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ON THE TIGHTNESS OF GAUSSIAN CONCENTRATION FOR CONVEX

FUNCTIONS

PETROS VALETTAS

Abstract. The concentration of measure phenomenon in Gauss’ space states that every L-Lipschitz map
f on R

n satisfies

γn
(

{x : |f(x)−Mf | > t}
)

6 2e
−

t2

2L2 , t > 0,

where γn is the standard Gaussian measure on R
n and Mf is a median of f . In this work, we provide

necessary and sufficient conditions for when this inequality can be reversed, up to universal constants, in
the case when f is additionally assumed to be convex. In particular, we show that if the variance Var(f)

(with respect to γn) satisfies αL 6
√

Var(f) for some 0 < α 6 1, then

γn
(

{x : |f(x)−Mf | > t}
)

> ce
−C t2

L2 , t > 0,

where c, C > 0 are constants depending only on α.

1. Introduction

The concentration of measure phenomenon is by now a fundamental tool in modern probability theory
with profound impacts in many research areas. Its significance in the local theory of normed spaces was
emphasized by V. Milman in his seminal work [Mil71] on almost spherical sections of high-dimensional
convex bodies. Subsequently, applications of concentration have increased remarkably in different fields and
concentration techniques have been developed in various contexts. The interested reader may consult the
book of Ledoux [Led01], the comprehensive paper of Talagrand [Tal95] and the recent monograph [BLM13]
by Boucheron, Lugosi and Massart, for further background and detailed discussions on this very interesting
subject.

The prototypical example of concentration is in Gauss’ space (Rn, ‖ · ‖2, γn) stating that any L-Lipschitz
map f on R

n satisfies

max {γn({x : f(x) > med(f) + t}), γn({x : f(x) 6 med(f)− t})} 6
1

2
e−t

2/2L2

, t > 0.(1.1)

Formally, the concentration inequality (1.1) follows from the solution to the isoperimetric problem in Gauss’
space which was proved independently by Borell [Bor75] and Sudakov and Tsirel’son in [ST74]. The lat-
ter asserts that among all Borel sets A with given measure, half-spaces have minimal Gaussian surface
area. Equivalently, reformulating the Gaussian isoperimetry using enlargements of sets with respect to the
Euclidean ball, one has:

γn(A+ tBn2 ) > Φ(Φ−1[γn(A)] + t), t > 0,(1.2)

for all Borel sets A ⊆ R
n, where Φ denotes the cumulative distribution function of a standard Gaussian.

The concentration inequality (1.1) lies at the center of many important Gaussian inequalities such as the
logarithmic Sobolev inequality [Gro75], Nelson’s hypercontractive principle [Nel67], the Poincaré inequality
[Che82], Ehrhard’s inequality [Ehr83] and more.

It is known that (1.1) is sharp for linear functionals. In many cases it provides the correct estimate
even if the function is far from being linear, e.g. the ℓnp -norm z 7→ ‖z‖p = (

∑

i6n |zi|p)1/p for 1 6 p 6 2.

The fact that (1.1) is sharp for norms in the large deviation regime t > med(f) is well known, see e.g.
[LT91, Proposition 2.9]. However, there are important examples of Lipschitz maps such as z 7→ maxj6n |zj |,
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z 7→ ‖z‖4 or an ellipsoidal norm z 7→ ‖Az‖2, A ∈ R
m×n, in which the classical concentration fails to

capture the right behavior in the small deviation regime 0 < t < med(f). Frequently, the functions under
consideration are additionally convex, e.g. norms (of vectors or matrices), suprema of linear functionals
indexed by sets, among others. In view of the above, several questions arise naturally such as:

(Q1) Do convexity assumptions ensure sharper concentration bounds?
(Q2) Under what conditions is the classical concentration inequality (1.1) tight?

For the first question, and for the deviation below the median, a stronger, variance-sensitive, inequality is
available for convex functions, which was established recently in [PV17a]: for any convex map f ∈ L2(γn),
one has

γn({x : f(x) 6 med(f)− 20t}) 6 1

2
e−t

2/Var(f), t > 0.(1.3)

The improvement lies in the fact that

Varγn(f) 6 Lip(f)2,(1.4)

(which follows by (1.1) or by the Gaussian Poincaré inequality [Che82]). This new type of concentration
inequality (1.3) exploits the convexity properties of the Gaussian measure, as opposed to (1.1) which can
be explained by isoperimetry. Corresponding estimates can therefore be proved for arbitrary log-concave
measures; see [PV17b]. All of these suggest that the left and right distributional behaviors near the median
should be treated separately.

In this note, we focus on the second question. To this end let us discuss the aforementioned examples in
more detail and review the different reasons that (1.1) and (1.4) can fail to be tight. In particular, for the
function f(z) = maxi6n |zi| the reason is the super-concentration phenomenon, following Chatterjee [Cha14].
Recall that a function f : Rn → R is said to be εn-super-concentrated for some εn ∈ (0, 1), if

Varγn(f) 6 εnEγn‖∇f‖22.(1.5)

With this terminology we have that z 7→ maxi6n |zi| = ‖z‖∞ is C
logn -super-concentrated

1, since

Var[‖Z‖∞] ≃ 1

logn
and ‖∇‖Z‖∞‖2 = Lip(‖ · ‖∞) = 1 a.s.,

where Z is an n-dimensional standard Gaussian vector. Moreover, the deviation is known to be described
by a two-level behavior (see e.g. [Tal91] and [Sch07])

ce−Cαn,∞(t) 6 P(|‖Z‖∞ − E‖Z‖∞| > t) 6 Ce−cαn,∞(t), αn,∞(t) = max{t2, t
√

logn}, t > 0.

