
The 14th International Conference on Dependable Systems, Services and Technologies, DESSERT’2024
11-13 October, 2024, Athens, Greece

A Vector Division Algorithm for Constructing
Orthogonal Latin Hypercube Designs

Maria Boufi
Department of Mathematics

National Technical University of Athens
Athens, Greece

marboufi@gmail.com

Christos Koukouvinos
Department of Mathematics

National Technical University of Athens
Athens, Greece

ckoukouv@math.ntua.gr

Marilena Mitrouli
Department of Mathematics

National and Kapodistrian University of Athens
Athens, Greece

mmitroul@math.uoa.gr

Abstract—Latin hypercube designs are commonly used in
many applications such as, computer and physical experiments,
data selection by sampling techniques and recently in machine
learning. The aim of this work is to develop an algorithm
concerning their construction. The proposed algorithm is based
on a vector division procedure and employs only permutations
and negations of vectors. Therefore, it produces the orthogonal
Latin hypercube designs cost effectively without performing any
floating point computations. The algorithm is compared with
other existing methods and it is proved that the developed method
produces Latin hypercube designs that are isomorphic with the
ones produced by other methods.

Keywords—Latin hypercube design, vector division, permuta-
tions, negations, effective algorithm

I. INTRODUCTION

Combinatorial designs are widely used in various fields
of scientific research. Depending on the case, designs with
special properties are required. A commonly used category
of such designs are Latin hypercube designs. Introduced by
McKay, Beckman and Conover [6], these designs are exten-
sively utilized for planning computer experiments, due to their
space-filling properties. A lot of research has been conducted
concerning methods for their construction.

A Latin hypercube design (LHD) is an n ×m array, each
column of which is a permutation of the elements of the set
S
(1)
n = {1, 2, ..., n}. We say that a LHD is in its centered form,

if each column is a permutation of the elements of the set
S
(2)
n = {v1, v2, ..., vn}, where vi = i− (n+ 1)/2, 1 ≤ i ≤ n.

In computer experiments, the rows of a design represent the
runs, while the columns represent the factors.

A LHD will said to be symmetric if for any row d, −d is
also one of the rows in the design.

In statistical research, it is often essential to examine the
correlation between factors of a design. For this purpose, the
notion of the correlation matrix is introduced. For any n×m
Latin hypercube design L, we define

R =
12

n(n2 − 1)
LTL

to be the correlation matrix of L. An n×m LHD L is called
orthogonal (abbreviated OLHD) if and only if R = Im, where
Im is the identity matrix of order m. If a LHD is symmetric
and orthogonal, we will use the abbreviation SOLHD.

If a LHD L is orthogonal, then the interchanging of columns
and the multiplication of columns by −1 does not affect the
orthogonality. Same holds for the symmetry.

Orthogonal Latin hypercube designs are useful in many
applications. Hence, a lot of research is focused on their
construction. Some examples are [10], where OLHDs of
orders 2m×(2m−2) and (2m+1)×(2m−2), for m ≥ 2, are
constructed, [1], where the previous construction is extended
in order to provide more columns and [4], where an algorithm
for creating OLHDs of n runs, n ≤ 20, is presented. Some
interesting constructions can be found in [5] and [8]. For
more recent constructions see [2], [3] and [9].

The structure of the paper is as follows: In section 2, we
present an algorithm for constructing symmetric orthogonal
Latin hypercube designs of order 2t × 2t−1 and we illustrate
our method with an example. In section 3, we compare our
algorithm with a method introduced by Sun et al. [7] and
we show that the two approaches give isomorphic results. In
section 4 are drawn conclusions.

Throughout the paper we will work with LHDs in their
centered form.

II. THE ALGORITHM

Next, we present an algorithm for constructing SOLHDs of
order 2t×2t−1, ∀t ∈ N. The core element of the algorithm is a
Vector Division (VD) procedure which divides a given vector
into parts of a specific length. Then it reverses the order of
the elements of each part and negates the second half of each
reversed part.

