
On the mean value of the area of arandom polygon in a plane onvex bodyA. GiannopoulosAbstratLet K be a onvex body in R2 with area A(K) = 1. For every n � 3we onsider the expeted value m(K;n) of the area of the onvex hull of npoints hosen uniformly from K:m(K;n) = Zy12K : : : Zyn2K A(ofy1; : : : ; yng) dyn : : : dy1:We prove that for every n � 3, m(K;n) is maximized (over all bodies of area1) if and only if K is a triangle.1 IntrodutionLet K be a onvex body in Eulidean spae Rd ; d � 2, with volume V (K) = 1,and n � d + 1 be a natural number. We selet n independent random pointsy1; y2; : : : ; yn from K (we assume they all have the uniform distribution in K).Their onvex hull ofy1; y2; : : : ; yng is a random polytope in K with at most nverties. Consider the expeted value of the volume of this polytope(1) m(K;n) = Zy12K : : : Zyn2K V (ofy1; : : : ; yng)dyn : : : dy1:It is easy to see that if U : Rd ! Rd is a volume preserving aÆne transformation,then for every onvex body K with V (K) = 1; m(K;n) = m(U(K); n).It is also well known (see John [7℄), that there exists a onstant C(d), dependingonly on the dimension d of the spae, suh that if K is a onvex body in Rdwith V (K) = 1, then there is a volume preserving aÆne transformation U withU(K) � B(o; C(d)), the ball with enter at the origin o and radius C(d).From the ompatness of the spae of ompat onvex subsets of B(o; C(d))with the Hausdor� metri and the fat that the funtional m : K ! m(K;n) isontinuous in this metri (see Groemer [3℄), it follows that there exist K1;K2 with1



V (K1) = V (K2) = 1 and m(K1; n) � m(K;n) � m(K2; n);for every onvex body K in Rd with V (K) = 1.The problem is to �nd those K whih minimize or maximize this mean valuem(K;n), if d � 2; n � d+ 1 are given.Blashke [1, 2℄ has proved that if d = 2; n = 3,3548�2 � m(K;n) � 112 ;and we have equality on the left hand side only when K is an ellipse, while on theright hand side we have equality only when K is a triangle.Groemer [3, 4℄ solved the problem of minimizing m(K;n) by showing that: \ifd � 2; n � d+1, then m(K;n) attains its minimum value when, and only when, Kis an ellipsoid".In the opposite diretion, Dalla and Larman [5℄ showed that for d = 2, and forevery n � 3; m(K;n) � m(T; n) for every plane onvex body with area A(K) = 1,where T is a triangle with A(T ) = 1. They also showed that the inequality is stritif K is a polygon with more than three verties.We shall omplete this last result, by proving in a di�erent way that the in-equality is strit whenever K is a plane onvex body whih is not a triangle. Thatis, we prove the following.Theorem. Let K be a plane onvex body with area A(K) = 1. Then, if T is atriangle with A(T ) = 1, and n � 3,m(K;n) < m(T; n);unless K too is a triangle, in whih ase equality learly holds.Let us say a few words about the proof. If K is any plane onvex body and Gis any line in the plane, we write L = PG(K) for the orthogonal projetion of Konto G. We may assumee that G is the x-axis of the plane and, taking a line G0parallel to G if needed, that K is ontained in the positive halfplane. So,(2) K = fy = (x; t) : a � x � b; f(x) � t � g(x)g;where f is onvex, g is onave, and 0 � f � g on L = [a; b℄.Consider the transformation SG : K ! KG, whereKG = fy = (x; t) : a � x � b; 0 � t � g(x)� f(x)g:It is lear that KG is a plane onvex body and easy to see that A(KG) = A(K)(SG is known as the Sh�uttelung operation).In Setion 2 we prove that the mean value m(K;n) inreases under the trans-formation SG. More preisely we have 2