In the light of (1.5) we define the super-concentration constant of f as follows:2

s(f) =

√

Var(f)

E‖∇f‖22
.

With this notation the mapping z 7→ ‖z‖∞ is super-concentrated with s(‖ · ‖∞) ≃ 1/
√
logn.

However, the super-concentration phenomenon is not the only reason for the sub-optimal bounds. In the
case of z 7→ ‖z‖4 or z 7→ ‖Az‖2, A ∈ R

m×n, the reason is that

E‖∇f(Z)‖22 ≪ Lip(f)2.

More precisely, we have (see e.g. [Nao07] and [PVZ17])

Var[‖Z‖4] ≃
1√
n
≃ E‖∇‖Z‖4‖22, whereas Lip(‖ · ‖4) = 1,

1Here and everywhere else C, c,C1, c1, . . . stand for positive universal constants whose values may change from line to line.
For any two quantities A,B depending on dimension, on the parameters of the problem, etc. We write A ≃ B if there exists
universal constant C > 0 -independent of everything- such that A 6 CB and B 6 CA.

2Note that the ratio
1

s(f)2
=

E‖∇f‖2
2

Var(f)
=

〈−Lf, f〉

‖f‖2
L2

,

coincides with the gaussian Rayleigh-Ritz quotient (see e.g. [Ehr84a]) of the operator −L (the generator of the Ornstein-
Uhlenbeck semigroup) at f , provided

∫

f = 0, f 6= 0.

2



and the deviation exhibits a three-level behavior:

ce−Cαn,4(t) 6 P(|‖Z‖4 − E‖Z‖4| > t) 6 Ce−cαn,4(t), t > 0,

where αn,4(t) = max
{

min{t2n1/2, t1/2n3/8}, t2
}

.

For the ellipsoidal norm z 7→ QA(z) := ‖Az‖2, A ∈ R
m×n one may check that:

Var[QA(Z)] ≃ E‖∇QA(Z)‖22 ≃
‖A‖4S4

‖A‖2HS

, and Lip(QA) = ‖A‖op,

‖ · ‖S4 is the 4-Schatten norm, ‖ · ‖HS is the Hilbert-Schmidt norm and ‖ · ‖op stands for the operator norm
of the linear map A : ℓn2 → ℓm2 . Again in this case the deviation obeys a multiple-level behavior:

ce−CαA(t)
6 P

(∣

∣

∣
‖AZ‖2 − (E‖AZ‖22)1/2

∣

∣

∣
> t
)

6 Ce−cαA(t), t > 0,

where αA(t) = max
{

min{t2‖A‖2HS/‖A‖4S4
, t‖A‖HS/‖A‖2op}, t2/‖A‖2op

}

. The right-hand side estimate in the
above concentration inequality is due to Hanson and Wright [HW71] and is known to hold for the more
general class of sub-gaussian random vectors with independent coordinates, see e.g. [RV13] for a modern
exposition and the references therein.3

Thus in all of the aforementioned cases, we observe that

Var(f) ≪ Lip(f)2.

In view of the above remarks, and for the purpose of this note, we may intorduce, for any Lipschitz map f ,
the over-concentration constant of f as follows:

ov(f) =

√

Var(f)

Lip(f)
.

With this terminology the mapping z 7→ ‖z‖4 is over-concentrated (but not super-concentrated) with ov(‖ ·
‖4) ≃ 1/ 4

√
n and the ellipsoidal norm z 7→ QA(z) is over-concentrated when a gap occurs at the top of the

spectrum of A.
The main purpose of this note is to show that this parameter quantifies the tightness of the concentration

for convex Lipschitz maps. Alternatively, note that if (1.1) can be reversed (up to constants) then it implies
a reversal for (1.4), and hence is a necessary condition for the optimality of the concentration. We show that
this condition is also sufficient. Namely we prove the following:

Theorem 1.1. Let 0 < α 6 1 and let f : Rn → R be convex and L-Lipschitz map. Then, we have:

Var[f(Z)] > α2L2 =⇒ P(|f(Z)−med(f)| > tL) > c(α) exp(−C(α)t2), t > 0,(1.6)

where Z is a standard n-dimensional Gaussian vector and c(α), C(α) > 0 depend only on α. Moreover, we
can have c(α) > cα8 and C(α) 6 Cα−4 log(e/α).

The latter can be viewed as a stability type result in the following sense: since (1.4) holds as equality for
the affine maps, and (1.1) is sharp for them, we measure the concentration for functions which are far from
linear but now the “distance” is measured in terms of the ov(f).

In what follows we fix the notation. We use ζ for a standard Gaussian random variable, i.e. ζ ∼ N(0, 1)
and Z for a standard Gaussian (usually n-dimensional) random vector, i.e. Z ∼ N(0, In). We write γn
for the n-dimensional standard Gaussian measure and simply γ for γ1. The symbol E or Eγn stands for

the expectation and Var or Varγn stands for the variance. Let Φ(x) = 1√
2π

∫ x

−∞ e−t
2/2 dt the cumulative

distribution function of a standard normal. We write med(ξ) for a median of a random variable ξ.

