξ‖−nK dσ(ξ)

)1/n

,

where ‖x‖K = min{t > 0 : x ∈ tK} is the Minkowski functional of K. We also define

M(K) =

∫
Sn−1

‖ξ‖K dσ(ξ).

A convex body K in Rn is called isotropic if it has volume 1, it is centered and its inertia matrix is a multiple
of the identity matrix: there exists a constant LK > 0 such that∫

K

〈x, ξ〉2dx = L2
K

for all ξ ∈ Sn−1. The constant LK is the isotropic constant of K.
From Minkowski’s fundamental theorem we know that if K1, . . . ,Km are non-empty, compact convex

subsets of Rn, then the volume of t1K1 + · · · + tmKm is a homogeneous polynomial of degree n in ti > 0.
That is,

|t1K1 + · · ·+ tmKm| =
∑

16i1,...,in6m

V (Ki1 , . . . ,Kin)ti1 · · · tin ,

where the coefficients V (Ki1 , . . . ,Kin) are chosen to be invariant under permutations of their arguments.
The coefficient V (K1, . . . ,Kn) is the mixed volume of K1, . . . ,Kn. In particular, if K and D are two convex
bodies in Rn then the function |K + tD| is a polynomial in t ∈ [0,∞):

|K + tD| =
n∑
j=0

(
n

j

)
Vn−j(K,D) tj ,

where Vn−j(K,D) = V ((K,n− j), (D, j)) is the j-th mixed volume of K and D (we use the notation (D, j)
for D, . . . ,D j-times). If D = Bn2 then we set Wj(K) := Vn−j(K,B

n
2 ) = V ((K,n − j), (Bn2 , j)); this is the

j-th quermassintegral of K. Note that

Vn−1(K,D) =
1

n
lim
t→0+

|K + tD| − |K|
t

,

and by the Brunn-Minkowski inequality we see that

Vn−1(K,D) > |K|
n−1
n |D| 1n

for all K and D (this is Minkowski’s first inequality). The mixed volume Vn−1(K,D) can be expressed as

(2.1) Vn−1(K,D) =
1

n

∫
Sn−1

hD(θ)dσK(θ),

where σK is the surface area measure of K; this is the Borel measure on Sn−1 defined by

σK(A) = λ({x ∈ bd(K) : the outer normal to K at x belongs to A}),

where λ is the Hausdorff measure on bd(K). In particular, the surface area S(K) := σK(Sn−1) of K satisfies

S(K) = nW1(K).
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Kubota’s integral formula expresses the quermassintegral Wj(K) as an average of the volumes of (n − j)-
dimensional projections of K:

Wj(K) =
ωn
ωn−j

∫
Gn,n−j

|PH(K)|dνn,n−j(H).

Applying this formula for j = n− 1 we see that

Wn−1(K) = ωnw(K).

It is convenient to work with a normalized variant of Wn−j(K). If we set

(2.2) Qk(K) =

(
Wn−k(K)

ωn

) 1
k

=

(
1

ωk

∫
Gn,k

|PH(K)| dνn,k(H)

) 1
k

,

then k 7→ Qk(K) is decreasing. This is a consequence of the Aleksandrov-Fenchel inequality (see [6] and
[39]). In particular, for every 1 6 k 6 n− 1 we have

(2.3) vrad(K) =

(
|K|
ωn

) 1
n

6

(
1

ωk

∫
Gn,k

|PH(K)| dνn,k(H)

) 1
k

6 w(K).

We will also use some estimates for the (normalized) dual affine quermassintegrals. For every convex body
K in Rn and every 1 6 k 6 n− 1 we consider the quantity

Φ̃[k](K) :=
1

|K|n−knk

(∫
Gn,k

|K ∩H⊥|ndνn,k

) 1
kn

.

It was proved independently by Busemann and Straus [8], and Grinberg [17] that Φ̃[k](K) 6 Φ̃[k](B
n
2 ) 6 c1,

where c1 > 0 is an absolute constant. Dafnis and Paouris showed in [12] that if K is a centered convex body
in Rn then

Φ̃[k](K) >
c2
LK

,

where c2 > 0 is an absolute constant and LK is the isotropic constant of K. In particular, assuming that
LK 6 C for an absolute constant we have that Φ̃[k](K) ≈ 1 for every centered convex body K in Rn and all
1 6 k 6 n− 1.

We refer to the books [13] and [39] for basic facts from the Brunn-Minkowski theory and to the book
[1] for basic facts from asymptotic convex geometry. We also refer to [4] for more information on isotropic
convex bodies.

3 Surface area of projections

Related to our work is the article [16] of Giannopoulos, Koldobsky and Valettas, which provides general
inequalities that compare the surface area S(K) of a convex body K in Rn to the minimal, average or
maximal surface area of its hyperplane or lower dimensional projections. The same questions are also
discussed for all the quermassintegrals. Starting from two inequalities of Koldobsky about the surface area
of hyperplane projections of projection bodies (see [23] and [24]) the authors in [16] obtain inequalities for
the surface area of hyperplane projections of an arbitrary convex body K in Rn. Let ∂K denote the minimal
surface area parameter of K, defined by

∂K := min
{
S(T (K))/|T (K)|

n−1
n : T ∈ GL(n)

}
.
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By the isoperimetric and the reverse isoperimetric inequality (see [1, Chapter 2]) it is known that c1
√
n 6

∂K 6 c2n for every convex body K in Rn, where c1, c2 > 0 are absolute constants, It is proved in [16] that
there exists an absolute constant c3 > 0 such that, for every convex body K in Rn,

|K| 1n min
ξ∈Sn−1

S(Pξ⊥(K)) 6
2bn∂K

nω
1
n
n

S(K) 6
c3∂K√
n
S(K),

where bn = (n−1)ωn−1

nω
n−1
n

n

≈ 1. This inequality is sharp e.g. for the Euclidean unit ball. Since c3∂K/
√
n 6 c

√
n

for every convex body K in Rn, one has the general upper bound

|K| 1n min
ξ∈Sn−1

S(Pξ⊥(K)) 6 c4
√
nS(K).

