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Abstract

We study three questions about independent random points uniformly
distributed in isotropic symmetric convex bodies K, T1, . . . , Ts: (a) Let ε ∈
(0, 1) and let x1, . . . , xN be chosen from K. Is it true that if N ≥ C(ε)n log n

then
∥

∥I −
1

NL2

K

N
∑

i=1

xi ⊗ xi

∥

∥ < ε

with probability greater than 1− ε? (b) Let xi be chosen from Ti. Is it true
that the unconditional norm

‖t‖ =

∫

T1

· · ·

∫

Ts

∥

∥

s
∑

i=1

tixi

∥

∥

K
dxs · · · dx1

is well-comparable to the Euclidean norm in R
s? (c) Let x1, . . . , xN be

chosen from K. Let E (K, N) := E |conv{x1, . . . , xN}|1/n be the expected
volume radius of their convex hull. Is it true that E (K, N) ≃ E (B(n), N)
for all N , where B(n) is the Euclidean ball of volume 1?

We prove that the answer to these questions is affirmative if we restrict
ourselves to the class of unconditional convex bodies. Our main tools come
from recent work of Bobkov and Nazarov. Some observations about the
general case are also included.

1 Introduction

In this article we study three problems about random points in isotropic convex
bodies. Recall that a convex body K in R

n is called isotropic if it has volume
|K| = 1, center of mass at the origin, and there is a constant LK > 0 such that

(1.1)

∫

K

〈x, θ〉2dx = L2
K

for every θ in the unit sphere Sn−1. It is not hard to see that for every convex
body K in R

n with center of mass at the origin, there exists S ∈ GL(n) such
that S(K) is isotropic. Moreover, this isotropic image is unique up to orthogonal
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transformations; consequently, one may define the isotropic constant LK as an
invariant of the linear class of K.

We consider the following questions about independent random points which
are uniformly distributed in convex bodies.

I Approximation of the identity operator. The isotropic condition (1.1) may
be equivalently written in the form

(1.2) I =
1

L2
K

∫

K

x ⊗ xdx,

where I is the identity operator. Let ε ∈ (0, 1) and consider N independent random
points x1, . . . , xN uniformly distributed in K. The question is to find N0, as small
as possible, for which the following holds true: if N ≥ N0 then with probability
greater than 1 − ε one has

(1.3) (1 − ε)L2
K ≤ 1

N

N
∑

i=1

〈xi, θ〉2 ≤ (1 + ε)L2
K

for every θ ∈ Sn−1. This question has its origin in the problem of finding a fast al-
gorithm for the computation of the volume of a given convex body. Kannan, Lovász
and Simonovits (see [20]) proved that one can take N0 = C(ε)n2 for some constant
C(ε) > 0 depending only on ε. This was later improved to N0 ≃ C(ε)n(log n)3

by Bourgain [10] and to N0 ≃ C(ε)n(log n)2 by Rudelson [26]. One can actually
check (see [15]) that this last estimate can be recovered if we incorporate a result
of Alesker [1] into Bourgain’s argument. It is quite probable that the best estimate
for N0 is C(ε)n log n. We prove this in the unconditional case, and we show the
connection of the general problem to some recent conjectures about the central
limit properties of isotropic convex bodies.

II A multi-integral norm. Let K and Ti (i = 1, . . . , s) be symmetric convex
bodies in R

n with |K| = |T1| = · · · = |Ts| = 1. The unconditional norm

(1.4) ‖t‖ =

∫

T1

· · ·
∫

Ts

∥

∥

∥

∥

s
∑

i=1

tixi

∥

∥

∥

∥

K

dxs · · · dx1

on R
s was studied in [11], where it was proved that, in the case s = n,

(1.5) ‖t‖ ≥ c
√

n

(

n
∏

i=1

|ti|
)1/n

for every t = (t1, . . . , tn) ∈ R
n. It was conjectured that if K = T1 = · · · = Ts

and if ‖ · ‖K satisfies some cotype condition, then ‖ · ‖ is equivalent to the ℓs
2

norm. Recently, Gluskin and Milman (see [18] and [19]) showed that the lower
bound holds true in full generality (the proof uses the rearrangement inequality
of Brascamp, Lieb and Luttinger [12]): There exists a sequence c(n) of positive
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reals with c(n) → 1/
√

2 such that: if K is a star body with 0 ∈ int(K) and if Ti

(i = 1, . . . , s) are measurable sets in R
n with |K| = |T1| = · · · = |Ts| = 1, then

(1.6) ‖t‖ :=

∫

T1

· · ·
∫

Ts

pK

(

s
∑

i=1

tixi

)

dxs · · · dx1 ≥ c(n)

(

s
∑

i=1

t2i

)1/2

for every t = (t1, . . . , ts) ∈ R
s, where pK is the Minkowski functional of K.

It should be noted that, in the case K = T1 = · · · = Ts, Theorem 1.4 from [11]
establishes a second lower bound for the norm (1.4), which involves LK . Therefore,
upper bounds for this norm may give upper bounds for the isotropic constant.

III Volume radius of a random polytope. Let K be a convex body in R
n

with volume 1. We fix N ≥ n + 1 and consider N independent random points
x1, . . . , xN uniformly distributed in K. Let conv(x1, . . . , xN ) be their convex hull.
The question is to estimate the expected volume radius

(1.7) E (K,N) =

∫

K

· · ·
∫

K

|conv(x1, . . . , xN )|1/ndxN · · · dx1

of this random polytope. Observe that E (K,N) is invariant under volume preserv-
ing affine transformations, so we may also assume that K has its center of mass
at the origin. When N = n + 1, this quantity is an exact function of the isotropic
constant of K. To see this, one can use the identity (see [21])

(1.8) L2n
K = n!S2

2(K),

where

(1.9) S2
2(K) :=

∫

K

. . .

∫

K

|conv(0, x1, . . . , xn)|2dxn . . . dx1.

Combining this fact with Khintchine type inequalities for linear functionals on
convex bodies (see [21]) one can show that

(1.10) E (K,n + 1) ≃ LK√
n

.