3Usually the Hanson-Wright inequality is stated for quadratic forms, hence for the map z 7→ ‖Az‖2
2
. The reason we omit

the squares here is because we discuss for Lipschitz functions.
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2. Proof of the main result

In this Section we discuss the basic tools in order to establish (1.6) and we finally give the proof in Theorem
2.8. The first ingredient in our approach is Ehrhard’s inequality [Ehr83]. Ehrhard proved his inequality in
the following form:

Theorem 2.1 (Ehrhard). Let A,B be convex sets in R
n. Then, for any λ ∈ (0, 1) we have:

Φ−1[γn((1 − λ)A+ λB)] > (1− λ)Φ−1[γn(A)] + λΦ−1[γn(B)].

The above inequality has been extended to all Borel sets by Borell in [Bor03]. (See [IV15, vH17, NP16]
for recent developments and further references). However we will not need these extensions in this work.

An important tool in Ehrhard’s work is the notion of the Gaussian rearrangement that we recall now. Let
f : Rn → R be a measurable function. Following Ehrhard [Ehr84a] we define the Gaussian rearrangement
of f as the generalized inverse of the map t 7→ Φ−1 ◦ γn(f 6 t), i.e.

f∗(s) = inf{t : s 6 Φ−1 ◦ γn(f 6 t)}.

Note that f∗ is non-decreasing and transports the measure γ to the distribution of f(Z) with Z ∼ N(0, In).
In the following lemma we collect some basic properties of f∗ that we will need in the sequel. We sketch the
proof of some basic facts for reader’s convenience.

Lemma 2.2 (Ehrhard). Let f be a measurable function on R
n. Then, f∗ enjoys the following properties:

a. The map f∗ : R → R is convex, if f is convex.
b. The modulus of continuity of f∗ satisfies ωf∗ 6 ωf . In particular, if f is Lipschitz, then f∗ is

Lipschitz with ‖f∗‖Lip 6 ‖f‖Lip.
c. For all u ∈ R we have γ(f∗ 6 u) = γn(f 6 u).
d. For any 1 6 p <∞ one has:

∫

R

|(f∗)′|p dγ 6

∫

Rn

‖∇f‖p2 dγn.

Proof. (a). Applying Ehrhard’s inequality (Theorem 2.1) for A = B = {f 6 t} we obtain that (f∗)−1 is
concave.

(b). The isoperimetric inequality (1.2) implies:

Φ−1 ◦ γn(A+ sBn2 ) > Φ−1 ◦ γn(A) + s, s > 0.

For A = {f 6 t} says that (f∗)−1(t+ ωf (s)) > (f∗)−1(t) + s, which yields:

f∗ ((f∗)−1(t) + s
)

− t 6 ωf (s),

for all t ∈ R and s > 0.

(c). We may write:

γ({t ∈ R : f∗(t) 6 u}) = γ({t : F (u) > t}) = Φ(F (u)) = γn({x ∈ R
n : f(x) 6 u}),

for all u ∈ R.

(d). For a proof the reader is referred to [Ehr84a] (see also [Ehr84b] for a related application). ✷

The second ingredient in our approach is a remarkable inequality of Talagrand [Tal94] that improves upon
the classical Poincaré inequality [Che82] (see also [Che81]). Before stating his result we need to recall some
basic definitions. A function ψ : [0,∞) → R is said to be a Young function if it is convex, increasing and
ψ(0) = 0. If (Ω,A, µ) is a probability space and ψ is a Young function, the Orlicz norm of an A-measurable
function h in Lψ(µ) is defined by

‖h‖ψ := inf

{

λ > 0 : Eµψ

( |h|
λ

)

6 1

}

.

With this notation we have the following:
4



Theorem 2.3 (Talagrand). Let ϕ(t) := t2

log (e+t) , t > 0. For any smooth function f we have:

Var(f) 6 C

n
∑

i=1

‖∂if‖2ϕ.

Talagrand proved and stated his theorem in the case of the discrete cube (with the normalized counting
measure) instead of the Gaussian. The above statement follows by a standard application of the central limit
theorem or by mimicking his proof for the cube in Gauss’ space (see also [CEL12] for alternative versions).

On the real line Bobkov and Houdré in [BH99] proved that for convex functions the reverse inequality is
also true.

Theorem 2.4 (Bobkov-Houdré). There exist universal constants c1, c2, c3 > 0 such that for every convex
function f : R → R one has

c1

∫

R

|f ′(t)|2
1 + t2

dγ(t) 6 Varγ(f) 6 c2‖f ′‖2ϕ 6 c3

∫

R

|f ′(t)|2
1 + t2

dγ(t).

Actually we are going to use only the last inequality which is a consequence of Talagrand’s theorem (see
[BH99, Lemma 5]). We will also need the following:

Lemma 2.5. Let g be a non-decreasing and convex map on R. Then, we have:

(1) For all p > 0,

‖(g −med(g))+‖pLp(γ)
> σpp [g

′(0+)]p,

where σpp = 2p/2

2
√
π
Γ(p+1

2 ) =: 1
2E|ζ|p, ζ ∼ N(0, 1).

(2) Let s :=
√

Var(g)/‖g′‖L2(γ). Then

Var[g(ζ)] 6 C1

[

g′
(

C1

s
−
)]2

.

(3) For any t > 0 we have:

P

(

g(ζ)− g(0) > t
√

Var[g(ζ)]
)

> 1− Φ

(

C1

(

1

s
+ t

))

,

where C1 > 0 is a universal constant.

Proof. Note that convexity of g shows that g(t) − g(0) > tg′(0+) for all t > 0. Combining this with the
monotonicity we obtain:

‖(g −med(g))+‖pp =
∫ ∞

0

[g(t)− g(0)]p dγ(t) >
(g′(0+))p√

2π

∫ ∞

0

tpe−t
2/2 dt,

for all p > 0. This proves (1).