In the opposite direction, it is proved in [16] that if K is a convex body in Rn then∫
Sn−1

S(Pξ⊥(K)) dσ(ξ) > c5 S(K)
n−2
n−1 ,

where c5 > 0 is an absolute constant. A consequence of this inequality is that if K is in the minimal surface
area, minimal mean width, isotropic, John or Löwner position (see [1, Chapter 2]) then

|K| 1n
∫
Sn−1

S(Pξ⊥(K)) dσ(ξ) > c6 S(K),

where c6 > 0 is an absolute constant. In particular,

|K| 1n max
ξ∈Sn−1

S(Pξ⊥(K)) > c6 S(K).

In fact, these inequalities continue to hold as long as

S(K)
1

n−1 6 c7|K|
1
n

for an absolute constant c7 > 0. This is a mild condition which is satisfied not only by the classical positions
but also by all reasonable positions of K. It should be noted that the question whether there exists a constant
αn such that

S(K) 6 αn |K|
1
n max
ξ∈Sn−1

S(Pξ⊥(K))

for all convex bodies K in Rn is left open in [16]. As we will see in the next section, it has a negative
answer. In [16] the same questions are studied for the quermassintegrals Vn−k(K) = V ((K,n− k), (Bn2 , k))
of a convex body K and the corresponding quermassintegrals of its hyperplane projections.

4 Ellipsoids and a negative answer to the problem

In this section we provide a negative answer to the slicing problem for the surface area.

Theorem 4.1. For any n > 2 and any α > 0 there exists a centrally symmetric convex body K in Rn such
that

S(K) > α |K| 1n max
ξ∈Sn−1

S(Pξ⊥(K)) > α |K| 1n max
ξ∈Sn−1

S(K ∩ ξ⊥).

In fact, our examples will be given by ellipsoids. They will be based on the next result which answers a
natural question and might be useful in other situations too.
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Theorem 4.2. Let E be an origin symmetric ellipsoid in Rn and write a1 6 a2 6 · · · 6 an for the lengths
and e1, e2, . . . , en for the corresponding directions of its semi-axes. If 1 6 k 6 n− 1 then for any H ∈ Gn,k
and any 0 6 j < k we have that

Wj(E ∩ Fk) 6Wj(E ∩H) 6Wj(PH(E)) 6Wj(E ∩ Ek),

where Fk = span{e1, . . . , ek} and Ek = span{en−k+1, . . . , en}. In particular, for every ξ ∈ Sn−1,

S(E ∩ ξ⊥) 6 S(Pξ⊥(E)) 6 S(E ∩ e⊥1 ).

The analogue of Theorem 4.2 for the volume of sections and projections of ellipsoids is known to be true
(for a proof see [21] and [11]). With the same notation, for all 1 6 k 6 n− 1 one has

min
H∈Gn,k

|E ∩H| = min
H∈Gn,k

|PH(E)| = ωk

k∏
i=1

ai

and

max
H∈Gn,k

|E ∩H| = max
H∈Gn,k

|PH(E)| = ωk

n∏
i=n−k+1

ai.

For the proof of Theorem 4.2 we will use the following form of Cauchy’s interlacing theorem (see [34,
pp. 64]).

Theorem 4.3. Let A be a symmetric n × n matrix and consider the k × k matrix B = PAP ∗, where
k 6 n and P is the orthogonal projection onto a subspace of dimension k. If the eigenvalues of A are
λ1 6 λ2 6 · · · 6 λn, and those of B are µ1 6 µ2 6 · · · 6 µk, then for all i 6 k we have

λi 6 µi 6 λn−k+i.

Now, let E be an origin symmetric ellipsoid in Rn and let a1 6 · · · 6 an be the lengths of its principal
semi-axes. We can write E = {x ∈ Rn : 〈Ax, x〉 6 1}, where A is an n×n symmetric positive definite matrix.
The relation between the eigenvalues λ1(A) 6 · · · 6 λn(A) of A and the lengths of the principal semi-axes
of the ellipsoid E is given by

aj =
1√

λn−j+1(A)
.

A k-dimensional section of E can be obtained by restriction onto a k−dimensional subspace H:

E ∩H = {x ∈ H : 〈Ax, x〉 6 1}.

Let b1 6 · · · 6 bk be the lengths of the principal semi-axes of E ∩H. If {u1, . . . , uk} is an orthonormal basis
of H then we can write any x ∈ H as

x = y1u1 + · · ·+ ykuk,

for some vector y = (y1, . . . , yk) ∈ Rk. Thus, we can write x = Uy, where U is an n×k matrix with columns
ui for 1 6 i 6 k. Using this language we can write

E ∩H = {y ∈ Rk : 〈AUy,Uy〉 6 1} = {y ∈ Rk : 〈U∗AUy, y〉 6 1}.

By our previous observations we conclude that the j-th principal semi-axis of E ∩H is given by

bj = (λk−j+1(U∗AU))−1/2.

We can now use Theorem 4.3 for i = k − j + 1 to get

λk−j+1(A) 6 λk−j+1(U∗AU) 6 λn−j+1(A),

which implies that
aj 6 bj 6 an−k+j .

Therefore we obtain the following geometric consequence of Theorem 4.3.
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Lemma 4.4 (Generalisation of Rayleigh’s formula). Let E be an origin symmetric ellipsoid in Rn and write
a1 6 a2 6 · · · 6 an for the lengths of its semi-axes. If H is a k-dimensional subspace of Rn then E ∩H is
an origin symmetric ellipsoid and its semi-axes b1 6 b2 6 · · · 6 bk satisfy

aj 6 bj 6 an−k+j ,

for all 1 6 j 6 k.

Proof of Theorem 4.2. We may assume that {e1, . . . , en} is the standard basis of Rn and write

E =
{
x ∈ Rn :

n∑
j=1

x2j
a2j

6 1
}
.