In [16] it was proved that for every isotropic convex body K in R
n and every

N ≥ n + 1,

(1.11) E (B(n), N) ≤ E (K,N) ≤ cLK
log(2N/n)√

n
,

where B(n) is a ball of volume 1. Moreover, it was shown that if N ≥ cn(log n)2

then E (B(n), N) ≥ c(log(N/n)/n)1/2. A strong conjecture is that

(1.12) E (K,N) ≃ min

{

√

log(2N/n)√
n

, 1

}
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for every convex body K of volume 1 in R
n and every N ≥ n + 1. We prove this in

the unconditional case, and we show the connection of the general problem to the
“ψ2-behaviour” of linear functionals on isotropic convex bodies.

IV Results. Consider the class of symmetric convex bodies which generate a norm
with unconditional basis. After a linear transformation, we may assume that the
standard orthonormal basis {e1, . . . , en} of R

n is an unconditional basis for ‖ · ‖K .
That is, for every choice of real numbers t1, . . . , tn and every choice of signs εi = ±1,

(1.13)
∥

∥ε1t1e1 + · · · + εntnen

∥

∥

K
=

∥

∥t1e1 + · · · + tnen

∥

∥

K
.

We will prove the following three facts:

Theorem A Let ε ∈ (0, 1) and let ρ > 2. Assume that n ≥ n0(ρ) and let K be

an isotropic unconditional convex body in R
n. If N ≥ cε−ρn log n, where c > 0 is

an absolute constant, and if x1, . . . , xN are independent random points uniformly

distributed in K, then with probability greater than 1 − ε we have

(1.14) (1 − ε)L2
K ≤ 1

N

N
∑

i=1

〈xi, θ〉2 ≤ (1 + ε)L2
K ,

for every θ ∈ Sn−1.

The proof of Theorem A is based on the following observation: if K is an
isotropic unconditional convex body in R

n and if N is polynomial in n, then
E maxi≤N ‖xi‖2q

2 ≤ (cn)q for large values of q. This follows from a strong dimension-
dependent concentration estimate of Bobkov and Nazarov (Theorem 2.2) and sug-
gests that the general problem is related to some recent conjectures about the
central limit properties of isotropic convex bodies. In Section 3 we provide some
evidence for a general affirmative answer. Let the parameter σK be defined by
σ2

K = Var(‖x‖2
2)/(nL4

K). Then, the following statement holds true: Let ρ > 2
and ε ∈ (0, 1), and assume that n ≥ n0(ρ). For every isotropic convex body K in
R

n and every N ≥ cε−ρ(σK + 1)2n log n, where c > 0 is an absolute constant, if
x1, . . . , xN are independent random points uniformly distributed in K, then with
probability greater than 1 − ε we have (1.14) for every θ ∈ Sn−1. It is conjectured
(see [7]) that there exists an absolute constant C > 0 such that σ2

K ≤ C for every
isotropic convex body K. If this is true then, for every K, we have ε-approximation
of the identity operator with N ≃ C(ε)n log n.

Theorem B There exists an absolute constant C > 0 with the following property:

if K and Ti (i = 1, . . . , s) are isotropic convex bodies in R
n which satisfy (1.13),

then

(1.15)

‖t‖ :=

∫

T1

· · ·
∫

Ts

∥

∥

s
∑

i=1

tixi

∥

∥

K
dxs · · · dx1 ≤ C

√

log nmax
{

‖t‖2,
√

log n‖t‖∞
}

for every t = (t1, . . . , ts) ∈ R
s.
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The proof of Theorem B is based on a comparison theorem of Bobkov and
Nazarov (Theorem 2.4) which asserts that the integral of a symmetric and coordi-
natewise increasing absolutely continuous function over an isotropic unconditional
convex body K in R

n is (roughly speaking) maximal when K is the normalized
ℓn
1–ball. The estimate on the right hand side of (1.15) is sharp: we give examples

showing that the terms
√

log n‖ · ‖2 and log n‖ · ‖∞ are both needed. The situation
is less clear in the very interesting special case K = T1 = · · · = Ts.

Theorem C Let K be an unconditional convex body of volume 1 in R
n. If n+1 ≤

N ≤ exp(cn), then

(1.16) c1

√

log(2N/n)√
n

≤ E (K,N) ≤ c2

√

log(2N/n)√
n

where c, c1, c2 > 0 are absolute constants.

For the proof of the upper bound in Theorem C we follow the general argu-
ment from [16]. However, in order to obtain the optimal upper bound in (1.16) we
need two properties of isotropic unconditional convex bodies: dimension-dependent
volume concentration (Theorem 2.2) and the good “ψ2-behaviour” of linear func-
tionals (Theorem 2.5). Also, the lower bound in (1.16) was proved in [16] under the
restriction N ≥ n(log n)2. Here, we provide a different proof of the lower bound for
E (B(n), N), which is based on an idea of Dyer, Füredi and McDiarmid from [14].
Because of this, we are able to remove the restriction on N .

V Notation. We work in R
n, which is equipped with a Euclidean structure 〈·, ·〉.

We denote by ‖ · ‖2 the corresponding Euclidean norm, and write Bn
2 for the Eu-

clidean unit ball and Sn−1 for the unit sphere. The unit ball of ℓn
p is denoted by

Bn
p . Volume is denoted by | · |. We write σ for the rotationally invariant probability

measure on Sn−1 and ωn for the volume of Bn
2 .

Whenever we write a ≃ b, we mean that there exist absolute constants c1, c2 > 0
such that c1a ≤ b ≤ c2a. The letters c, c′, C, c1, c2 etc., denote absolute positive
constants which may change from line to line. We refer to the book of Milman
and Schechtman [23] for basic facts from the asymptotic theory of finite dimen-
sional normed spaces and to the paper [21] of Milman and Pajor for background
information about isotropic convex bodies.

2 Isotropic unconditional convex bodies

Let K be an unconditional convex body in R
n. Without loss of generality we may

assume that the norm ‖ · ‖K satisfies (1.13), where {e1, . . . , en} is the standard
orthonormal basis of R

n. Then, it is easily checked that one can bring K to the
isotropic position by a diagonal operator. Therefore, an isotropic unconditional
body K in R

n is characterized by the following two properties:

(a) For every x = (x1, . . . , xn) ∈ K the parallelepiped
∏n

i=1[−|xi|, |xi|] is con-
tained in K.
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(b) For every j = 1, . . . , n,

(2.1)

∫

K

x2
jdx = L2

K .