Proposition 1. For every line G in the plane, and every plane onvex body K, ifn � 3 then(3) m(K;n) � m(KG; n):In Setion 3 we answer the question of strit inequality in (3). The key step isthe following.Proposition 2. If K is not a triangle, then there exists a line G in the plane suhthat for every n � 3(4) m(K;n) < m(KG; n):Proposition 2 and our remarks on the existene of a \maximizing"K imply ourTheorem.2 The mean valuem(K;n) inreases under the trans-formation SGIn what follows, we assume that K is in the form (2). If x 2 [a; b℄ we denote by Hxthe line whih is perpendiular to G and passes through x. Then, (1) beomesm(K;n) = Zy1=(x1;t1)2K : : : Zyn=(xn;tn)2K A(of(x1; t1); : : : ; (xn; tn)g)dyn : : : dy1= Z ba : : : Z ba "Zt12Hx1\K : : : Ztn2Hxn\K A(of(xi; ti); i � ng)dtn : : : dt1# dxn : : : dx1:If x1 < x2 < : : : < xn, we de�neM(x1; : : : ; xn) = Zt12Hx1\K : : : Ztn2Hxn\K A(of(x1; t1); : : : ; (xn; tn)g)dtn : : : dt1:Sine the set of f(x1; t1); : : : ; (xn; tn)g for whih xi = xj for some i 6= j is of measurezero in Kn, in order to prove Proposition 1 it suÆes to prove that(5) M(x1; : : : ; xn) �MG(x1; : : : ; xn);where,MG(x1; : : : ; xn) = Zt12Hx1\KG : : :Ztn2Hxn\KG A(of(x1; t1); : : : ; (xn; tn)g)dtn : : : dt1:3



Let li = p0i = (g(xi)� f(xi))=2 (half of the length of Hxi \K or Hxi \KG) andpi = (g(xi) + f(xi))=2; i = 1; 2; : : : ; n. Then,M(x1; : : : ; xn) = Zjt1�p1j�l1 : : : Zjtn�pnj�ln A(of(x1; t1); : : : ; (xn; tn)g)dtn : : : dt1= Zjz1j�l1 : : :Zjznj�ln A(of(x1; p1 + z1); : : : ; (xn; pn + zn)g)dzn : : : dz1= Zjz1j�l1 : : :Zjznj�ln A(of(x1; p1 � z1); : : : ; (xn; pn � zn)g)dzn : : : dz1= 12 Zjz1j�l1 : : : Zjznj�ln [A(of(xi; pi + zi)g) +A(of(xi; pi � zi)g)℄dzn : : : dz1:In exatly the same way, we getMG(x1; : : : ; xn) = 12 Zjz1j�l1 : : : Zjznj�ln [A(of(xi; p0i + zi)g) +A(of(xi; p0i � zi)g)℄:So, (5) will be true if for every z1; : : : ; zn with jzij � li, the following inequalityholds:(6) A(of(xi; pi + zi)g) +A(of(xi; pi � zi)g)� A(of(xi; p0i + zi)g) +A(of(xi; p0i � zi)g):After these preliminary remarks, we pass to theProof of Proposition 1. Let jzij � li; i = 1; : : : ; n. Then, we an �nd �i 2[0; 1℄; i = 1; : : : ; n and �i = 1� �i suh thatpi + zi = �if(xi) + �ig(xi):It is easy to see that pi � zi = �if(xi) + �ig(xi);p0i + zi = �ig(xi)� �if(xi);p0i � zi = �ig(xi)� �if(xi):For the proof of Proposition 1 it suÆes to show that(7) A(R) +A(Q) � A(R0) + A(Q0);where R = of(xi; �if(xi) + �ig(xi))g;Q = of(xi; �if(xi) + �ig(xi))g;R0 = of(xi; �ig(xi)� �if(xi))g;4