By Theorem 2.4 we have:

1

c3
Var[g(ζ)] 6

∫

R

(g′(t))2

1 + t2
dγ(t) 6 g′(λ−)2

∫

R

dγ(t)

1 + t2
+

∫ ∞

λ

g′(t)2

1 + t2
dγ(t)

6 (g′(λ−))2 + ‖g′‖2L2
/λ2,

for all λ > 0. We choose λ =
√
2c3/s. This proves (2).

Let s =
√

Var(g)/‖g′‖L2 and a = C1/s, where C1 > 0 is the constant from part (2). Note that for any
x > a we have:

g(x) > g(a) + (x − a)g′(a+) > g(0) +

√

Var(g)√
C1

(x− a),(2.1)

where we have used part (2) and the monotonicity of g. Hence, for any t > 0, we obtain:
{

x : x > a+ t
√

C1

}

⊆
{

x : g(x)− g(0) > t
√

Var[g(ζ)]
}

5



where we have used (2.1). Finally,

P

(

g(ζ)− g(0) > t
√

Var[g(ζ)]
)

> 1− Φ
(

a+
√

C1t
)

,

for all t > 0. This completes the proof. �

For any Lipschitz map f on R
n, recall the over-concentration and the super-concentration constant:

ov(f) =

√

Var[f(Z)]

Lip(f)
and s(f) =

√

Var[f(Z)]

(E‖∇f(Z)‖22)
1/2

.

Note that in view of the Gaussian Poincaré inequality [Che82] we have:

ov(f) 6 s(f) 6 1.(2.2)

Our first main result is the following inequality:

Proposition 2.6. Let f : Rn → R be a convex function with f ∈ L2(γn). Then,

P

(

f(Z) >M + t
√

Var[f(Z)]
)

> 1− Φ

(

C

(

t+
1

s(f)

))

, t > 0,

In particular, if f is not super-concentrated, i.e. s(f) ≃ 1, we have

P

(

|f(Z)−M | > t
√

Var[f(Z)]
)

> ce−Ct
2

, t > 0,

where M = med(f) and C, c > 0 are universal constants.

Proof. Let f∗ be the Gaussian rearrangement of f . Then, f∗ is convex, non-decreasing, equi-measurable
with f (Lemma 2.2). It follows that:

P

(

f(Z)−M > t
√

Var(f)
)

= P

(

f∗(ζ) − f∗(0) > t
√

Var(f∗)
)

> 1− Φ

(

C

(

t+
1

s(f∗)

))

,

for all t > 0, where in the last step we have used Lemma 2.5 (3). Again by Lemma 2.2 we have that
s(f) 6 s(f∗), and the result follows. �

Using the above distributional inequality we may derive lower estimates for the centered moments in a
standard fashion.

Corollary 2.7. Let f : Rn → R be a convex function with f ∈ L2(γn) and M = med(f). Then for every
p > C/s(f)2 we have

(E|f(Z)−M |p)1/p > c1
√
p
√

Var[f(Z)],(2.3)

while for 2 6 p 6 C/s(f)2 we get

(E|f(Z)−M |p)1/p > c2s(f)
√
p
√

Var[f(Z)].(2.4)

Moreover, if f is also Lipschitz we obtain

(E|f(Z)−M |p)1/p > c′2ov(f)s(f)
√
pLip(f), p > 2,

where C, c1, c2, c
′
2 > 0 are universal constants.

Proof. By Proposition 2.6 we have that for every t > 1/s(f),

P

(

f(Z) >M + t
√

Var[f(Z)]
)

> Φ (−C1t) > e−C2t
2

.

It follows that

E|f(Z)−M |p = p (Var[f(Z)])
p/2
∫ ∞

0

tp−1
P

(

|f(Z)−M | > t
√

Var[f(Z)]
)

dt

> p (Var[f(Z)])p/2
∫ ∞

1/s(f)

tp−1e−C2t
2

dt

=
p

2

(

C−1
2 Var[f(Z)]

)p/2
∫ ∞

C2/s(f)2
t
p
2−1e−t dt.

6



Using the elementary inequality

a > 0, q > a+ 1, q

∫ ∞

a

tq−1e−t dt > (q/e)q,

we conclude the assertion for p > 2C2

s(f)2 . For 2 6 p 6 2C2

s(f)2 we clearly have

(E|f(Z)−M |p)1/p >
√
p
√

Var[f(Z)]
√
p

>
s(f)√
2C2

√
p
√

Var[f(Z)].

If f is also Lipschitz the assertion follows immediately by using the definitions. �

We are ready to prove our second main result. As a consequence we obtain the announced Theorem 1.1
in the Introduction. In fact we prove something slightly more:

Theorem 2.8. Let f : Rn → R be a convex, Lipschitz map with L = Lip(f). Then, we have the following:

P (|f(Z)−med(f)| > tL) > cτ4e−C
t2

τ2 log(e/τ), t > 0,(2.5)

where τ = ov(f)s(f). In particular, we get:

P (|f(Z)−med(f)| > tL) > c(ov(f))8e
−C t2

(ov(f))4
log(e/ov(f))

, t > 0,(2.6)

where C, c > 0 are universal constants.