It will be convenient to consider the normalized part K+ = 2K ∩ R
n
+ of K in

R
n
+ = [0,+∞)n. It is easy to check that K+ has volume 1 and satisfies the following:

(a+) If x = (x1, . . . , xn) ∈ K+, then
∏n

i=1[0, xi] ⊆ K+.
(b+) For every j = 1, . . . , n,

(2.2)

∫

K+

x2
jdx = 4L2

K .

We write µK for the uniform distribution on K and µ+
K for the uniform distribu-

tion on K+. Notice that if x = (x1, . . . , xn) is uniformly distributed in K then
(2|x1|, . . . , 2|xn|) is uniformly distributed in K+.

It is not hard to prove that the isotropic constant of any unconditional con-
vex body satisfies LK ≃ 1. The upper bound follows from the Loomis-Whitney
inequality; see also [8] where the inequality 2L2

K ≤ 1 is proved. On the other hand,
for every convex body K in R

n one has LK ≥ LBn
2
≥ c, where c > 0 is an absolute

constant (see [21]).
Bobkov and Nazarov have recently given a complete picture of the volume

distribution on isotropic unconditional convex bodies. In the case of the ℓn
p -balls,

very precise estimates on volume concentration were previously given in [28], [27],
[30] and [29]. All the results which are stated in this section come from [8] and [9].
The starting point is the next inequality (see [8], Proposition 2.3).

Theorem 2.1 Let K be an isotropic unconditional convex body in R
n. Then,

(2.3) µ+
K

(

x1 ≥ α1, . . . , xn ≥ αn

)

≤
(

1 − α1 + · · · + αn√
6n

)n

,

for all (α1, . . . , αn) ∈ K+. 2

As a direct consequence we see that

(2.4) µ+
K

(

x1 ≥ α1, . . . , xn ≥ αn

)

≤ exp(−c(α1 + · · · + αn)),

for all α1, . . . , αn ≥ 0, where c = 1/
√

6. Using this fact, Bobkov and Nazarov es-
tablished a striking dimension-dependent concentration estimate for the Euclidean
norm.

Theorem 2.2 Let K be an isotropic unconditional convex body in R
n. Then,

(2.5) µK

(

‖x‖2 ≥
√

6t
√

n
)

≤ exp
(

−t
√

n/2
)

,

for every t ≥ 4. 2
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Analogous concentration results hold true if we replace the Euclidean norm by
any ℓp-norm. For example,

(2.6) µK

(

‖x‖1 ≥ 2tn
)

≤ exp

(

− c3tn

log n + 1

)

,

for all t ≥ 1, where c3 > 0 is an absolute constant.

Another consequence of Theorem 2.1 is that an interior point (α1, . . . , αn) of
K+ necessarily satisfies

(2.7) α1 + · · · + αn <
√

6n.

This observation proves one part of the next Proposition.

Proposition 2.3 Let K be an isotropic unconditional convex body K in R
n. Then,

(2.8) cBn
∞ ⊆ K ⊆ Vn

where Vn =
√

3/2nBn
1 and c > 0 is an absolute constant. 2

Theorem 2.1 and Proposition 2.3 lead to a very useful comparison theorem. Let
F : R

n → R. We say that F is symmetric if F (ε1x1, . . . , εnxn) = F (x1, . . . , xn) for
all choices of signs. We also say that F is coordinatewise increasing if F (y) ≤ F (x)
for all x and y which satisfy 0 ≤ yi ≤ xi for all i ≤ n. On observing that

(2.9) µ+
Vn

(

x1 ≥ α1, . . . , xn ≥ αn

)

=

(

1 − α1 + · · · + αn√
6n

)n

,

for all (α1, . . . , αn) ∈ V +
n , one has:

Theorem 2.4 For every isotropic unconditional convex body K in R
n and every

α1, . . . , αn ≥ 0,

(2.10) µK

(

x1 ≥ α1, . . . , xn ≥ αn

)

≤ µVn

(

x1 ≥ α1, . . . , xn ≥ αn

)

.

Consequently,

(2.11)

∫

F (x)dµK(x) ≤
∫

F (x)dµVn
(x)

for every function F : R
n → R which is symmetric, coordinatewise increasing and

absolutely continuous. 2

The comparison theorem can be used for the study of linear functionals on isotropic
unconditional convex bodies. Define

(2.12) Cn(θ) = ‖θ‖∞
√

n/ log n

for θ ∈ R
n and n ≥ 2. Since the expectation of ‖θ‖∞ on Sn−1 is of the order of

√

log n/n, for a random θ ∈ Sn−1 we have Cn(θ) ≃ 1. Computing on Bn
1 and using

Theorem 2.4 one gets the following (see [9]):
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Theorem 2.5 Let K be an isotropic unconditional convex body in R
n. Let θ ∈ Sn

and set fθ(x) = 〈x, θ〉. For every p ≥ 2,

(2.13) ‖fθ‖Lp(µK) ≤ c
√

p max{1, Cn(θ)
√

log p},

where c > 0 is an absolute constant. 2

Define the Orlicz norm ‖ · ‖Lψ2 (µK) of a measurable function f : K → R by

(2.14) ‖f‖Lψ2 (µK) = inf

{

t > 0 :

∫

e(f/t)2dµK ≤ 2

}

.

By Theorem 2.5 and (2.8) we have

(2.15) ‖fθ‖Lp(µK) ≤ c
√

p
√

n‖θ‖∞

for all p ≥ 2. Since
‖f‖Lψ2 (µK) ≤ c sup

p≥2
‖f‖Lp(µK),

this shows that

(2.16) ‖fθ‖Lψ2 (µK) ≤ c
√

n‖θ‖∞

for every θ ∈ R
n.

3 Random isotropic and unconditional vectors

The proof of Theorem A will be based on Rudelson’s approach to the general case.
The main lemma in [26] is the following.