Beginning with the first column

c1 = 1
2

[
1 3 . . . 2t − 3 2t − 1 −1 −3 . . . −(2t − 3) −(2t − 1)

]
,

we apply the VD procedure so that c1 is divided into parts
of length 2, 22, 23, . . . , 2t−1 and each part is reversed and
negated as previously described. Subsequently, we apply the
VD procedure to the new columns that have been created and
we continue in a similar way, i.e. from each new column that
is created we construct more new columns. The way in which
we divide every column in order to create new ones depends
on how the column itself was constructed. More specifically,

979-8-3315-1093-0/24/$31.00 © 2024 IEEE

if a column ci was made by dividing a previous column into
parts of length 2s, then ci will be divided into parts of lengths
2s+1, 2s+2, ..., 2t−1 and will provide t−1−s new columns. If
a column was made by dividing a previous column into parts
of length 2t−1, then it will not be used for constructing new
columns. The algorithm ends when there are no new columns
that can be created.

The way in which the elements of each new column
are partitioned and rearranged guarantees that every column
constructed is orthogonal to all the previous ones. Also, the
number of columns that will be created is 2t−1.

Since we aim to construct a symmetric OLHD L, we only
need to construct the first half of each column of the design.
The second half can be made from the first half by negating
it. For ease of reference, we will use ci to denote the first
half of the i-th column of L, i.e. the whole column will be
[cTi − cTi]

T . Thus, our algorithm constructs the upper half
C = [c1 c2 . . . ct−1] of the SOLHD L and then obtains L as
[CT −CT]T . Also, we can omit the multiplication by 1

2 in the
steps of the method, since it does not alter the orthogonality
or the symmetry, and we can multiply all the columns that we
will have created by 1

2 in the end.

A. Vector Division Algorithm
Throughout the algorithm we will use the following notation:

- a : s : b denotes the vector [a, a+ s, a+ 2s, ..., a+ ns],
with a + ns ≤ b, i.e. the vector that begins with a and
moves with step s until it surpasses b. If s = 1, we denote
a : b.

- v(i) denotes the i-th entry of vector v. If i is a vector,
v(i) denotes the vector comprised by the corresponding
entries of v.

- A(i, j) denotes the (i, j) entry of matrix A ∈ Rn×m. If i
and/or j are vectors, then A(i, j) denotes the submatrix of
A comprised by the corresponding entries of A as defined
by i and j. A(:, j) will be shorthand for A(1 : n, j) and
A(i, :) will be shorthand for A(i, 1 : m).

We will also consider the following functions readily available:
- zeros(n,m) returns an n×m matrix with all its entries

equal to zero.
- length(v) returns the length of vector v.
First, we create the function VD that reads a vector c and

a value k and applies the VD procedure on c by dividing it
into parts of length 2k, reversing the order of the elements of
each part and negating the second half of each part.

function c=VD(c,k)
m← length(c)/(2k)
%m is the number of the parts in which c will be divided
for i = 1 : m

%Reversion of the elements of part i
c(i · 2k − 2k + 1 : i · 2k)← c(i · 2k : −1 : i · 2k − 2k + 1)
%Negation of the second half of part i
c(i · 2k − 2k + 1 + 2k−1 : i · 2k)←
−c(i · 2k − 2k + 1 + 2k−1 : i · 2k)

end

In the following example, we demonstrate the VD pro-
cedure, as executed by function V D(c, k), for c =[
1 3 5 7 9 11 13 15

]T
and k = 1.

Example 1. Function V D(c, k), for c =[
1 3 5 7 9 11 13 15

]T
and k = 1

m = 8/21 = 4, i.e. c will be divided into 4 parts of length 2:

[1 3 5 7 9 11 13 15]T

Iteration i = 1, . . . , 4 begins:
i = 1
c(i · 2k − 2k + 1 : i · 2k) ≡ c(1 : 2)←

c(i · 2k : −1 : i · 2k − 2k + 1) ≡ c(2 : −1 : 1)

c = [3 1 5 7 9 11 13 15]T

c(i · 2k − 2k + 1 + 2k−1 : i · 2k) ≡ c(2)←
−c(i · 2k − 2k + 1 + 2k−1 : i · 2k) ≡ −c(2)

c = [3 −1 5 7 9 11 13 15]T

i = 2
c(3 : 4)← c(4 : −1 : 3)

c = [3 −1 7 5 9 11 13 15]T

c(4)← −c(4)

c = [3 −1 7 −5 9 11 13 15]T

i = 3
c(5 : 6)← c(6 : −1 : 5)

c = [3 −1 7 −5 11 9 13 15]T

c(6)← −c(6)

c = [3 −1 7 −5 11 −9 13 15]T

i = 4
c(7 : 8)← c(8 : −1 : 7)

c = [3 −1 7 −5 11 −9 15 13]T

c(8)← −c(8)