Consider the ellipsoid

E ′ :=
{
x ∈ Rn :

n−k+1∑
j=1

x2j
a2n−k+1

+

n∑
j=n−k+2

x2j
a2j

6 1
}
.

We clearly have E ⊆ E ′. Then, for any k−dimensional subspace H we have that E ∩H ⊆ E ′ ∩H, and hence
Kubota’s formula implies that

Wj(E ∩H) 6Wj(E ′ ∩H)

for all 0 6 j < k. On the other hand, if b1 6 b2 6 · · · 6 bk are the lengths of the semi-axes of the ellipsoid
E ′ ∩H then Lemma 4.4 shows that

an−k+1 6 b1 6 an−k+1 6 b2 6 an−k+2 6 · · · 6 bk 6 an,

therefore an−k+1 = b1 and bj 6 an−k+j for all 1 6 j 6 k. Thus, all the semi-axes of E ′ ∩H are smaller than
or equal to the corresponding ones of E ′ ∩ Ek, which implies that

Wj(E ′ ∩H) 6Wj(E ′ ∩ Ek)

for all 1 6 j 6 k. Combining the above we get

Wj(E ∩H) 6Wj(E ′ ∩H) 6Wj(E ′ ∩ Ek) = Wj(E ∩ Ek),

where the last equality follows from the observation that E ′ ∩ Ek = E ∩ Ek. The proof of the inequality
Wj(E ∩ Fk) 6Wj(E ∩H) is similar.

For the proof of the corresponding result for projections we may use a duality argument. Given two
ellipsoids E1 and E2, with semi-axes a1 6 · · · 6 an and b1 6 · · · 6 bn respectively, we will write E1 � E2 if
ai 6 bi for all i. Using this notation, what we have proved is that

E ∩ Fk � E ∩H � E ∩ Ek

for every H ∈ Gn,k. Now, we start with the ellipsoid E◦. Since the lengths of the semi-axes of E◦ are the
reciprocals of the ones of E , we see that

E◦ ∩ Ek � E◦ ∩H � E◦ ∩ Fk,

and hence their corresponding polars satisfy

PFk(E) � PH(E) � PEk(E).

The result follows from these observations.
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Remark 4.5. A formula which is related to this discussion is proved in [19]. If F is an ellipsoid in Rk then

(4.1) Wk−j(F) =
|F|
ωk

Wj(F◦)

for every 1 6 j 6 k − 1. Let E be an ellipsoid in Rn, and let 1 6 k 6 n − 1 and H ∈ Gn,k. Keeping the
notation Ek and Fk as above, and applying (4.1) for the ellipsoid E ∩H, for every 1 6 j 6 k− 1 we see that

Wk−j(E ∩H)

|E ∩H|
=

1

ωk
|Wj(PH(E◦))| 6 1

ωk
|Wj(PFk(E◦))| = Wk−j(E ∩ Fk)

|E ∩ Fk|
.

In other words, the ratio Wk−j(E ∩H)/|E ∩H| is maximized when H = Fk, and similarly it is minimized
when H = Ek. Analogously, applying (4.1) for the ellipsoid PH(E), for every 1 6 j 6 k − 1 we see that

Wk−j(PH(E))

|PH(E)|
=

1

ωk
|Wj(E◦ ∩H)| 6 1

ωk
|Wj(E◦ ∩ Fk)| = Wk−j(PFkE)

|PFk(E)|
.

In other words, the ratioWk−j(PH(E))/|PH(E)| is also maximized whenH = Fk, and similarly it is minimized
when H = Ek.

We pass now to the proof of Theorem 4.1 and of the more general Theorem 4.7

Proof of Theorem 4.1. We shall use the next formula of Rivin (see [35]): If E is an ellipsoid in Rn with
semi-axes a1 6 · · · 6 an in the directions of e1, . . . , en then

S(E) = n |E|
∫
Sn−1

( n∑
i=1

ξ2i
a2i

)1/2
dσ(ξ).

Recall also that for any norm ‖ · ‖ on Rn we have that

E‖G‖ = dn

∫
Sn−1

‖ξ‖ dσ(ξ),

where G is a standard Gaussian random vector and dn ∼
√
n.

Now assume that there exists a constant αn > 0 such that we have the following inequality for ellipsoids:

(4.2) S(E) 6 αn|E|1/n max
ξ∈Sn−1

S(E ∩ ξ⊥).

From Theorem 4.2 we know that the maximum is attained for the section E ∩ e⊥1 . Then we have

max
ξ∈Sn−1

S(E ∩ ξ⊥) = S(E ∩ e⊥1 ) = (n− 1) |E ∩ e⊥1 |
∫
Sn−2

( n∑
i=2

ξ2i
a2i

)1/2
dσ(ξ).

We may assume that
∏n
i=1 ai = 1. Then, we can rewrite (4.2) as

nωn ·
1

dn
E
[( n∑

i=1

g2i
a2i

)1/2]
6 αnω

1/n
n · (n− 1)ωn−1

1

a1
· 1

dn−1
E
[( n∑

i=2

g2i
a2i

)1/2]
.

Since x 7→
(∑n

i=1
x2
i

a2i

)1/2
is a seminorm, using Hölder and Khintchine’s inequality for this seminorm in Gauss

space we get

E
[(∑n

i=1
g2i
a2i

)1/2]
E
[(∑n

i=2
g2i
a2i

)1/2] > c

E
(∑n

i=1
g2i
a2i

)
E
(∑n

i=2
g2i
a2i

)
1/2

= c

(∑n
i=1

1
a2i∑n

i=2
1
a2i

)1/2

,
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and hence

αn > c
nω

n−1
n

n

(n− 1)ωn−1

dn−1
dn

a1

(∑n
i=1

1
a2i∑n

i=2
1
a2i

)1/2

= c
nω

n−1
n

n

(n− 1)ωn−1

dn−1
dn

1 +
∑n
i=2

a21
a2i∑n

i=2
1
a2i

1/2

.