Theorem 3.1 (Rudelson) Let x1, . . . , xN be vectors in R
n and let ε1, . . . , εN be

independent Bernoulli random variables which take the values ±1 with probability

1/2. Then, for all p ≥ 1,

(3.1)

(

E

∥

∥

∥

∥

N
∑

i=1

εixi ⊗ xi

∥

∥

∥

∥

p
)1/p

≤ C
√

p + log n · max
i≤N

‖xi‖2 ·
∥

∥

∥

∥

N
∑

i=1

xi ⊗ xi

∥

∥

∥

∥

1/2

,

where C > 0 is an absolute constant. 2

Proof of Theorem A. Let ε ∈ (0, 1) and let p ≥ 1. We first estimate the
expectation of maxi≤N ‖xi‖2p

2 , where x1, . . . , xN are independent random points
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uniformly distributed in K. Fix α ≥ 4 which will be suitably chosen. Theorem 2.2
shows that

E max
i≤N

‖xi‖2p
2 = (6n)p

∫ ∞

0

2pt2p−1µK

(

max
i≤N

‖xi‖2 ≥
√

6t
√

n

)

dt

≤ (6n)p

(

α2p + (2p)N

∫ ∞

α

t2p−1 exp(−t
√

n/2)dt

)

= (6n)p

(

α2p + (2p)Ne−α
√

n/2

∫ ∞

0

(s + α)2p−1 exp(−s
√

n/2)ds

)

.

Since (s + α)2p−1 ≤ 22p−2(s2p−1 + α2p−1), we have

E max
i≤N

‖xi‖2p
2 ≤ (6n)p(2p)22p−2Ne−α

√
n/2

(∫ ∞

0

(s2p−1 + α2p−1)e−s
√

n/2ds

)

+(6n)pα2p

= (6n)p

(

α2p + (2p)22p−2Ne−α
√

n/2

(

4pΓ(2p)

np
+

2α2p−1

√
n

))

.

It follows that, if N ≤ exp(α
√

n/2) and p ≤ √
n then

(3.2) E max
i≤N

‖xi‖2p
2 ≤ (C1α

2n)p

where C1 > 0 is an absolute constant.
If N > exp(α

√
n/2) we use Proposition 2.3: Since K ⊆ Vn, we have ‖x‖2 ≤

√

3/2n for every x ∈ K. Therefore, in this case we have the trivial estimate

(3.3) E max
i≤N

‖xi‖2p
2 ≤ (C2n)2p.

We now follow Rudelson’s argument: if x′
1, . . . , x

′
N are independent random points

from K which are chosen independently from the xi’s, then

Ap := Ex

∥

∥

∥

∥

I − 1

NL2
K

N
∑

i=1

xi ⊗ xi

∥

∥

∥

∥

p

≤ ExEx′

∥

∥

∥

∥

1

NL2
K

N
∑

i=1

xi ⊗ xi −
1

NL2
K

N
∑

i=1

x′
i ⊗ x′

i

∥

∥

∥

∥

p

= EεExEx′

∥

∥

∥

∥

1

NL2
K

N
∑

i=1

εi(xi ⊗ xi − x′
i ⊗ x′

i)

∥

∥

∥

∥

p

≤ 2p−1
ExEε

∥

∥

∥

∥

1

NL2
K

N
∑

i=1

εixi ⊗ xi

∥

∥

∥

∥

p

,
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and using Theorem 3.1 we get

Ap ≤ (2C)p (p + log n)p/2

NpL2p
K

Ex

(

max
i≤N

‖xi‖p
2 ·

∥

∥

∥

∥

N
∑

i=1

xi ⊗ xi

∥

∥

∥

∥

p/2
)

≤ (2C)p (p + log n)p/2

N
p/2

Lp
K

(

Ex max
i≤N

‖xi‖2p
2

)1/2
(

Ex

∥

∥

∥

∥

1

NL2
K

N
∑

i=1

xi ⊗ xi

∥

∥

∥

∥

p
)1/2

≤ (4C)p (p + log n)p/2

N
p/2

Lp
K

(

Ex max
i≤N

‖xi‖2p
2

)1/2 √
Ap + 1.

We choose p = log n and α2 = 16ε−1/ log n, and we distinguish two cases:

Case 1: If N ≤ exp(α
√

n/2), then using (3.2) and the fact that LK ≃ 1, we get

(3.4) Ap ≤
(

C3
α2n log n

N

)p/2 √
Ap + 1.

If

(3.5)

(

C3
α2n log n

N

)p/2

<
εp+1

2
,

then (3.4) implies that

(3.6) Ex

∥

∥

∥

∥

I − 1

NL2
K

N
∑

i=1

xi ⊗ xi

∥

∥

∥

∥

p

= Ap < εp+1.

If 2 < ρ < 3 then (3.5) is satisfied provided that n ≥ n0(ρ) and N ≥ N0 =
C4ε

−ρn log n. Observe that exp(α
√

n/2) > C4ε
−ρn log n if n ≥ n0(ρ).

Then, Markov’s inequality shows that, if N0 ≤ N ≤ exp(α
√

n/2),

(3.7) Prob

(

∥

∥

∥

∥

I − 1

NL2
K

N
∑

i=1

xi ⊗ xi

∥

∥

∥

∥

> ε

)

< ε.

Case 2: Assume that N > exp(α
√

n/2). Then, using (3.3) and the fact that
LK ≃ 1, we get

(3.8) Ap ≤
(

C5
n2 log n

N

)p/2 √
Ap + 1 ≤

(

C5
n2 log n

eα
√

n/2

)p/2 √
Ap + 1.

We need to check that

(3.9)

(

C5
n2 log n

eα
√

n/2

)p/2

<
εp+1

2
,
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and then we get (3.7) exactly as in Case 1. Now, (3.9) is equivalent to

(3.10) ε
1
2p C6 log n <

√
n − 4(p + 1)

p
ε

1
2p log

1

ε

and the maximum of ε
1
2p log 1

ε on (0, 1) is attained at ε = e−2p and equals 2p/e ≃
log n. Therefore, (3.10) is clearly satisfied if n ≥ n0. This completes the proof. 2

The general problem is connected to some recent conjectures about the central
limit properties of convex bodies: Let K be an isotropic convex body in R

n. In [7]
the parameter σK of K is defined by

(3.11) σ2
K =

Var(‖x‖2
2)

nL4
K

=
nVar(‖x‖2

2)
(

E ‖x‖2
2

)2 .