c = [3 −1 7 −5 11 −9 15 −13]T

Iteration i = 1, . . . , 4 ends
Finally,

c = [3 −1 7 −5 11 −9 15 −13]T

Next, we present the function LHD that reads a value t
and returns a SOLHD of order 2t × 2t−1. As we mentioned
before, depending on how a column was constructed, we
apply the VD procedure accordingly in order to make new
columns. Thus, we need a 1×2t−1 vector d whose every entry
d(i) stores the information needed in order to construct new
columns from column ci. More specifically, d(i) will have a
value s which will correspond to the lengths 2s, 2s+1, ..., 2t−1

of each part in which column ci will have to be divided. If
d(i) = t, ci will not be used for creating new columns.

function L=LHD(t)
p← 1 %counter for the number of constructed columns
d← zeros(1, 2t−1)
%We create matrix C, where we will store all the
%columns ci = C(:, i) that we will construct.
C ← zeros(2t−1, 2t−1)
%Create c1 = C(:, 1)
C(:, p)← [1 : 2 : 2t − 1]T

d(p)← 1
p← p+ 1
%Construct c2, ..., c2t−1

for i = 1 : 2t−1

if d(i) < t
for j = d(i) : t− 1
C(:, p)← V D(C(:, i), j)
d(p)← j + 1
p← p+ 1

end
end

end
L← 1/2 · [CT ,−CT]T

Complexity of the algorithm

The function LHD, constructs a SOLHD of order 2t×2t−1

without performing any floating point computations and thus
without introducing any rounding error. It requires only per-
mutations and negations of columns that are executed rapidly.
In the next table we demonstrate the execution times required
for the construction of SOLHDs of various orders.

t Time (sec)
4 1.999855041503906 · 10−3

5 3.000020980834961 · 10−3

6 9.000062942504883 · 10−3

7 1.900005340576172 · 10−2

8 4.099988937377930 · 10−2

9 9.299993515014648 · 10−2

10 0.212000131607056
11 0.497999906539917
12 1.203000068664551

Table I
EXECUTION TIMES OF LHD(t), FOR t = 4, . . . , 12

B. An illustrative example

Next, we present the detailed execution of the function
LHD(t), for t = 4, that results in a SOLHD of order 16× 8.

Example 2. Function LHD(t), for t = 4
p← 1, d← zeros(1, 24−1), C ← zeros(23, 23)
C(:, p) ≡ C(:, 1)← [1 : 2 : 24 − 1]

C(:, 1) =
[
1 3 5 7 9 11 13 15

]T
d(p) ≡ d(1)← 1, p← 2
Iteration i = 1, ..., 23 begins:
i = 1
d(i) ≡ d(1) = 1 < t ≡ 4

Iteration j = d(1), ..., 4− 1 = 1, 2, 3 begins:
j = 1
C(:, p) ≡ C(:, 2)← V D(C(:, i), j) ≡ V D(C(:, 1), 1)

C(:, 2) = [3 −1 7 −5 11 −9 15 −13]T

d(p) ≡ d(2)← j + 1 ≡ 1 + 1 = 2, p← 3
j = 2
C(:, p) ≡ C(:, 3)← V D(C(:, i), j) ≡ V D(C(:, 1), 2)

C(:, 3) = [7 5 −3 −1 15 13 −11 −9]T

d(p) ≡ d(3)← j + 1 ≡ 2 + 1 = 3, p← 4
j = 3
C(:, p) ≡ C(:, 4)← V D(C(:, i), j) ≡ V D(C(:, 1), 3)

C(:, 4) = [15 13 11 9 −7 −5 −3 −1]T

d(p) ≡ d(4)← j + 1 ≡ 3 + 1 = 4, p← 5
Iteration j = 1, 2, 3 ends

i = 2
d(i) ≡ d(2) = 2 < t ≡ 4

Iteration j = d(2), ..., 4− 1 = 2, 3 begins:
j = 2
C(:, p) ≡ C(:, 5)← V D(C(:, i), j) ≡ V D(C(:, 2), 2)

C(:, 5) = [−5 7 1 −3 −13 15 9 −11]T

d(p) ≡ d(5)← j + 1 ≡ 2 + 1 = 3, p← 6
j = 3
C(:, p) ≡ C(:, 6)← V D(C(:, i), j) ≡ V D(C(:, 2), 3)