Q0 = of(xi; �ig(xi)� �if(xi))g:In general, if X = of(xi; ti); i = 1; : : : ; ng we shall say that:(i) (xi; ti) is an upper vertex of X , ifj < i < k ) ti > xk � xixk � xj tj + xi � xjxk � xj tk;(ii) (xi; ti) is a lower vertex of X , ifj < i < k ) ti < xk � xixk � xj tj + xi � xjxk � xj tk:With this de�nition, (x1; t1) and (xn; tn) are both upper and lower verties of X .If I � f1; 2; : : : ; ng is of the form I = fi0 = 1 < i1 < : : : < ik�1 < ik = ng, wede�ne EX (I) = 12 kXs=1(xis � xis�1)(tis�1 + tis);the area between the x-axis and the broken line with verties (xi; ti); i 2 I . In thisnotation, if I is the index set of the upper verties of X and J is the index set ofthe lower verties of X , we note thatA(X) = EX (I)�EX(J):Finally, for any funtion h : [a; b℄! R and I = fi0 = 1 < i1 < : : : < ik�1 < ik = ng,we write Eh(I) = 12 kXs=1(xis � xis�1)(h(xis�1 ) + h(xis)):Lemma 1. Let I; J and K;L be the index sets of the upper and lower verties ofR and Q respetively, and I 0; J 0 and K 0; L0 be the index sets of the upper and lowerverties of R0 and Q0 respetively. Then,(�) I [ L � I 0 ; K [ J � K 0,(�) I \ L � L0 ; K \ J � J 0.Proof: If i 2 I and � < i < �; �; � 2 f1; 2; : : : ; ng, we have�if(xi) + �ig(xi) > x� � xix� � x� (��f(x�) + ��g(x�)) + xi � x�x� � x� (��f(x�) + ��g(x�))and �f(xi) � x� � xix� � x� (�f(x�)) + xi � x�x� � x� (�f(x�)):5



So,�ig(xi)� �if(xi) > x� � xix� � x� (��g(x�)� ��f(x�)) + xi � x�x� � x� (��g(x�)� ��f(x�)):Thus i 2 I 0 and hene I � I 0. It is equally easy to see that(8) I � I 0; K � K 0; L � L0; J � J 0:Next, we de�ne the setsR00 = of(xi; �if(xi) + �ig(xi)� g(xi))g = of(xi; �if(xi)� �ig(xi))g = �Q0andQ00 = of(xi; �if(xi) + �ig(xi)� g(xi))g = of(xi; �if(xi)� �ig(xi))g = �R0:If I 00; J 00 and K 00; L00 are the index sets of the upper and lower verties of R00 andQ00 respetively, it is lear that(9) I 00 = L0; J 00 = K 0; K 00 = J 0; L00 = I 0:But, just as in the proof of (8), one an see that(10) J � J 00; L � L00; K � K 00; I � I 00:For example, if j 2 J and � < j < �; �; � 2 f1; 2; : : : ; ng we have�jf(xj) + �jg(xj) < x� � xjx� � x� (��f(x�) + ��g(x�)) + xj � x�x� � x� (��f(x�) + ��g(x�))and �g(xj) � x� � xjx� � x� (�g(x�)) + xj � x�x� � x� (�g(x�)):So,�jf(xj)� �jg(xj) < x� � xjx� � x� (��f(x�)� ��g(x�)) + xj � x�x� � x� (��f(x�)� ��g(x�)):That is, j 2 J 00 and J � J 00. Inlusions (8), (9) and (10) imply our Lemma 1. 2We ontinue with the proof of (7), namelyA(R) +A(Q) � A(R0) + A(Q0);or, equivalently,ER(I)� ER(J) +EQ(K)�EQ(L) � ER0(I 0)�ER0(J 0) +EQ0(K 0)�EQ0(L0):6