The second expression has the advantage of being invariant under homotheties, and
hence, easier to compute. It is easily checked that σ2

B(n) = 4
n+4 . Actually, in [7]

Bobkov and Koldobsky show that σK is minimal when K is a Euclidean ball.
A question which has attracted much attention is whether there exists an ab-

solute constant C > 0 such that σ2
K ≤ C for every isotropic convex body K. From

(3.11) one can check that σ2
K ≤ cn for every isotropic convex body K in R

n. The
subindependence of coordinate slabs theorem of Anttila, Ball and Perissinaki (see
[4] and [2]) shows that σBn

p
remains bounded by a constant independent of n and

p ∈ [1,∞].
Upper bounds for σK are related to Theorem A because of the following propo-

sition (see [25] for a different proof).

Proposition 3.2 If K is an isotropic convex body in R
n, then

(3.12) µK

(

‖x‖2 ≥ (1 + σK)
√

nLKt
)

≤ n−t/2

for every t ≥ 1.

Proof. A simple application of Chebyshev’s inequality shows that, for every ε > 0,

µK

( ∣

∣ ‖x‖2 −
√

nLK

∣

∣ ≥ ε
√

nLK

)

≤ µK

(∣

∣ ‖x‖2
2 − nL2

K

∣

∣ ≥ εnL2
K

)

≤ Var(‖x‖2
2)

ε2n2L4
K

=
σ2

K

ε2n
.

Therefore,

(3.13) µK

(

‖x‖2 ≥ (1 + σK)
√

nLK

)

≤ 1

n
.

Applying Borell’s lemma (see [23, Appendix III]) we see that

(3.14) µK

(

‖x‖2 ≥ (1 + σK)
√

nLKt
)

≤ n − 1

n

(

1

n − 1

)
t+1

2

≤ n−t/2

11



for all t ≥ 1 (we only need to check (3.14) for t ≪ √
n; it is well-known that

K ⊆ (n + 1)LKBn
2 for every isotropic convex body K in R

n, and hence, the left
hand side of (3.14) is equal to zero if t(1 + σK)

√
n > n + 1). This concludes the

proof. 2

We can now repeat the argument of the proof of Theorem A. Let x1, . . . , xN

be independent random points uniformly distributed in K. Let ε ∈ (0, 1) and set
σ = σK + 1. We fix p ≥ 1 and α > 1 which will be suitably chosen. Using
Proposition 3.2 we write

E max
i≤N

‖xi‖2p
2 ≤ (σ2nL2

K)p

(

α2p + N

∫ ∞

α

2pt2p−1n−t/2dt

)

≤ (4σ2nL2
K)p

(

α2p + (2p)Ne−α log n/2

(

4pΓ(2p)

(log n)2p
+

2α2p−1

log n

))

.

It follows that if N ≤ nα/2 and p ≤ log n then

(3.15) E max
i≤N

‖xi‖2p
2 ≤ (C1σ

2α2L2
Kn)p.

If N > nα/2 we use the bound

(3.16) E max
i≤N

‖xi‖2p
2 ≤ (C2L

2
Kn2)p,

which follows from the inclusion K ⊆ (n + 1)LKBn
2 . Set

(3.17) Ap := Ex

∥

∥

∥

∥

I − 1

NL2
K

N
∑

i=1

xi ⊗ xi

∥

∥

∥

∥

p

.

Following the proof of Theorem A, we see that

(3.18) Ap ≤ (4C)p (p + log n)p/2

N
p/2

Lp
K

(

Ex max
i≤N

‖xi‖2p
2

)1/2 √
Ap + 1.

Let ρ > 2. We choose p = log n and α2 = D2ε−1/ log n (where D > 1 is an absolute
constant) and we distinguish two cases:

Case 1: If N ≤ nα/2, then using (3.15) we get

(3.19) Ap ≤
(

C3
σ2α2n log n

N

)p/2 √
Ap + 1.

Therefore, if n ≥ n0(ρ) and N ≥ cσ2ε−ρn log n we see that

(3.20)

(

C3
σ2α2n log n

N

)p/2

<
εp+1

2
,

12



which implies that

(3.21) Ex

∥

∥

∥

∥

I − 1

NL2
K

N
∑

i=1

xi ⊗ xi

∥

∥

∥

∥

p

< εp+1.

Case 2: If N > nα/2, then using (3.16) we get

(3.22) Ap ≤
(

C4
n2 log n

nα/2

)p/2 √
Ap + 1 <

εp+1

2

√
Ap + 1

provided that n ≥ n0 and

(3.23) 3 log n <
α

2
log n − 2(p + 1)

p
log

1

ε
.

This is satisfied if

(3.24)
2(p + 1)

p
sup

ε∈(0,1)

ε
1
2p log

1

ε
= 4e−1(log n + 1) <

(

D

2
− 3

)

log n,

which is true if D > 1 is large enough. Therefore, (3.21) is verified in this case as
well. An application of Markov’s inequality shows the following.

Theorem 3.3 Let ε ∈ (0, 1) and let ρ > 2. Assume that n ≥ n0(ρ) and let K
be an isotropic convex body in R

n. If N ≥ cε−ρ(σK + 1)2n log n, where c > 0 is

an absolute constant, and if x1, . . . , xN are independent random points uniformly

distributed in K, then with probability greater than 1 − ε we have

(3.25) (1 − ε)L2
K ≤ 1

N

N
∑

i=1

〈xi, θ〉2 ≤ (1 + ε)L2
K

for every θ ∈ Sn−1. 2

4 A geometric inequality

In this Section we study the multi-integral norm (1.4) in the case where K and
T1, . . . , Ts are isotropic and unconditional with respect to the standard orthonormal
basis of R

n. Our estimate is stated in the next theorem.