Proof. We prove only the first assertion, since the particular case follows from (2.5) by taking into account
(2.2). For this end, set M = med(f) and note that from Corollary 2.7 we have:

(E|f(Z)−M |p)1/p > c1τ
√
pL, p > 2.(2.7)

Set t0 := c1τ/
√
2. Then, for any t > 0 we may choose p = p(t) = 2max{1, (t/t0)2} and take into account

(2.7) to write:

P (|f(Z)−M | > tL) > P

(

|f(Z)−M | > 1

2
‖f −M‖p

)

> (1 − 2−p)2
( ‖f −M‖p
‖f −M‖2p

)2p

,

where in the last step we have used the Paley-Zygmund inequality, see e.g. [BLM13]. One more application
of (2.7) in conjunction with ‖f −M‖2p 6 C1

√
pL, yields:

P (|f(Z)−M | > tL) >
1

2
(c2τ)

2p > c3τ
4 exp(−C3(t/t0)

2 log(e/τ)),

as required. The proof is complete. �

Summarizing we conclude the following characterization of concentration in terms of the Lipschitz con-
stant.

Corollary 2.9. Let f : Rn → R be convex and Lipschitz map with L = Lip(f). The following are equivalent:

a. For every t > 0 we have:

P(|f(Z)−med(f)| > tL) > a1 exp(−t2/A2
1).

b. For all p > 2 we have:

(E|f(Z)−med(f)|p)1/p > A2
√
pL.

c. We have:

Var[f(Z)] > A2
3L

2,

where Z ∼ N(0, In) and the constants a1, A1, A2, A3 > 0 depend on each other.

Proof. Note that the implications (a) ⇒ (b) ⇒ (c) are immediate and they hold for any measurable function.
The implication (c) ⇒ (a) follows from Theorem 2.8. �
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Remarks 2.10. 1. All previous results can be equivalently stated with the mean, in the light of

1

2
(E|ξ − ξ′|p)1/p 6 (E|ξ −m|p)1/p 6 2 (E|ξ − Eξ|p)1/p 6 2 (E|ξ − ξ′|p)1/p ,

for all 1 6 p <∞, where ξ is any random variable, m a median of ξ, and ξ′ an independent copy of ξ.

2. It might worth mentioning that (2.3), should be compared with the known fact for norms [LMS98]:

(E |h(Z)−M |p)1/p > c
√
pLip(h), p > k(h),

for any norm h on R
n, where k(h) = (E[h(Z)]/Lip(h))2.

3. In the range t > 1, we obtain dependence A1 > cA3 which is clearly optimal. Furthermore, if s(f) ≃ 1,
the above dependence also holds for the full range of t. However, this may suggest that the restriction on t
in Proposition 2.6 (or the restriction on p in Corollary 2.7) is redundant. The following example shows that
this is not the case.

Example 2.11. Let α≫ 1 and let gα : R → R be the function defined by:

gα(t) = cα(t− α)+, cα = (1− Φ(α))−1/2.

Then, s(gα) ≃ α−1 and

P

(

gα −med(gα) > t
√

Var(gα)
)

6 1− Φ

(

α+
ct

αcα

)

,

for all t > 0.
Indeed; we have the asymptotic estimate

∫ ∞

α

dγ(t)

1 + t2
∼ 1− Φ(α)

α2
, α → ∞.(2.8)

Thus, we may write:

∫

(g′α(t))
2

1 + t2
dγ(t) = c2α

∫ ∞

α

dγ(t)

1 + t2
≃ α−2, α > 2.

We may compute that:

Var(gα) ≃
∫

(g′α(t))
2

1 + t2
dγ(t) ≃ α−2.

In addition we have:
∫

(g′α(t))
2 dγ(t) = c2α

∫ ∞

α

dγ(t) = 1.

It follows that s(gα) ≃ 1/α whereas g′α(t) = 0 for t < α and g′α(t) = cα > 0 for t > α. ✷

In particular, the above example shows that for t ≃ 1
s(gα) the estimate in Proposition 2.6 is attained

and that one cannot expect super-gaussian behavior for t ≪ 1
s(gα) . The discussion shows that there are

mainly two reasons for which the classical concentration may fail to give the correct asymptotics. First the
super-concentration constant may affect the range of t’s and second the over-concentration constant which
is apparent on the lower estimate.

2.1. More comments on the method. In this subsection we discuss further applications of the methods
and techniques used in our result. Mainly, we present several applications of Ehrhard’s inequality which we
believe are of independent interest.

8



2.1.1. On the skewness of Gaussian distribution for convex functions. Here we show an immediate conse-
quence of Ehrhard’s inequality in the spirit of Kwapien’s remark from [Kwa94]. The author in [Kwa94]
shows that for any convex function f on R

n the expectation of f(Z), Z ∼ N(0, In) is at least as large as
its median. This fact can be interpreted as the distribution of f(Z) being right-skewed. Another fact which
illustrates this behavior is that the distribution must deviate less below its median than above its median,
which is intuitively clear. Next statement is a rigorous proof of this fact.

Proposition 2.12. Let f : Rn → R be a convex map. Then, for any t > 0 we have:

P(f(Z) 6 med(f)− t) 6 P(f(Z) > med(f) + t), Z ∼ N(0, In).

Proof. Let m = med(f). We may assume without loss of generality that P(f(Z) 6 m) = 1/2 (otherwise
inf f = m and there is nothing to prove). The map t 7→ g(t) = Φ−1 ◦ γn(f 6 t) is concave and g(m) = 0.
Thus,

g(m− t) + g(m+ t)

2
6 g

(

(m− t) + (m+ t)

2

)

= g(m) = 0.

Finally, recall the property

−g(s) = −Φ−1[γn(f 6 s)] = Φ−1[1− γn(f 6 s)] = Φ−1[γn(f > s)], s ∈ R.