It suÆes to show that(11) ER(I)�EQ(L) � ER0(I 0)�EQ0 (L0);(12) EQ(K)�ER(J) � EQ0(K 0)�ER0(J 0);and this is aomplished in the followingLemma 2. If I; J;K;L and I 0; J 0;K 0; L0 are as in Lemma 1, then inequalities (11)and (12) hold.Proof: Both inequalities are proved in the same way, so we restrit ourselves to theproof of ER(I) +EQ0(L0) � ER0(I 0) +EQ(L):Sine I [ L is a subset of I 0 and the points (xi0 ; �i0g(xi0)� �i0f(xi0)); i0 2 I 0 are ina onave position (they are the upper verties of R0), we haveER0(I 0) � ER0(I [ L):So it is enough to prove(13) ER(I) +EQ0(L0) � ER0(I [ L) +EQ(L):The four regions in (13) are bounded by the segment [x1; xn℄ on the x-axis, thelines x = x1; x = xn, and the four broken lines i : [x1; xn℄! R; i = 1; 2; 3; 4, with1 having verties at the points (xi; �if(xi) + �ig(xi)); i 2 I ,2 having verties at the points (xi; �ig(xi)� �if(xi)); i 2 L0,3 having verties at the points (xi; �ig(xi)� �if(xi)); i 2 I [ L,4 having verties at the points (xi; �ig(xi) + �if(xi)); i 2 L.Also, from Lemma 1, L0 � I \ L (� I [ L). If ks; ks+1 are onseutive indiesfrom I [ L, all four i are linear on [xks ; xks+1 ℄. It follows that (13) will be true iffor every k 2 I [ L,(14) 1(xk) + 2(xk) � 3(xk) + 4(xk):Let L0 = f�0 = 1 < �1 < : : : < �� = ng. If �s < �s+1 are two onseutive indiesfrom L0, we shall verify (14) for every k 2 I [ L with �s � k � �s+1.We distinguish four ases:(�) k = �s or k = �s+1. Then k 2 I; k 2 L0; k 2 I [ L and k 2 L; so,1(xk) + 2(xk) = �kf(xk) + �kg(xk) + �kg(xk)� �kf(xk) = g(xk)= �kg(xk)� �kf(xk) + �kg(xk) + �kf(xk)= 3(xk) + 4(xk):7



(�) k 2 I \ LnL0. Then k 2 I; k 2 L; k 2 I [ L; so,2(xk) = x�s+1 � xkx�s+1 � x�s (��sg(x�s)� ��sf(x�s))+ xk � x�sx�s+1 � x�s (��s+1g(x�s+1)� ��s+1f(x�s+1))and (14) beomes�kf(xk) + �kg(xk) + 2(xk) � �kg(xk)� �kf(xk) + �kg(xk) + �kf(xk)or, equivalently, 2(xk) � �kg(xk)� �kf(xk):The last inequality holds beause the points (x�s ; ��sg(x�s) ���sf(x�s)) and(x�s+1 ; ��s+1g(x�s+1) � ��s+1f(x�s+1)) are onseutive lower verties of Q0, �s < k < �s+1, andthe point (xk ; �kg(xk)� �kf(xk)) lies in Q0 but it is not a lower vertex of it.() k 2 InL. Then k 2 I; k 2 I [ L. Let l� < l�+1 be two onseutive indiesfrom L suh that �s � l� < k < l�+1 � �s+1. If A = x�s+1 � x�s ; B = xl� � x�s ,� = xk � xl� ; � = xl�+1 � xk, then2(xk) = A�B � �A (��sg(x�s)���sf(x�s))+B + �A (��s+1g(x�s+1)���s+1f(x�s+1));and4(xk) = ��+�(�l� g(xl� ) + �l� f(xl� )) + �� +�(�l�+1g(xl�+1) + �l�+1f(xl�+1));and (14) beomes�kf(xk) + �kg(xk) + 2(xk) � �kg(xk)� �kf(xk) + 4(xk);i.e,(15) 2(xk) � 4(xk)� f(xk):Sine f is a onvex funtion,f(xk) � ��+�f(xl� ) + �� +�f(xl�+1)so, in order to verify (15), we only need to hek that(16)2(xk) � ��+�(�l� g(xl� )� �l� f(xl� )) + �� +�(�l�+1g(xl�+1)� �l�+1f(xl�+1)):8