Now choose a2 = · · · = an = r and a1 = r−(n−1). Then,1 +
∑n
i=2

a21
a2i∑n

i=2
1
a2i

1/2

=

(
1 + n−1

r2n

n−1
r2

)1/2

=

(
1

r2n−2
+

r2

n− 1

)1/2

→∞

as r →∞. So, we arrive at a contradiction, i.e. there can be no upper bound for αn.

Remark 4.6. Let us note here that a reverse inequality can be obtained at least when K is in some of the
classical positions. It is proved in [15] that for any convex body K in Rn and any ξ ∈ Sn−1 we have

S(Pξ⊥(K))

|Pξ⊥(K)|
6

2(n− 1)

n

S(K)

|K|
,

therefore

|K| max
ξ∈Sn−1

S(Pξ⊥(K)) 6
2(n− 1)

n
S(K) max

ξ∈Sn−1
|Pξ⊥(K)|.

Since we trivially have

|Pξ⊥(K)| = 1

2

∫
Sn−1

|〈ξ, θ〉| dσK(θ) 6
1

2
S(K),

we see that

|K| max
ξ∈Sn−1

S(Pξ⊥(K)) 6
n− 1

n
S(K)2.

On the other hand, if K is in some classical position (e.g. isotropic or John’s position or minimal surface area
or minimal mean width position; see [1, Chapter 2]) then we know that a reverse isoperimetric inequality

of the form S(K) 6 cn|K|n−1
n holds true (with an extra log n-term in the minimal mean width position).

Combining the above we see that, in this case,

|K| 1n max
ξ∈Sn−1

S(Pξ⊥(K)) 6 cnS(K)

for some absolute constant c > 0.

For the more general question, where surface area is replaced by any quermassintegral, we may exploit
a formula from [32] for the j-quermassintegrals of ellipsoids of revolution, i.e. ellipsoids of the form

Er,s =

{
x ∈ Rm :

m−1∑
i=1

x2i
r2

+
x2m
s2

6 1

}
.

For every j = 0, 1, . . . ,m one has

(4.3) Wj(Er,s) = ωmr
m−j

∫
Sm−1

(s2
r2

m−j∑
i=1

θ2i +

m∑
i=m−j+1

θ2i

)1/2
dσ(θ).

Theorem 4.7. Let n > 2, 1 6 k 6 n and 0 6 j 6 n− k − 1. For every α > 0 there exists a convex body K
in Rn such that

Wj(K) > α |K| kn max
F∈Gn,n−k

Wj(PF (K)) > α |K| kn max
F∈Gn,n−k

Wj(K ∩ F ).
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Proof. Assume that for some n > 2, 1 6 k 6 n and 0 6 j 6 n− k there exists a constant C(n, k, j) > 0 such
that

(4.4) Wj(K) 6 C(n, k, j)|K| kn max
F∈Gn,n−k

Wj(K ∩ F ).

Then, for any r > 1 > s with rn−1s = 1 consider the ellipsoid Er,s. Recall that

max
F∈Gn,n−k

Wj(Er,s ∩ F ) = Wj(Er,s ∩ Fn−k),

where Fn−k = span{e1, . . . , en−k}. Note that |Er,s| = ωn and that Er,s ∩ Fn−k is a ball of radius r. Using
(4.3) and assuming that (4.4) holds true, we see that

ωnr
n−j

∫
Sn−1

(s2
r2

n−j∑
i=1

θ2i +

m∑
i=m−j+1

θ2i

)1/2
dσ(θ) 6 C(n, k, j)ω

k
n
n ωn−kr

n−k−j .

Since ∫
Sn−1

(s2
r2

n−j∑
i=1

θ2i +

m∑
i=m−j+1

θ2i

)1/2
dσ(θ) ≈

(∫
Sn−1

(s2
r2

n−j∑
i=1

θ2i +

m∑
i=m−j+1

θ2i

)
dσ(θ)

)1/2
=
(n− j

n

s2

r2
+
j

n

)1/2
=
(n− j

n

1

r2n
+
j

n

)1/2
,

we must have

rk
(n− j

n

1

r2n
+
j

n

)1/2
6 c1C(n, k, j)

ωn−k

ω
n−k
n

n

for every r > 1, which leads to a contradiction if we let r →∞.

5 Bounds in terms of the parameter t(K)

Let K be a convex body in Rn with barycenter at the origin. Recall that r(K) denotes the inradius of K;
this is the largest r > 0 such that x0 + rBn2 ⊆ K for some x0 ∈ K. We also define the parameter

t(K) :=

(
|K|

|r(K)Bn2 |

)1/n

.

In this section we provide some positive results on the slicing problem for quermassintegrals, which however
depend on t(K).

Theorem 5.1. Let K be a convex body with barycenter at the origin in Rn. Then, for every 1 6 j 6
n− k − 1 6 n− 1 we have that

Wj(K) 6 αn,k,jL
k(n−k−j)
n−k

K t(K)j |K| kn max
H∈Gn,n−k

Wj(K ∩H),

where αn,k,j = (ω
j
n
n /ω

j
n−k
n−k )c

n−k−j
n−k and c > 0 is an absolute constant.

Proof. Using the monotonicity of mixed volumes we may write

Wj(K) = V ((K,n− j), (Bn2 , j)) 6 V

(
(K,n− j),

(
K

r(K)
, j

))
=

1

r(K)j
V (K, . . . ,K) =

|K|
r(K)j

.
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We rewrite this inequality in the form

(5.1) Wj(K) 6 ω
j
n
n t(K)j |K|

n−j
n = ω

j
n
n t(K)j |K| kn |K|

n−k−j
n .