Therefore,

Φ−1 ◦ P(f(Z) 6 m− t) = g(m− t) 6 −g(m+ t) = Φ−1 ◦ P(f(Z) > m+ t).

The result follows by the monotonicity of Φ−1. ✷

2.1.2. A small deviation inequality revisited. The following theorem has been proved in [PV17a] with a worst
(universal) constant. The proof in [PV17a] uses again Ehrhard’s inequality but one works with the inverse of
the Gaussian rearrangement. Here we give an alternative short proof using Gaussian rearrangements directly
and we obtain the optimal constant.

Theorem 2.13. Let f : Rn → R be a convex map with f ∈ L1(γn). Then, we have

γn
({

f −med(f) < −t‖(f −med(f))+‖L1(γn)

})

6 Φ

(

− t√
2π

)

, t > 0.

The equality is attained for affine maps x 7→ 〈x, u〉+ v, where u, v ∈ R
n, u 6= 0.

Proof. We may assume without loss of generality that ‖(f −med(f))+‖1 > 0. We introduce the function f∗.
Note that f∗(0) = med(f∗) = med(f) = m and ‖(f∗ −m)+‖L1(γ) = ‖(f −m)+‖L1(γn). Thus, for u > 0 we
may write:

γn(x ∈ R
n : f(x) −m 6 −u) = γ(s ∈ R : f∗(s)− f∗(0) 6 −u) 6 γ(s : (f∗)′(0−) · s 6 −u),

where we have used the facts that f∗ and f are equi-measurable and f∗(s) > f∗(0) + (f∗)′(0−) · s for all
s < 0, since f∗ is convex. Lemma 2.5 shows that:

‖(f∗ −m)+‖L1(γ) >
(f∗)′(0+)√

2π
.(2.9)

Thus, for u = t
√
2π‖f −m‖L1(γn) (t > 0 fixed) we may write:

γn

(

x : f(x)−m 6 −t
√
2π‖(f −m)+‖L1

)

6 γ
(

s : (f∗)′(0−) · s 6 −t
√
2π‖(f∗ −m)+‖L1

)

6 Φ(−t),

where in the last step we have used (2.9). ✷

It is easy to check that the convexity assumption in the above theorem is essential. Consider the following:

Example 2.14 (The convexity cannot be omitted). Consider the sequence of functions gk(t) = t2k+1, k =

1, 2, . . . and note that med(gk) = gk(0) = 0. Also, E(gk −med(gk))+ = E(gk)+ = 2kk!√
2π

. Thus,

P

(

gk(ζ) < −t
√
2πE(gk(ζ))+

)

= Φ
(

−(t2kk!)
1

2k+1

)

.

The latter is smaller than Φ(−t) only when t <
√

2(k!)1/k 6
√
2k.

9



2.1.3. Inequalities for the χ2 distribution. Here we present one more application of Ehrhard’s inequality. We
show that the property that the mapping t 7→ Φ−1 ◦ γn(f 6 t) is concave is shared by other significant
distributions at the cost of fairly restricting the class of convex functions. Namely, we have the following:

Proposition 2.15. Let k ∈ N, k > 2 and let W = (w1, . . . , wn) be a random vector with independent
coordinates such that wj ∼ χ2(k). For any function f : Rn+ → R which is coordinatewise non-decreasing and
convex, the mapping

t 7→ Φ−1 ◦ P(f(W ) 6 t),

is concave.

Proof. Let F : Rkn → R be the function defined by:

F (x11, . . . , x1n, . . . , xk1, . . . , xkn) = f

(

k
∑

i=1

x2i1, . . . ,

k
∑

i=1

x2in

)

.

We may check that F is convex. Hence, if (ζij)
k,n
i,j=1 are independent with ζij ∼ N(0, 1), by Ehrhard’s inequal-

ity we have that the mapping t 7→ Φ−1 ◦P(F (Z) 6 t) is concave, where Z = (ζ11, . . . , ζ1n, . . . , ζk1, . . . , ζkn) ∼
N(0, Ikn). Finally, the observation that for j = 1, 2, . . . , n the random variables

∑k
i=1 ζ

2
ij are independent

and χ2(k), yields that

P(F (Z) 6 t) = P(f(W ) 6 t),

for all t ∈ R. ✷

As an immediate consequence of Proposition 2.15 we have the following:

Corollary 2.16. Let f : Rn → R be 1-unconditional and convex function. Then, the mapping

t 7→ Φ−1 ◦ νn1 (f 6 t),

is concave.

3. An application to finite-dimensional normed spaces

The purpose of this section is to provide an application of the tightness result on the concentration proved
in Theorem 2.8 in the context of norms. Namely, we show that for any given norm on R

n there exists a
5-equivalent norm say, which exhibits optimal Gaussian concentration in terms of its Lipschitz constant.
In turn this implies an instability result for the dependence on ε in the almost isometric version of the
randomized Dvoretzky’s theorem. In order to give the precise statements we have to recall some definitions.

Let ‖ · ‖ be an arbitrary norm on R
n and let X = (Rn, ‖ · ‖). We define the global parameters of X :

b(X) := max{‖θ‖ : ‖θ‖2 = 1}, k(X) := (E‖Z‖/b(X))
2
, Z ∼ N(0, In).

The parameter k(X) is usually referred to as the critical dimension of the normed space X .
First we show the following instability result for the concentration of norms:

Theorem 3.1. There exists an universal constant C > 1 with the following property: for any n > 1 and for
any norm ‖ · ‖ on R

n, there exists a 5-equivalent norm |||·||| such that

P
(
∣

∣|||Z||| − E|||Z|||
∣

∣ > ε
)

>
1

C
exp(−Cε2/b(Y )2), Z ∼ N(0, In),

for all ε > 0, where Y = (Rn, |||·|||).