Theorem 4.1 There exists an absolute constant C > 0 with the following property:

if K and Ti (i = 1, . . . , s) are isotropic convex bodies in R
n which satisfy (1.13),

then

(4.1)

‖t‖ :=

∫

T1

· · ·
∫

Ts

∥

∥

s
∑

i=1

tixi

∥

∥

K
dxs · · · dx1 ≤ C

√

log nmax
{

‖t‖2,
√

log n‖t‖∞
}

for every t = (t1, . . . , ts) ∈ R
s.
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The proof will be based on the comparison Theorem 2.4. We write µn for the
uniform distribution on Bn

1 . The density of µn is given by

(4.2)
dµn(x)

dx
=

n!

2n
χBn

1
(x).

We also define ∆n = {x ∈ R
n
+ : x1 + · · · + xn ≤ 1}. A simple computation shows

that for every n-tuple of non-negative integers p1, . . . , pn,

(4.3)

∫

∆n

xp1

1 . . . xpn
n dx =

p1! · · · pn!

(n + p1 + · · · + pn)!
.

Proof of Theorem 4.1: From Proposition 2.3 we have ‖ · ‖K ≤ c1‖ · ‖∞ where
c1 > 0 is an absolute constant, so it is enough to consider the case K = Bn

∞, the
unit cube in R

n. Since ‖ · ‖∞ ≤ ‖ · ‖2q for every integer q ≥ 1, our problem is to
give upper bounds for the norm

(4.4) ‖t‖ :=

∫

T1

· · ·
∫

Ts

∥

∥

s
∑

i=1

tixi

∥

∥

2q
dxs · · · dx1

where q ≥ 1 is an integer. We write xi = (xi1, . . . , xin) and define yj = (x1j , . . . , xsj)
for all j = 1, . . . , n. Then, Hölder’s inequality shows that

(4.5) ‖t‖2q ≤
∫

T1

· · ·
∫

Ts

n
∑

j=1

〈t, yj〉2q dxs · · · dx1.

Observe that
(4.6)

∫

T1

· · ·
∫

Ts

〈t, yj〉2q dxs · · · dx1 =
∑

q1+···+qs=q

(2q)!

(2q1)! · · · (2qs)!

s
∏

i=1

t2qi

i

∫

Ti

x2qi

ij dxi.

Applying Theorem 2.4 we get
(4.7)

∫

Ti

x2qi

ij dxi ≤
∫

Vn

x2qi

1 dµVn
(x) ≤ (c1n)2qin!

∫

∆n

x2qi

1 dx = (c1n)2qi
n!(2qi)!

(n + 2qi)!
,

where c1 =
√

3/2. From (4.5), (4.6) and (4.7) it follows that

(4.8) ‖t‖2q ≤ n(n!)s(c1n)2q(2q)!
∑

q1+···+qs=q

t2q1

1 · · · t2qs
s

(n + 2q1)! · · · (n + 2qs)!
.

Since (n + 2r)! ≥ n!n2r for every r ≥ 0, we can write

(4.9) ‖t‖2q ≤ nc2q
1 (2q)!

∑

q1+···+qs=q

t2q1

1 · · · t2qs
s .

We now use the following lemma from [9]:
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Lemma 4.2 Let q ≥ 1 be an integer and define

(4.10) Pq(y) =
∑

q1+···+qs=q

yq1

1 · · · yqs
s

on R
s
+. If y ∈ R

s
+ and y1 + · · · + ys = 1, then

(4.11) Pq(y) ≤ (2emax{1/q, ‖y‖∞})q
. 2

Applying Lemma 4.2 to the s-tuple y = 1
‖t‖2

2

(

t21, . . . , t
2
s

)

we get

‖t‖ ≤ c1n
1
2q 2q

√

(2q)!
(

2emax{‖t‖2
2/q, ‖t‖2

∞}
)1/2

≤ Cn
1
2q
√

q max{‖t‖2,
√

q‖t‖∞}.

Choosing q ≃ log n we conclude the proof. 2

Remark 4.3 The ℓ∞–term in the estimate provided by Theorem 4.1 is necessary.
This can be seen for the case in which T1 = · · · = Ts = Wn = δnnBn

1 and K = 1
2Bn

∞,
where δn → 1

2e is chosen so that |Wn| = 1. For these bodies consider the vector
t0 = (1, 0, 0, . . . , 0). We then have,

(4.12) ‖t0‖ =

∫

Wn

2‖x‖∞ dx = 2(δnn)n+1

∫

Bℓn
1

‖x‖∞ dx.

It is enough to show that ‖t0‖ ≥ c log n for some absolute constant c > 0. Let
Fn(t) be the proportion of the volume of the ℓn

1 ball inside the cube [−t, t]n. This
quantity was studied in [4] where it was shown that it is dominated by the function
fn(t) =

(

1− (1− t)n
)n

. Using this, and writing λ for the Lebesgue measure in R
n,

we get

‖t0‖ ≥ 2(δnn)n+1

∫ log n/n

0

λ(x ∈ Bn
1 : ‖x‖∞ > t) dt

≥ 2(δnn)n+1

∫ log n/n

0

(

1 − Fn(t)
)

|Bn
1 | dt

= 2δnn

∫ log n/n

0

(

1 − Fn(t)
)

dt

≥ 2δn log n

(

1 − Fn

(

log n

n

))

.

Since n
(

1 − log n
n

)n

→ 1 as n → ∞, it is now easy to check that

(4.13) Fn

(

log n

n

)

≤ fn

(

log n

n

)

≤ c1

for some universal constant 0 < c1 < 1, from which it follows that ‖t0‖ ≥ c log n.
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It should be also noticed that if s is large enough then the directions t ∈ Ss−1

for which
√

log n‖t‖∞ > 1 form a set of small measure. Since ‖ · ‖∞ is a 1-Lipschitz
function on Sn−1, we have

(4.14) σ

(

t ∈ Ss−1 :
∣

∣ ‖t‖∞ − E ‖ · ‖∞
∣

∣ ≥ r

)

≤ exp(−c1r
2s)

for all r > 0. A simple computation shows that E ‖ · ‖∞ ≃ (log s/s)1/2. Assume
that s ≫ log2 n. From (4.14) we see that

(4.15) σ
(

t ∈ Ss−1 :
√

log n‖t‖∞ > 1
)

≤ exp(−c2s/ log n).