Now, we use the estimate

c0
LK
≤ Φ̃[k](K) :=

1

|K|n−knk

(∫
Gn,n−k

|K ∩H|ndνn,n−k

) 1
nk

from [12]. This gives

|K|
n−k
nk 6

LK
c0

(∫
Gn,n−k

|K ∩H|ndνn,n−k

) 1
nk

6 c1LK max
H∈Gn,n−k

|K ∩H| 1k ,

where c1 = 1/c0, and hence,

|K|
n−k−j
n 6 (c1LK)

k(n−k−j)
n−k max

H∈Gn,n−k
|K ∩H|

n−k−j
n−k .

On the other hand, applying Aleksandrov’s inequalities for K ∩H we get

|K ∩H|
n−k−j
n−k 6 ω

− j
n−k

n−k Wj(K ∩H)

for every H ∈ Gn,n−k. Combining the above we see that

|K|
n−k−j
n 6

1

ω
j

n−k
n−k

(c1LK)
k(n−k−j)
n−k max

H∈Gn,n−k
Wj(K ∩H),

and then (5.1) takes the form

Wj(K) 6 (ω
j
n
n /ω

j
n−k
n−k )(c1LK)

k(n−k−j)
n−k t(K)j |K| kn max

H∈Gn,n−k
Wj(K ∩H).

Setting αn,k,j = (ω
j
n
n /ω

j
n−k
n−k )c

k(n−k−j)
n−k

1 we conclude the proof.

Remark 5.2. Let ds = sω
1/s
s . In the particular case of surface area, we have the bounds

S(K) 6 αn L
n−2
n−1

K t(K) |K| 1n max
ξ∈Sn−1

S(K ∩ ξ⊥)

for every ξ ∈ Sn−1, where αn := dn
dn−1

(2
√

3e)
n−2
n−1 , and more generally,

S(K) 6 αn,kL
k(n−k−1)
n−k

K t(K)|K| kn max
H∈Gn,n−k

S(K ∩H)

for every 1 6 k 6 n− 1, where αn,k = dn
dn−k

c
k(n−k−1)
n−k .

A variant of Theorem 5.1 is the following result.

Theorem 5.3. Let K be a convex body in Rn with 0 ∈ int(K). Then, for all 1 6 j 6 n− k ≤ n− 1 we have
that

Wj(K)

|K|
6 t(K)j max

H∈Gn,n−k

Wj(K ∩H)

|K ∩H|
.
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Proof. Using the estimate Wj(K) 6 |K|/r(K)j we may write Wj(K) 6 ω
j
n
n t(K)j |K|

n−j
n , therefore

(5.2)
Wj(K)

|K|
6 ω

j
n
n t(K)j

1

|K| jn
.

Next, we use Grinberg’s inequality

min
H∈Gn,n−k

|K ∩H|n 6
∫
Gn,n−k

|K ∩H|ndνn,n−k(F ) 6
ωnn−k

ωn−kn

|K|n−k

to write

(5.3) min
H∈Gn,n−k

|K ∩H|
j

n−k 6
ω

j
n−k
n−k

ω
j
n
n

|K|
j
n .

From Aleksandrov’s inequality

|K ∩H|
n−k−j
n−k 6

Wj(K ∩H)

ω
j

n−k
n−k

we see that

|K ∩H|
j

n−k > ω
j

n−k
n−k

|K ∩H|
Wj(K ∩H)

,

and hence

(5.4) min
H∈Gn,n−k

|K ∩H|
j

n−k > ω
j

n−k
n−k min

H∈Gn,n−k

|K ∩H|
Wj(K ∩H)

.

From (5.3) and (5.4) we get

ω
j
n
n

|K| jn
6 max
H∈Gn,n−k

Wj(K ∩H)

|K ∩H|
,

and the theorem follows from (5.2).

Remark 5.4. In the particular case of surface area, we have the bounds

S(K)

|K|
6

n

n− 1
t(K) max

ξ∈Sn−1

S(K ∩ ξ⊥)

|K ∩ ξ⊥|
,

and more generally,
S(K)

|K|
6

n

n− k
t(K) max

H∈Gn,n−k

S(K ∩H)

|K ∩H|
for every 1 6 k 6 n− 1.

6 Bounds for the parameters p(K) and q(K)

In this section we discuss two parameters relating volume and surface area of a convex body. Recall that if
r(K) is the radius of the largest Euclidean ball inscribed in K then x0 + r(K)Bn2 ⊆ K for some x0 ∈ K, and
hence we get

r(K)S(K) = nV (K, . . . ,K, x0 + r(K)Bn2 ) 6 nV (K, . . . ,K,K) = n|K|.
by the monotonicity and translation invariance of mixed volumes. On the other hand, if R(K) = max{hK(ξ) :
ξ ∈ Sn−1} is the radius of K then the formula

n|K| =
∫
Sn−1

hK(ξ)dσK(ξ)
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where σK is the surface area measure of K, implies that

n|K| 6 R(K)σK(Sn−1) = R(K)S(K).

Starting from the observation we did in the introduction that for an ellipsoid E in Rn we have the precise
formula

S(E) ≈ n |E|M(E)

where M(E) =
∫
Sn−1 ‖ξ‖Edσ(ξ), and the fact that r(K) 6 1

M(K) 6 w(K) 6 R(K), it is natural to introduce

the parameters

p(K) =
S(K)

|K|M(K)
and q(K) =

w(K)S(K)

|K|
.

Our aim is to provide optimal upper and lower bounds for p(K) and q(K), both in general and in the case
where K is in some of the classical positions.

Starting with p(K), we show in Theorem 6.1 and Theorem 6.3 below that there exist absolute constants
c1, c2 > 0 such that for every convex body K ∈ Rn we have c1

√
n 6 p(K) 6 c2n

3/2. Moreover, both
estimates give the optimal dependence on the dimension.

Theorem 6.1. Let K be a centered convex body in Rn. Then S(K) 6 cn3/2|K|M(K), where c is an absolute
constant. In fact, sup{p(K) : K a centered convex body in Rn} ≈ n3/2.