C(:, 6) = [−13 15 −9 11 5 −7 1 −3]T

d(p) ≡ d(6)← j + 1 ≡ 3 + 1 = 4, p← 7
Iteration j = 2, 3 ends

i = 3
d(i) ≡ d(3) = 3 < t ≡ 4

Iteration j = d(3), ..., 4− 1 = 3 begins:
j = 3
C(:, p) ≡ C(:, 7)← V D(C(:, i), j) ≡ V D(C(:, 3), 3)

C(:, 7) = [−9 −11 13 15 1 3 −5 −7]T

d(p) ≡ d(7)← j + 1 ≡ 3 + 1 = 4, p← 8
Iteration j = 3 ends

i = 4
d(i) ≡ d(4) = 4 ̸< t ≡ 4
i = 5
d(i) ≡ d(5) = 3 < t ≡ 4

Iteration j = d(5), ..., 4− 1 = 3 begins:
j = 3
C(:, p) ≡ C(:, 8)← V D(C(:, i), j) ≡ V D(C(:, 5), 3)

C(:, 8) = [−11 9 15 −13 3 −1 −7 5]T

d(p) ≡ d(8)← j + 1 ≡ 3 + 1 = 4, p← 9
Iteration j = 3 ends

i = 6

d(i) ≡ d(6) = 4 ̸< t ≡ 4
i = 7
d(i) ≡ d(7) = 4 ̸< t ≡ 4
i = 8
d(i) ≡ d(8) = 4 ̸< t ≡ 4
Iteration i = 1, ..., 23 ends
L← 1/2 · [CT ,−CT]T

Finally,

L =
1

2



1 3 7 15 −5 −13 −9 −11
3 −1 5 13 7 15 −11 9
5 7 −3 11 1 −9 13 15
7 −5 −1 9 −3 11 15 −13
9 11 15 −7 −13 5 1 3
11 −9 13 −5 15 −7 3 −1
13 15 −11 −3 9 1 −5 −7
15 −13 −9 −1 −11 −3 −7 5
−1 −3 −7 −15 5 13 9 11
−3 1 −5 −13 −7 −15 11 −9
−5 −7 3 −11 −1 9 −13 −15
−7 5 1 −9 3 −11 −15 13
−9 −11 −15 7 13 −5 −1 −3
−11 9 −13 5 −15 7 −3 1
−13 −15 11 3 −9 −1 5 7
−15 13 9 1 11 3 7 −5



.

By evaluating the correlation matrix of L, we get

R =
12

16(162 − 1)
LTL = I8,

which means that L is orthogonal.

III. COMPARISON WITH OTHER METHODS

In [7], Sun, Lin and Liu developed a method attaining
the construction of symmetric orthogonal Latin hypercube
designs of order 2t × 2t−1, t ∈ N. Next, we briefly describe
their approach.

The Sun et al. method

Step 1. For c = 1, let

S1 =

[
1 1
1 −1

]
, T1 =

[
1 2
2 −1

]
.

Step 2. For c > 1, define Sc and Tc as

Sc =

[
Sc−1 −S∗

c−1

Sc−1 S∗
c−1

]
,

Tc =

[
Tc−1 −(T ∗

c−1 + 2c−1S∗
c−1)

Tc−1 + 2c−1Sc−1 T ∗
c−1

]
,

where the ∗ operator works on any matrix with an even
number of rows by multiplying the entries of the top half of the
matrix by −1 and leaving those in the bottom half unchanged.

Step 3. Let Hc = Tc − Sc/2, Lc = (HT
c ,−HT

c)
T

Example 3. For c = 1:

S1 =

[
1 1
1 −1

]
, T1 =

[
1 2
2 −1

]
,

H1 =
1

2

[
1 3
3 −1

]
and

L1 =
1

2


1 3
3 −1
−1 −3
−3 1

 .

For c = 2:

S2 =


1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

 ,

T2 =


1 2 3 4
2 −1 −4 3
3 4 −1 −2
4 −3 2 −1

 ,

H2 =
1

2


1 3 5 7
3 −1 −7 5
5 7 −1 −3
7 −5 3 −1

 and

L2 =
1

2



1 3 5 7
3 −1 −7 5
5 7 −1 −3
7 −5 3 −1
−1 −3 −5 −7
−3 1 7 −5
−5 −7 1 3
−7 5 −3 1


.