Remark 4.4 A modification of the example in Remark 4.3 shows that Theorem 4.1
is optimal even for the case in which all Ti and K are equal up to a permutation of
coordinates. Consider the orthogonal operator U =

∑n−1
j=0 ej ⊗ en−j . Assume that

n is even and consider the bodies Ti = αWn/2×βB
n/2
∞ (i = 1, . . . , s) where α, β ≃ 1

are chosen so that Ti is isotropic. Define K = U(Ti) and let t0 = (1, 0, 0, . . . , 0).
We have

(4.16) ‖t0‖ =

∫

αWn/2×βB
n/2
∞

‖x‖
βB

n/2
∞ ×αWn/2

dx ≥
∫

αWn/2×βB
n/2
∞

‖Px‖
βB

n/2
∞

dx

where P is the orthogonal projection onto the first n/2 coordinates. Now, Fubini’s
theorem implies that the last quantity equals

(4.17)

∫

αWn/2

‖x‖
βB

n/2
∞

dx

and by Remark 4.3 this is greater than c log n.

Remark 4.5 Consider the case K = T1 = · · · = Ts. Then, we do not know
if the ℓ∞–term is really needed in Theorem 4.1. However, the example of the
cube shows that the term

√
log n‖t‖2 is necessary: In [19] it is proved that if

K = T1 = · · · = Tn = 1
2Bn

∞ then

(4.18) ‖t‖ ≃ qn(t) =

u
∑

i=1

t∗i +
√

u

(

n
∑

i=u+1

(t∗i )
2

)1/2

where u ≃ log n and (t∗i )i≤n is the decreasing rearrangement of (|ti|)i≤n. From
(4.18) one can check that

(4.19)

∫

Sn−1

‖t‖σ(dt) ≥ c
√

log n.

Indeed, using [24, Lemma 2] we may write

(4.20) qn(t) ≥ c1‖t‖P (u)
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where

(4.21) ‖t‖P (u) = sup







u
∑

m=1

(

∑

i∈Bm

t2i

)1/2






and the supremum is taken over all disjoint subsets B1, . . . , Bu of {1, . . . , n}. Choose
a partition of {1, . . . , n} into successive intervals Bm so that k := min |Bm| is greater
than n

2u . Then,

∫

Sn−1

‖t‖ dσ ≥ c1

∫

Sn−1

u
∑

m=1

(

∑

i∈Bm

t2i

)1/2

dσ ≥ c1u

∫

Sn−1

(

k
∑

i=1

t2i

)1/2

dσ

≥ c2u

(

∫

Sn−1

k
∑

i=1

t2i dσ

)1/2

= c2u(k/n)1/2 ≥ c3

√
u.

Since u ≃ log n we get (4.19).

5 Volume radius of random polytopes

Recall the definition of E (K,N): if x1, . . . , xN are independent random points
uniformly distributed in a convex body K of volume 1 in R

n, we define

(5.1) E(K,N) = E |conv(x1, . . . , xN )|1/n.

Assume that K is isotropic and unconditional. We will prove an optimal upper
bound for E (K,N).

Theorem 5.1 Let K be an isotropic unconditional convex body in R
n. Then, for

every N ≥ n + 1,

(5.2) E (K,N) ≤ C

√

log(2N/n)√
n

,

where C > 0 is an absolute constant.

For the proof, we will use two deterministic results on the volume of convex
hulls of N points and on the volume of the intersection of N symmetric strips in
R

n. The first one was proved independently by Bárány and Füredi [5] or [6], Carl
and Pajor [13], and Gluskin [17]:

Lemma 5.2 There exists an absolute constant c1 > 0 such that: if N ≥ n + 1 and

x1, . . . , xN ∈ R
n, then

(5.3) |conv(x1, . . . , xN )|1/n ≤ c1 max
i≤N

‖xi‖2

√

log(2N/n)

n
.
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The second one is a result of Ball and Pajor [3]:

Lemma 5.3 Let x1, . . . , xN ∈ R
n \ {0} and let 1 ≤ q < ∞. If

(5.4) W = {z ∈ R
n : |〈z, xj〉| ≤ 1, j = 1, . . . , N},

then

(5.5) |W |1/n ≥ 2





n + q

n

N
∑

j=1

1

|Bn
q |

∫

Bn
q

|〈z, xj〉|qdz





−1/q

.

Proof of Theorem 5.1: We distinguish two cases (small and large N):

Case 1: N ≤ n2: Fix t ≥ 4 which will be suitably chosen. We define

(5.6) A :=
{

(x1, . . . , xN ) ∈ KN : ∃i ≤ N such that ‖xi‖2 ≥
√

6t
√

n
}

.

From Theorem 2.2 we have

(5.7) Prob (A) ≤ N exp
(

−t
√

n/2
)

.

Using Lemma 5.2 we write

E (K,N) =

∫

A

|conv(x1, . . . , xN )|1/n +

∫

Ac

|conv(x1, . . . , xN )|1/n

≤ Prob(A) + Prob(Ac)
√

6c1t
√

n

√

log(2N/n)

n

≤ N exp

(

− t
√

n

2

)

+ c2t

√

log(2N/n)√
n

.

We have assumed that N ≤ n2, which implies

(5.8) exp

(

t
√

n

2

)

≥ t6n3

6!26
≥ t6nN

6!26
≥ nN

c2t
√

log 2

if t ≥ 4 is chosen large enough (and independent of n and N). Then,

(5.9) E (K,N) ≤ (2c2t)

√

log(2N/n)√
n

.

Thus, Case 1 is settled.

Case 2: N ≥ n2: We write KN for the absolute convex hull conv(±x1, . . . ,±xN ) of
N independent random points uniformly distributed in K. By the Blaschke-Santaló
inequality,

(5.10) E (K,N) ≤ E |KN |1/n ≤ ω2/n
n · E |K◦

N |−1/n
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where K◦
N is the polar body of KN . Lemma 5.3 shows that

(5.11) |K◦
N |−1/n ≤ 1

2





n + q

n

N
∑

j=1

1

|Bn
q |

∫

Bn
q

|〈z, xj〉|qdz





1/q

for every q ≥ 1. Consider the convex body T = K × · · · × K (N times) in R
Nn.