At this point we should mention that, although for any given norm there exists a 5-equivalent norm for
which the classical concentration is optimal, there are several examples (established recently) which show
that choosing appropriately the position of the norm (via a linear map) one can exhibit better tail estimates;
see [PV15] and [Tik17].
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3.1. Tilted norms and instability of the concentration. Given any norm ‖ · ‖ on R
n, let x∗0 ∈ SX∗

such that ‖x∗0‖2 = b(X), where X = (Rn, ‖ · ‖). For any t > 0 we define the norm

ft(x) = ‖x‖+ t|〈x, x∗0〉|, x ∈ R
n.(3.1)

Let also Xt = (Rn, ft) be the induced normed space. In the next easily verified lemma we collect some of
the basic properties of the norms ft:

Lemma 3.2. Let X = (Rn, ‖ · ‖) be a normed space and let (ft)t>0 be the family of norms defined above.

a. For all x ∈ R
n and t > 0 we have: ‖x‖ 6 ft(x) 6 (1 + t)‖x‖.

b. For all t > 0 we have: bt ≡ sup{ft(θ) : ‖θ‖2 = 1} = (1 + t)b = Lip(ft) and kt ≡ k(Xt) =

(1 + t)−2(
√

k(X) + t
√

2/π)2.

c. For t > 4, we have
√

Var[ft(Z)] >
1
8Lip(ft).

Proof. a. Note that for all x, ‖x‖ 6 ft(x) 6 ‖x‖+ t‖x‖ · ‖x∗0‖∗ 6 (1 + t)‖x‖.
b. Let ‖θ0‖2 = 1 with 〈x∗0, θ0〉 = b. Then, ft(θ0) = b+ tb = (1 + t)b. In addition, we have:

Eft(Z) = E‖Z‖+ tbE|ζ| = b
√
k + tb

√

2/π, ζ ∼ N(0, 1).(3.2)

c. We use the inequality
√

Var(ξ1)−
√

Var(ξ2) 6
√

Var(ξ1 + ξ2) to write:
√

Var[ft(Z)] >
√

Var(t|〈Z, x∗0〉|)−
√

Var‖Z‖ = t‖x∗0‖2
√

Var|ζ| −
√

Var‖Z‖ > tb
√

Var|ζ| − b.

We choose t > 4 > 2/
√

Var|ζ| to conclude.
✷

Theorem 3.1 immediately follows from the next result:

Proposition 3.3. Let ‖ · ‖ be a norm on R
n and let t > 4. The tilted norms (ft) defined in (3.1) satisfy:

P(|ft(Z)− Eft(Z)| > ε) > c2e
−C2ε

2/b2t ,

for all ε > 0, where C2, c2 > 0 are universal constants.

Proof. From Lemma 3.2, note that
√

Var[ft(Z)] >
1
8Lip(ft) for all t > 4. Thus, by (2.6) we obtain:

P (|ft(Z)− E[ft(Z)]| > εLip(ft)) > c2e
−C2ε

2

,

for all ε > 0, as required. ✷

3.2. Random almost spherical sections of convex bodies. The critical dimension k(X) of a normed
space was introduced by V. Milman in his work [Mil71] on the random version of Dvoretzky’s theorem
[Dvo61]:

Theorem 3.4 (Dvoretzky 1961, V. Milman 1971). For any ε ∈ (0, 1) there exists η(ε) > 0 with the following
property: For any n > 1 and any norm ‖ · ‖ on R

n, the random k-dimensional subspace F (with respect to
the Haar measure νn,k on the Grassmannian Gn,k) satisfies with high probability

(1 − ε)M 6 ‖y‖ 6 (1 + ε)M‖y‖2, y ∈ F,(3.3)

as long as k 6 η(ε)k(X), where M =
∫

Sn−1 ‖θ‖ dσ(θ) and σ is the uniform probability measure on Sn−1.

V. Milman’s proof provides η(ε) ≃ ε2/ log(1/ε) while Gordon [Gor85] and Schechtman [Sch89] proved
that one can always have η(ε) ≃ ε2.

For any given normed space X = (Rn, ‖ · ‖) and ε ∈ (0, 1) we define k(X, ε) the maximal positive integer
k 6 n for which the random k-dimensional subspace F of X is (1 + ε)-spherical, i.e.

max
z∈SF

‖z‖/ min
z∈SF

‖z‖ < 1 + ε,

with probability at least 2/3.
With this terminology Theorem 3.4 implies that k(X, ε) > cε2k(X), for any normed space X = (Rn, ‖ ·‖).

Note that there are spaces for which the dependence on ε in the above asymptotic formula is much better, e.g.
k(ℓn∞, ε) ≃ ε

log(1/ε)k(ℓ
n
∞); see [Sch07] and [Tik14]. The reader may consult [MS86] for further background on

the local theory of normed spaces.
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Using the construction introduced in previous paragraph we may show that for any norm ‖ · ‖ on R
n

there exists a t-equivalent norm ft(·) such that k(Xt, ε) ≃ ε2k(Xt) for all, not so large, t > 0. In geometric
language this can be interpreted as follows: in the space of centrally symmetric n-dimensional convex bodies,
the ones which admit random almost spherical sections, with high probability, in dimension at most Cε2k(X)
form a C0-net with respect to the geometric distance. More precisely we prove the following:

Theorem 3.5 (instability). There exists an universal constant C > 1 with the following property: For any

normed space X = (Rn, ‖ · ‖) with C 6 t 6
√

k(X), the normed spaces Xt = (Rn, ft) defined in (3.1) satisfy:

a. For all x ∈ R
n we have ‖x‖ 6 ft(x) 6 2t‖x‖.

b. For every ε ∈ (0, 1/3) one has k(Xt, ε) ≃ ε2k(Xt).