Proof. First we consider the centrally symmetric case. By the simple case k = 1 of the Rogers-Shephard
inequality we have that n|K| > |K ∩ 〈u〉| |Pu⊥K| = 2ρK(u) |Pu⊥K|, which may be written as

n

2
‖u‖K |K| > |Pu⊥K|.

Now we integrate over the sphere and using Cauchy’s surface area formula∫
Sn−1

|Pu⊥(K)| d(σθ) =
ωn−1
nωn

S(K)

we get
n

2
M(K)|K| > ωn−1

nωn
S(K) ≈ 1√

n
S(K).

For the general case we may use a different argument. Since r(K)S(K) 6 n|K|, it is enough to check that
r(K)M(K) > c/

√
n for some absolute constant c > 0. Indeed, passing to the polars, it suffices to prove that

diam(K) 6 c
√
nw(K).

To prove this, observe that K contains a segment I with length equal to diam(K). Since the value of the
mean width depends on whether K lives in a subspace of Rn or not, we compute the Gaussian mean-width
wG(K) :=

∫
Rn hK(x)dγn(x), where γn is the standard Gaussian measure on Rn, which does not depend on

it. Integration in polar coordinates shows that

√
nw(K) ≈ wG(K) > wG(I) ≈ diam(K).

To see why this upper bound is sharp, consider the family of polyhedra

Ps =

{
x ∈ Rn : |x1|+

1

s

n∑
2

|xi| 6 1

}
,

where s > 0. The distance from the origin to each facet of Ps is equal to

r(Ps) =
1√

1 + n−1
s2

.
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Note also that |Ps| = 1
nS(Ps)r(Ps). On the other hand,

M(Ps) =

∫
Sn−1

(
|θ1|+

1

s

n∑
2

|θi|
)
dσ(θ) ≈ 1√

n

(
1 +

n− 1

s

)
.

Therefore,

p(Ps) =
S(Ps)

|Ps|M(Ps)
=

n

r(Ps)M(Ps)
≈
n3/2

√
1 + n−1

s2

1 + n−1
s

.

Since

lim
s→∞

√
1 + n−1

s2

1 + n−1
s

= 1,

the result follows.

Theorem 6.2. Let K be a convex body in Rn and let r(K) denote the radius of the largest Euclidean ball

inscribed in K. Then, S(K) > |K|
r(K) . In fact, inf

{
S(K)r(K)
|K| : K a convex body in Rn

}
= 1.

Proof. The first inequality is a consequence of the following Bonnesen-type inequality that can be found in
[33]:

S(K) >
|K|
r(K)

+ (n− 1)ωnr(K)n−1.

To check the second assertion of the theorem, consider the family of parallelepipeds

Pa,s = {x : |x1| 6 s, |xi| 6 a for i > 2}

where 0 < s < a. Then, r(Pa,s) = s, |Pa,s| = 2nsan−1 and S(Pa,s) = 2nan−1 + 2n(n − 1)san−2. Letting
a→∞ gives

lim
a→∞

S(Pa,s)r(Pa,s)

|Pa,s|
= lim
a→∞

2ns(an−1 + (n− 1)an−2s)

2nsan−1
= 1,

and the result follows.

Theorem 6.3. Let K be a centrally symmetric convex body in Rn. Then

S(K) >
√
n|K|M(K).

In fact, inf{p(K) : K a centered convex body in Rn} ≈
√
n.

Proof. From the Rogers-Shephard inequality we have that

|K| 6 |K ∩ 〈u〉||Pu⊥K| =
2

‖u‖K
|Pu⊥K|,

which gives that
‖u‖K

2
|K| 6 |Pu⊥K|.

Now we integrate over the sphere to get

1

2
M(K)|K| 6 ωn−1

nωn
S(K) ≈ 1√

n
S(K).
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This bound cannot be improved in general. To see this, first recall that for every symmetric convex body D
in Rn we have 1

r(D) 6 c
√
nM(D). Then, observe that for the parallelepipeds Pa,s in the proof of Theorem 6.2

we have that

p(Pa,s) =
S(Pa,s)

|Pa,s|M(Pa,s)
6 c
√
n
S(Pa,s)r(Ps)

|Pa,s|
and hence

inf{p(K) : K a centered convex body in Rn} 6 lim
a→∞

p(Pa,s) 6 c
√
n lim
a→∞

S(Pa,s)r(Ps)

|Pa,s|
= c
√
n,

which completes the proof.

Assume that K is in John’s position; this means that the Euclidean unit ball Bn2 is the ellipsoid of
maximal volume which is inscribed in K. In this case, one can get a better estimate for p(K), which is
actually sharp as one can check from the example of the cube Qn = [−1, 1]n; note that S(Qn) = 2n · 2n−1
and M(Qn) ≈

√
log n/

√
n, therefore

p(Qn) =
n

M(Qn)
≈ n3/2√

log n
.

Theorem 6.4. Let K be a convex body in Rn which is in John’s position. Then,

S(K) 6 c
n3/2√
log n

|K|M(K),

where c is an absolute constant.

Proof. Since Bn2 ⊆ K we have S(K) = nV (K, . . . ,K,Bn2 ) 6 n|K|. Schmuckenschläger has proved in [38]
(see also [2] for the dual result) that M(K) > M(∆n), where ∆n is a regular simplex in John’s position.
Moreover,

M(∆n) > c

√
log n√
n

,

and the result follows.

The next result provides some bounds for p(K) when K is in the minimal surface position.

Theorem 6.5. Let K ⊆ Rn be a centrally symmetric convex body in minimal surface area position. Then,

S(K) 6
n

M(Bn∞)
|K|M(K).