We apply Hölder’s inequality and change the order of integration:

E|K◦
N |−1/n ≤

∫

T

1

2





n + q

n

N
∑

j=1

1

|Bn
q |

∫

Bn
q

|〈z, xj〉|q dz





1/q

dxN . . . dx1

≤ 1

2





n + q

n

N
∑

j=1

1

|Bn
q |

∫

Bn
q

∫

T

|〈z, xj〉|q dxN . . . dx1 dz





1/q

.

It follows that

(5.12) E (K,N) ≤ ω
2/n
n

2

(

N(n + q)

n

1

|Bn
q |

∫

Bn
q

∫

K

|〈z, x〉|qdx dz

)1/q

.

Now, we use (2.15). For every z ∈ Bn
q we have

(5.13)

∫

K

|〈z, x〉|qdx ≤
(

C1
√

q
√

n‖z‖∞
)q

.

Therefore,

(5.14) E (K,N) ≤ ω
2/n
n

2
C1

√
q
√

n

(

N(n + q)

n

1

|Bn
q |

∫

Bn
q

‖z‖q
∞dz

)1/q

.

Observe that ‖z‖∞ ≤ ‖z‖q and

(5.15)

∫

Bn
q

‖z‖q
qdz =

n

n + q
|Bn

q |.

It follows that

(5.16)
1

|Bn
q |

∫

Bn
q

‖z‖q
∞dz ≤ 1

|Bn
q |

∫

Bn
q

‖z‖q
qdz =

n

n + q
.

Combining the above we get

(5.17) E (K,N) ≤ C2

√
q√
n

N1/q
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for every q ≥ 1. Choose q = log(2N/n). Since N ≥ n2, we have

(5.18) N1/q = exp

(

log N

log(2N/n)

)

≤ exp

(

log N

log(2
√

N)

)

≤ e2.

Therefore,

(5.19) E (K,N) ≤ C3

√

log(2N/n)√
n

.

This completes the proof. 2

A lower bound for E (K,N) was given in [16] as a consequence of the following
facts. If K is a convex body in R

n with volume 1 and B(n) is a ball in R
n with

volume 1, then it is proved in [16] that

(5.20) E (K,N) ≥ E (B(n), N).

On the other hand, there exist c > 0 and n0 ∈ N such that: if n ≥ n0 and
n(log n)2 ≤ N ≤ exp(cn) then, for N independent random points x1, . . . , xN uni-
formly distributed in B(n) we have

(5.21) conv(x1, . . . , xN ) ⊇
√

log(N/n)

6
√

n
B(n)

with probability greater than 1−exp(−n). We will give a different argument which
proves (5.21) for all N satisfying c1n ≤ N ≤ exp(c2n). The idea comes from the
work of Dyer, Füredi and McDiarmid in [14].

Proposition 5.4 There exist c1, c2 > 0 which satisfy the following: Let B(n) be

the centered ball of volume 1 in R
n. If N ≥ c1n and x1, . . . , xN are independent

random points uniformly distributed in B(n), then

(5.22) conv(x1, . . . , xN ) ⊇ c2 min

{

√

log(N/n)√
n

, 1

}

B(n)

with probability greater than 1 − exp(−n).

Proof. Let rn be the radius of B(n) and let α ∈ (0, 1) be a constant which
will be suitably chosen. Consider the random polytope KN := conv(x1, . . . , xN ).
With probability equal to one, KN has non-empty interior and, for every J =
{j1, . . . , jn} ⊂ {1, . . . , N}, the points xj1 , . . . , xjn

are affinely independent. Write
HJ for the affine subspace determined by xj1 , . . . , xjn

and H+
J , H−

J for the two
closed halfspaces whose bounding hyperplane is HJ .

If αB(n) 6⊆ KN , then there exists x ∈ αB(n) \ KN , and hence, there is a facet
of KN which is contained in some HJ and satisfies the following: either x ∈ H−

J

and KN ⊂ H+
J , or, x ∈ H+

J and KN ⊂ H−
J . Observe that, for every J ,

(5.23) max
{

Prob(KN ⊆ H+
J ),Prob(KN ⊆ H−

J )
}

≤
(

µB(n)({x1 ≤ αrn})
)N−n

.
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It follows that

(5.24) Prob(αB(n) 6⊆ KN ) ≤ 2

(

N

n

)

(

µB(n)({x1 ≤ αrn})
)N−n

.

A simple calculation shows that if c√
n
≤ α ≤ 1

4 then

µB(n)

(

{x1 ≥ αrn}
)

= ωn−1r
n
n

∫ 1

α

(1 − t2)(n−1)/2dt ≥ ωn−1

ωn
α(1 − 4α2)(n−1)/2

≥ exp
(

−4(n − 1)α2
)

≥ exp(−4α2n)

since
√

nωn ≤ cωn−1 for some absolute constant c > 0. Going back to (5.24) we
get

Prob(αB(n) 6⊆ KN ) ≤ 2

(

N

n

)

(

1 − exp(−4α2n)
)N−n

≤
(

2eN

n

)n

exp
(

−(N − n)e−4α2n
)

.

With an easy computation we get that this probability is smaller than exp(−n) if

α ≃ min
{√

log
(

N/n
)

/√
n, 1

}

, for all N ≥ c1n, where c1 > 0 is a (large enough)

absolute constant (for this choice of α the restriction c√
n
≤ α ≤ 1

4 is also satisfied).

This completes the proof. 2

Observe that E (B(n), N) is increasing in N . It follows from (1.10) that if n + 1 ≤
N ≤ c1n then

(5.28) E (B(n), N) ≥ E(B(n), n + 1) ≃ 1√
n
≥ c

√

log(2N/n)√
n

.

In view of Proposition 5.4 this shows that, for every N > n,

(5.29) E (B(n), N) ≥ cmin

{

√

log(2N/n)√
n

, 1

}

where c > 0 is an absolute constant. Combining with Theorem 5.1 we get Theo-
rem C.

Remark 5.5 The referee informed us that Proposition 5.4 follows from an anal-
ogous result of Gluskin for gaussian random vectors. In [17] it is proved that the
probability

Prob

(

conv (g1, g2, . . . , gN ) ⊇ c

√

log(1 + N/n)√
n

B(n)

)

is close to 1. See also [22].
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