But as in ase (�),(17) �l� g(xl� )� �l� f(xl� ) � A�BA (��sg(x�s)� ��sf(x�s))+BA (��s+1g(x�s+1)� ��s+1f(x�s+1));and(18) �l�+1g(xl�+1)� �l�+1f(xl�+1) � A�B � ���A (��sg(x�s)� ��sf(x�s))+B + �+�A (��s+1g(x�s+1)� ��s+1f(x�s+1));with equality in (17), (18) if l� = �s or l�+1 = �s+1 respetively and strit inequalityotherwise. From (17), (18) we onlude that (16) holds.(Æ) k 2 LnI . Then k 2 L; k 2 I [ L. We �nd i� < i�+1 two onseutive indiesfrom I so that �s � i� < k < i�+1 � �s+1. Then we ompute 1(xk); 2(xk) andproeed as in ase (). 2By Lemma 2, inequality (7) is true. So, we have proved Proposition 1.3 If K is not a triangle, there is a line G suh thatm(K;n) stritly inreases under the transforma-tion SGLet K, KG be as in setion 1. We de�neR0 = Q0 = of(xi; pi)g = of(xi; f(xi) + g(xi)2 )g;with I0 the index set of its upper verties and J0 the index set of its lower verties,and R00 = Q00 = of(xi; p0i)g = of(xi; g(xi)� f(xi)2 )g;with I 00 the index set of its upper verties and J 00 the index set of its lower verties.In the next lemma we �nd neessary onditions for A(R0) = A(R00) to be true.Lemma 3. If A(R0) = A(R00), then we have (�) and (�) below.(�) The following onditions are all satis�ed.(i) (xj ; g(xj)); j 2 J0 are ollinear.(ii) (xi; f(xi)); i 2 I0 are ollinear. 9



(iii) If j 2 J0nI0 and ik < j < ik+1 where ik; ik+1 are two onseutive indiesfrom I0, then (xik ; g(xik )); (xj ; g(xj)) and (xik+1 ; g(xik+1)) are ollinear.(iv) If i 2 I0nJ0 and jk < i < jk+1 where jk; jk+1 are two onseutive indiesfrom J0, then (xjk ; f(xjk )); (xi; f(xi)) and (xjk+1 ; f(xjk+1)) are ollinear.(�) I 00 = I0 [ J0.Proof: (�) From Lemma 1, I0 [ J0 � I 00 (set �i = �i = 1=2; i = 1; : : : ; n). We alsohave J 00 = f1; ng beause the points (xi; p0i); i = 1; : : : ; n of R00 are in a onaveposition. Sine A(R0) = A(R00), we must haveER0(I0)�ER0(J0) = ER00(I 00)�ER00(J 00)or, equivalently,Ef (I0) +Eg(I0)�Ef (J0)�Eg(J0) = Eg(I 00)�Ef (I 00) +Ef (J 00)�Eg(J 00);i.e, [Eg(I 00)�Eg(I0)℄ + [Eg(J0)�Eg(J 00)℄ + [Ef (J 00)�Ef (I0)℄+[Ef (J0)�Ef (I 00)℄ = 0:Sine f is onvex, g is onave and I 00 � I0[J0; I0\J0 � J 00, the four summandsin the above equality are non-negative. It follows that(i)0 Eg(J0) = Eg(J 00);(ii)0 Ef (J 00) = Ef (I0);(iii)0Eg(I 00) = Eg(I0);(iv)0 Ef (J0) = Ef (I 00):From ondition (i)0, sine J 00 = f1; ng and g is onave, (xj ; g(xj)); j 2 J0 areollinear. From ondition (ii)0, sine J 00 = f1; ng and f is onvex, (xi; f(xi)); i 2 I0are ollinear. Condition (iii)0, sine I 00 � I0 and g is onave, implies that for anyj 2 J0nI0 the points (xik ; g(xik )); (xj ; g(xj)) and (xik+1 ; g(xik+1)), where ik; ik+1onseutive indies from I0 with ik < j < ik+1, are ollinear.Condition (iv)0, sine I 00 � J0 and f is onvex, implies that for any i 2 I0nJ0 thepoints (xjk ; f(xjk )); (xi; f(xi)) and (xjk+1 ; f(xjk+1)) where jk; jk+1 are onseutiveindies from J0 with jk < i < jk+1, are ollinear.(�) From Lemma 1, I 00 � I0 [ J0. If I0 [ J0 =W , and W 6= I 00, thenA(R000 ) < A(R00);where R000 = of(xi; p0i); i 2 Wg. Also, from inequality (7) (taking W instead off1; : : : ; ng), A(R0) � A(R000 ):This ontradits our hypothesis A(R0) = A(R00), and provesI 00 = I0 [ J0: 210