Proof. Let us assume that K is a centrally symmetric polytope in minimal surface area position, with facets
{Fj}mj=1 and outer normal vectors {uj}mj=1 Then,

K = {x ∈ Rn : |〈x, uj〉| 6 hK(uj), 1 6 j 6 m}

and

In =

m∑
j=1

n|Fj |
S(K)

uj ⊗ uj =

m∑
j=1

cjuj ⊗ uj ,

where cj =
n|Fj |
S(K) for every 1 6 j 6 m (see [1, Chapter 2]).
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Let t > 0. Using the Brascamp-Lieb inequality (see [1, Chapter 2]) we get

γn(tK) =

∫
Rn

m∏
j=1

χ[−thK(uj),thK(uj)](〈x, uj〉)
e−

∑m
j=1

cj〈x,uj〉
2

2

(2π)n/2
dx

6
m∏
j=1

(∫ thK(uj)

−thK(uj)

e−
s2

2

√
2π

ds

)cj
=

m∏
j=1

γ1 ([−thK(uj), thK(uj)])
cj .

Since the 1-dimensional Gaussian measure is log-concave, we have that

m∏
j=1

γ1 ([−thK(uj), thK(uj)])
cj 6 γ1

(( m∑
j=1

tcjhK(uj)

n

)
[−e1, e1]

)n
= γn

(
tn
|K|
S(K)

Bn∞

)
.

Therefore, for any t > 0 we have that

γn(tK) 6 γn

(
tn
|K|
S(K)

Bn∞

)
,

and since M(K) is a multiple of the integral
∫∞
0

(1− γn(tK))dt this implies that

M(K) >
1

n

S(K)

|K|
M(Bn∞),

which is the assertion of the theorem.

Our last result relates p(K) with the average section parameter as(K), defined by

as(K) =

∫
Sn−1

|K ∩ ξ⊥| dσ(ξ).

Theorem 6.6. Let K be a convex body in Rn. Then, S(K) > nωn
ωn−1

as(K). The estimate is sharp when

K = Bn2 .

Proof. We write S(K) = nW1(K) = nV (K, . . . ,K,Bn2 ) and

as(K) = ωn−1

∫
Sn−1

ρn−1K (ξ) dσ(ξ) =
ωn−1
ωn

Ṽ (K, . . . ,K,Bn2 ).

Therefore, the inequality S(K) > nωn
ωn−1

as(K) is equivalent to

V (K, . . . ,K,Bn2 ) > Ṽ (K, . . . ,K,Bn2 ),

which is true by Corollary 1.3 in [30].

Since in the isotropic position we have that |K ∩ u⊥| ≈ 1
LK

, and we also know that M(K) 6 c
nεLK

for
some ε > 0 (the currently best known estimate is with ε = 1/10, due to Giannopoulos and E. Milman, see
[14]) we get

Corollary 6.7. Let K be an isotropic convex body in Rn. Then,

S(K) >
c
√
n

LK
> n1/2+ε|K|M(K),

where ε > 1
10 . Therefore, p(K) > cn1/2+ε.
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Note. The only general lower bound that we know for as(K) is as(K) > c
√
n |K|R(K) , from [5].

The situation is different with the parameter q(K). Regarding the lower bound, if we combine the

isoperimetric inequality S(K) > nω
1/n
n |K|n−1

n with Urysohn’s inequality w(K) > vrad(K), we readily see
that

w(K)S(K) >
|K| 1n

ω
1/n
n

nω1/n
n |K|

n−1
n = n|K|.

Therefore, q(K) > n for every convex body K in Rn with equality if K = Bn2 is the Euclidean unit ball.
However, we observe that for any fixed dimension n > 2 there is no upper bound for q(K).

Theorem 6.8. For any n > 2 one has that q(K) > n and

sup{q(K) : K is a centrally symmetric convex body in Rn} = +∞.

Proof. We have explained the first assertion and for the second one we consider, again, the class of ellipsoids.
Let E be an ellipsoid in Rn with semi-axes a1 6 a2 6 · · · 6 an in the directions of e1, . . . , en. We may assume
that

∏n
i=1 ai = 1. Recall that S(E) ≈ n|E|M(E), and hence

q(E) =
w(E)S(E)

|E|
≈ nw(E)M(E).

Now,

M(E) =

∫
Sn−1

( n∑
i=1

ξ2i
a2i

)1/2
dσ(ξ)

and

w(E) = M(E◦) =

∫
Sn−1

( n∑
i=1

ξ2i a
2
i

)1/2
dσ(ξ).

It follows that

q(E) > cn

∫
Sn−1

|ξ1|
a1

dσ(ξ) ·
∫
Sn−1

|ξn|andσ(ξ) ≈ an
a1
.

It is clear that if we choose a1 = · · · = an−1 = a < 1 and an = 1/an−1 then
∏n
i=1 ai = 1 and q(E) > c/an →∞

as a→ 0+, which proves our claim.

7 Isomorphic Busemann-Petty problem for the surface area

Busemann-Petty type problems for surface area are closely related to the questions we address in this
article. A first question that may be asked is if an origin-symmetric convex body is uniquely determined
by the surface area of its hyperplane central sections; it is well-known (see [37]) that origin-symmetric star
bodies are uniquely determined by the volume of their central sections. In its simplest form, when n = 3,
this question is asked by Gardner in his book [13]: If K and L are two origin-symmetric convex bodies in R3

such that the sections K ∩ ξ⊥ and L ∩ ξ⊥ have equal perimeters for all ξ ∈ S2 is it then true that K = L?
To the best of our knowledge, the problem is open in full generality. An affirmative answer is given in [18]
for the class of C1 star bodies of revolution, and an infinitesimal version of the problem is settled in [36]
where it is shown that the answer is affirmative if one of the bodies is the Euclidean ball and the other is its
one parameter analytic deformation. Yaskin has proved in [40] that the answer is affirmative for the class
of origin-symmetric convex polytopes in Rn, where in dimensions n > 4 the perimeter is replaced by the
surface area of the sections.