Proof. The argument follows the same lines as in [Sch07] (see also [PVZ17, Section 5]), hence we roughly
sketch the details for reader’s convenience. Let ε ∈ (0, 13 ) and let the set of k-dimensional subspaces of Xt,

Fε :=
{

F ∈ Gn,k | (1 + ε)−1MF 6 ft(θ) 6 (1 + ε)MF ∀θ ∈ SF
}

,

whereMF =
∫

SF
ft(u) dσF (u) and σF denotes the uniform probability measure on the sphere SF = Sn−1∩F .

Define further,

Bε :=
{

F ∈ Fε | (1− 2ε)
E[ft(Z)]

E‖Z‖2
6MF 6 (1 + 2ε)

E[ft(Z)]

E‖Z‖2

}

.

An application of [Sch07, Lemma 1] yields:

νn,k(Fε) = νn,k(Fε \ Bε) + νn,k(Bε)

6

[

P

({

ft(Z) >
1 + 2ε

1 + ε

E[ft(Z)]

E‖Z‖2
‖Z‖2 or ft(Z) 6 (1 + ε)(1 − 2ε)

E[ft(Z)]

E‖Z‖2
‖Z‖2

})]k

+

[

P

({

1− 2ε

1 + ε
‖Z‖2

E[ft(Z)]

E‖Z‖2
6 ft(Z) 6 (1 + ε)(1 + 2ε)

E[ft(Z)]

E‖Z‖2
‖Z‖2

})]k

.

In order to proceed we will need the following estimate:

Lemma 3.6. For any C4 6 t 6
√

k(X) and for every 0 < δ < 1/3 we have:

c4e
−C4δ

2kt 6 P

(

ft(Z) 6
(1 − δ)E[ft(Z)]

E‖Z‖2
‖Z‖2 or ft(Z) >

(1 + δ)E[ft(Z)]

E‖Z‖2
‖Z‖2

)

6 C4e
−c4δ2kt .

Taking Lemma 3.6 for granted it suffices to consider 1/
√
kt < ε < 1/3, hence we obtain:

νn,k(Fε) 6 Ck5 e
−kε2kt/C5 + (1 − C−1

5 e−C5ε
2kt)k

6 e
− 1

2C5
kε2kt + 1− C−1

5 e−C5ε
2kt ,

provided that ε2kt > 2C5 logC5. Now assuming that νn,k(Fε) > 1− e−βk > 2/3 for some universal constant
β > 0 and restricting further max{2βC5, 2C5 logC5} < ε2kt, we obtain:

1− e−2C5ε
2kt > 1− C−1

5 e−C5ε
2kt > 1− e−βk − e−

1
2C5

kε2kt > 1− 2e−βk > 1− e−c0βk,

which implies k 6 2C5

c0β
ε2kt, as required. ✷

Proof of Lemma 3.6. Let ξ = ft(Z)/E[ft(Z)] and η = ‖Z‖2/E‖Z‖2. For any s ∈ (0, 1) we define the sets:

As = {|ξ − η| > sη}, Bs = {|η − 1| > s}, Γs = {|ξ − 1| > s}.
Our aim is to show that:

c4e
−C4δ

2kt 6 P(Aδ) 6 C4e
−c4δ2kt .

Note that for any 0 < s < 1/2 we have

P(As) 6 P(Γs/4) + P(Bs/2).

Using the Gaussian concentration for ft(·) and ‖ · ‖2 we infer:

P(Aδ) 6 C0e
−c0δ2kt + C0e

−c0δ2n 6 2C0e
−c0δ2kt , 0 < δ < 1/3,
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where we have also used the general fact that k(X) 6 n. This proves the rightmost inequality.
For the lower estimate note that for any 0 < s < 1 one has

P(As/3) > P(Γs)− P(Bs/3).

Using the Gaussian concentration for ‖ · ‖2 and Proposition 3.3 we obtain:

P(Aδ) > c2e
−9C2δ

2kt − C0e
−c0δ2n,

provided that t > 4, where C2 > 0 is the constant from Proposition 3.3. The latter is larger than c2
2 e

−9C2δ
2kt

provided that (c0n − 9C2kt)δ
2 > log(2C0/c0). Note that since 4 6 t 6

√

k(X), Lemma 3.2.b yields
kt 6 C3t

−2k(X) 6 C3n/t
2, thus it suffices to have (c0n− 9C2C3t

−2n)δ2 > log(2C0/c0). The last one holds

if t > max{4,
√

18C2C3/c0} and δ >
√

2
c0n

log(2C0

c0
). The assertion of the lemma follows. ✷

Acknowledgements. The author would like to thank Grigoris Paouris for posing him the question about
the tightness of the concentration and for many fruitful discussions. He would also like to thank Peter
Pivovarov for useful advice and comments, Ramon van Handel and Emanuel Milman for valuable remarks.

References
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[Kwa94] S. Kwapień. A remark on the median and the expectation of convex functions of Gaussian vectors. In Probability in

Banach spaces, 9 (Sandjberg, 1993), volume 35 of Progr. Probab., pages 271–272. Birkhäuser Boston, Boston, MA,
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