Proof of Proposition 2. LetK be a plane onvex body with more than three extremepoints and let A;B;C and D be four of them. Then A;B;C and D form a onvexquadrilateral ABCD in the plane. We hoose G to be the perpendiular to thediagonal AC of ABCD.We may assume that G is the x-axis andK = fy = (x; t) : a � x � b; f(x) � t � g(x)g;where:(i) PG(K) = [a; b℄;(ii) 0 � f � g, f is onvex, g is onave on [a; b℄;(iii) PG(A) = PG(C) = x and a < x < b; and(iv) A = (x; g(x)); C = (x; f(x)).Now, let SG : K ! KG, whereKG = fy = (x; t) : a � x � b; 0 � t � g(x)� f(x)g;and hoose a � x�1 < x�2 = x < x�3 < : : : < x�n � b (we an do this beausea < x < b).Set p�i = (f(x�i ) + g(x�i ))=2 and p�0i = (g(x�i )� f(x�i ))=2. We shall prove that(19) A(R�0) = A(of(x�i ; p�i )g) < A(of(x�i ; p�0i )g) = A(R�00 ):Suppose that equality holds. From Lemma 3(�), we must have I 00 = I0 [ J0. Itis easy to see that 2 2 I 00. Let k be the next index from I 00, that is, 1,2 and k arethe three �rst indies of I 00. Sine 1 2 I0 \ J0, we have to examine four ases:(i) f1; 2; kg � J0. Then, by (i) of Lemma 3(�), the three points (x�1; g(x�1)),(x; g(x)) = A and (x�k ; g(x�k)) are ollinear, whih is false beause A is an extremepoint of K.(ii) f1; 2; kg � I0. Then, by (ii) of Lemma 3(�), the three points (x�1; f(x�1)),(x; f(x)) = C and (x�k ; f(x�k)) are ollinear, whih is false beause C is an extremepoint of K.(iii) f1; 2g � J0 and f1; kg � I0. Then, by (iii) of Lemma 3(�), the three points(x�1; g(x�1)); (x; g(x)) = A and (x�k; g(x�k)) are ollinear, whih is false beause A isan extreme point of K.(iv) f1; 2g � I0 and f1; kg � J0. Then, by (iv) of Lemma 3(�), the three points(x�1; f(x�1)); (x; f(x)) = C and (x�k ; f(x�k)) are ollinear, whih is false beause C isan extreme point of K.So, (19) is true. But the integrands de�ning M(x�1; : : : ; x�n) are ontinuousfuntions of z1; : : : ; zn and satisfy for every jzij � li the inequality (see (6) above)11



A(of(x�i ; p�i + zi)g) +A(of(x�i ; p�i � zi)g)� A(of(x�i ; p�0i + zi)g) +A(of(x�i ; p�0i � zi)g):We proved that this inequality is strit for z1 = : : : = zn = 0, i.e,A(of(x�i ; p�i )g) < A(of(x�i ; p�0i )g);and this implies that M(x�1; : : : ; x�n) < MG(x�1; : : : ; x�n):But, for every a � x1 < : : : < xn � b we haveM(x1; : : : ; xn) �MG(x1; : : : ; xn):Sine M(x1; : : : ; xn) and MG(x1; : : : ; xn) are ontinuous funtions of x1; : : : ; xn,(20) implies that m(K;n) = Z ba : : : Z ba M(x1; : : : ; xn) dxn : : : dx1< Z ba : : : Z ba MG(x1; : : : ; xn) dxn : : : dx1 = m(KG; n);and the proof of Proposition 2 is omplete. 24 Remarks(i) The ase n = 3 is muh simpler. If we de�nee = (1; 1; 1); x = (x1; x2; x3); z = (z1; z2; z3);p = (p1; p2; p3); p0 = (p01; p02; p03);and D(z1; z2; z3) = D(z) = 12det(e;x; z), thenM(x1; x2; x3) = 12 Zjz1j�l1 : : : Zjz3j�l3 [jD(z + p)j+ jD(z� p)j℄dz3 : : : dz1= 12 Zjz1j�l1 : : : Zjz3j�l3 [jD(z) +D(p)j+ jD(z) �D(p)j℄dz3 : : : dz1= Zjz1j�l1 : : :Zjz3j�l3 max[jD(z)j; jD(p)j℄dz3 : : : dz112
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