The analogue of the Busemann-Petty problem for surface area was studied by Koldobsky and König in
[29]: If K and D are two convex bodies in Rn such that S(K ∩ ξ⊥) 6 S(D ∩ ξ⊥) for all ξ ∈ Sn−1 does it
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then follow that S(K) 6 S(D)? Answering a question of Pe lczynski, they prove that the central (n − 1)-
dimensional section of the cube Bn∞ = [−1, 1]n that has maximal surface area is the one that corresponds to
the unit vector ξ0 = 1√

2
(1, 1, 0, . . . , 0) (exactly as in the case of volume) i.e.

max
ξ∈Sn−1

S(Bn∞ ∩ ξ⊥) = S(Bn∞ ∩ ξ⊥0 ) = 2((n− 2)
√

2 + 1).

Comparing with a ball of suitable radius one gets that the answer to the Busemann-Petty problem for surface
area is negative in dimensions n > 14. It is natural to ask whether an isomorphic version of the problem has
an affirmative answer. This corresponds to finding a constant βn (possibly independent from the dimension
n) such that if K and D are two convex bodies in Rn with S(K ∩ ξ⊥) 6 S(D ∩ ξ⊥) for all ξ ∈ Sn−1 then
S(K) 6 βnS(D).

Starting from the equivalence of the isomorphic Busemann–Petty problem with the slicing problem, one
may think of the corresponding connection if we consider surface area in place of volume. Suppose that there
is a constant γn such that if K and D are centrally symmetric convex bodies in Rn that satisfy

S(K ∩ ξ⊥) 6 S(D ∩ ξ⊥),

for all ξ ∈ Sn−1, then S(K) 6 γnS(D). Now, let K be a convex body in Rn and choose ξ0 ∈ Sn−1 such that

S(K ∩ ξ⊥0 ) = max
ξ∈Sn−1

S(K ∩ ξ⊥)

and r > 0 such that rn−2S(Bn−12 ) = S(rBn−12 ) = S(K ∩ ξ⊥0 ). Then,

S(K ∩ ξ⊥) 6 S(rBn2 ∩ ξ⊥),

for all ξ ∈ Sn−1. Therefore,

S(K)
n−2
n−1 6 γ

n−2
n−1
n S(rBn2 )

n−2
n−1 = γ

n−2
n−1
n

S(Bn2 )
n−2
n−1

S(Bn−12 )
max
ξ∈Sn−1

S(K ∩ ξ⊥).

This implies that there is some constant c(n) such that

(7.1) S(K) 6 c(n)S(K)
1

n−1 max
ξ∈Sn−1

S(K ∩ ξ⊥).

The validity of (7.1) is a new question, which is of course related to the question that we discuss in this
article.

We start with an estimate for ellipsoids.

Proposition 7.1. Let E be an origin symmetric ellipsoid in Rn. Then,

S(E)

max
ξ∈Sn−1

S(E ∩ ξ⊥)
6 Dnr(E)−

1
n−1

where Dn > 0 is bounded by an absolute constant.

Proof. We may assume that |E| = 1. Let a1 6 · · · 6 an be the lengths of its principal semi-axes of E in the
directions of e1, . . . , en. We have seen that

max
ξ
S(E ∩ ξ⊥) = S(E ∩ e⊥1 ) = (n− 1) |E ∩ e⊥1 |

∫
Sn−2

( n∑
i=2

ξ2i
a2i

)1/2
dσ(ξ).
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Then,

S(E)

max
ξ∈Sn−1

S(E ∩ ξ⊥)
= Cna1

E
[(∑n

i=1
g2i
a2i

)1/2]
E
[(∑n

i=2
g2i
a2i

)1/2] ,
where Cn is bounded by an absolute constant.

Since

E
[(∑n

i=1
g2i
a2i

)1/2]
E
[(∑n

i=2
g2i
a2i

)1/2] 6 c

E
(∑n

i=1
g2i
a2i

)
E
(∑n

i=2
g2i
a2i

)
1/2

= c

(∑n
i=1

1
a2i∑n

i=2
1
a2i

)1/2

,

we have that

S(E)

max
ξ∈Sn−1

S(E ∩ ξ⊥)
6 Cna1

(∑n
i=1

1
a2i∑n

i=2
1
a2i

)1/2

= Cn

1 +
1∑n
i=2

a21
a2i

1/2

.

Using the arithmetic-geometric mean inequality we get

n∑
i=2

a21
a2i

> (n− 1)a21

(
1

a22 . . . a
2
n

) 1
n−1

= (n− 1)a21a
2

n−1

1 = (n− 1)a
2n
n−1

1 .

Moreover, 1 6 1

a
2n
n−1
1

and adding these two inequalities we get

1 +
1∑n
i=2

a21
a2i

1/2

6

 1

a
2n
n−1

1

+
1

(n− 1)a
2n
n−1

1

 1
2

,

therefore
S(E)

max
ξ∈Sn−1

S(E ∩ ξ⊥)
6 Dn

1

a
1

n−1

1

= Dn
1

r(E)
1

n−1

,

where Dn is bounded by an absolute constant.

Remark 7.2. The example of an ellipsoid F with a2 = . . . = an = r and a1 = 1
rn−1 gives that

S(F)

maxξ∈Sn−1 S(F ∩ ξ⊥)
> En

1

r(F)
1

n−1

,

therefore the inequality of Proposition 7.1 is sharp.

From Theorem 6.2 we know that 1
r(K) 6 S(K) for every convex body K of volume 1 in Rn. Combining

this fact with Proposition 7.1 we immediately get the next theorem which confirms (7.1) for the class of
ellipsoids.

Theorem 7.3. Let E be an origin symmetric ellipsoid in Rn. Then,

S(E) 6 AnS(E)
1

n−1 max
ξ∈Sn−1

S(E ∩ ξ⊥)

where An > 0 is bounded by an absolute constant.
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Using John’s theorem and the monotonicity of surface area one can easily deduce that a similar estimate
holds true in full generality: For any convex body K in Rn one has

S(K) 6 A′nS(K)
1

n−1 max
ξ∈Sn−1

S(K ∩ ξ⊥)

where A′n > 0 is a constant depending only on n. It is an interesting question to determine the best possible
behavior of the constant A′n with respect to the dimension n.
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