For c = 3:

S3 =



1 1 1 1 1 1 1 1
1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1


,

T3 =



1 2 3 4 5 6 7 8
2 −1 −4 3 6 −5 −8 7
3 4 −1 −2 −7 −8 5 6
4 −3 2 −1 −8 7 −6 5
5 6 7 8 −1 −2 −3 −4
6 −5 −8 7 −2 1 4 −3
7 8 −5 −6 3 4 −1 −2
8 −7 6 −5 4 −3 2 −1


,

H3 =
1

2



1 3 5 7 9 11 13 15
3 −1 −7 5 11 −9 −15 13
5 7 −1 −3 −13 −15 9 11
7 −5 3 −1 −15 13 −11 9
9 11 13 15 −1 −3 −5 −7
11 −9 −15 13 −3 1 7 −5
13 15 −9 −11 5 7 −1 −3
15 −13 11 −9 7 −5 3 −1


and

L3 =
1

2



1 3 5 7 9 11 13 15
3 −1 −7 5 11 −9 −15 13
5 7 −1 −3 −13 −15 9 11
7 −5 3 −1 −15 13 −11 9
9 11 13 15 −1 −3 −5 −7

11 −9 −15 13 −3 1 7 −5
13 15 −9 −11 5 7 −1 −3
15 −13 11 −9 7 −5 3 −1
−1 −3 −5 −7 −9 −11 −13 −15
−3 1 7 −5 −11 9 15 −13
−5 −7 1 3 13 15 −9 −11
−7 5 −3 1 15 −13 11 −9
−9 −11 −13 −15 1 3 5 7
−11 9 15 −13 3 −1 −7 5
−13 −15 9 11 −5 −7 1 3
−15 13 −11 9 −7 5 −3 1



.

In the next example, we prove that the 16 × 8 SOLHD
produced by the VD algorithm is isomorphic to the one
produced by the Sun et al. method, i.e. one can be obtained
by the other by interchanging and negating columns.

Example 4. Matrix L of Example 2 and matrix L3 of
Example 3 are isomorphic. More specifically, by rearranging
and negating the columns c1, ..., c8 of L as follows[

c1 c2 −c5 c3 −c7 −c8 −c6 c4
]

we get matrix L3.

It can also be proved that the SOLHDs of orders 32× 16,
64 × 32 and 128 × 64 constructed by the VD algorithm are
isomorphic to the corresponding SOLHDs provided by the Sun
et al. method. A general proof for the equivalence between the
two approaches is under study.

IV. CONCLUSIONS

In this work we developed an algorithm constructing sym-
metric orthogonal Latin hypercube designs of order 2t×2t−1.
The algorithm requires no floating point operations and thus
it is effective and introduces no rounding error. The obtained
Latin hypercube designs have good properties and can be used
in many statistical applications. We compared our method
with the one introduced by Sun et al. and we concluded
that the resulting designs are isomorphic. A general proof for
the equivalence between the two methods is under study. For
future work, we consider combining this algorithm with other
methods in order to produce Latin hypercube designs of other
orders and with different properties.

REFERENCES

[1] Cioppa, T.M., Lucas, T.W., Efficient nearly orthogonal and space-filling
Latin hypercubes, Technometrics, 49, 45-55, 2007

[2] Guo, B., Li, X.R., Liu, M.Q., Yang, X., Construction of orthogonal
general sliced Latin hypercube designs, Statistical Papers, 64, 987-1014,
2023

[3] Li, H., Yang, L., Liu, M.Q., Construction of space-filling orthogonal
Latin hypercube designs, Statistical Probability Letters, 180, January
2022, 109245

[4] Lin, C.D., New Development in Designs for Computer Experiments and
Physical Experiments, Ph.D. thesis, Simon Fraser University, 2008

[5] Lin, C.D., Bingham, D., Sitter, R.R., Tang, B., A new and flexible
method for constructing designs for computer experiments, Annals of
Statistics, 38, 1460-1477, 2010

[6] McKay, M.D., Beckman, R.J., Conover, W.J., A comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code, Technometrics, 21, 239-245, 1979

[7] Sun, F.S., Liu, M.Q., Lin, D.K.J., Construction of orthogonal Latin
hypecube designs, Biometrika 96, 971-974, 2009

[8] Sun, F.S., Liu, M.Q., Lin, D.K.J., Construction of orthogonal Latin
hypecube designs with flexible run sizes, Journal of Statistical Planning
and Inference, 140, 3236-3242, 2010

[9] Wei, Q., Yang, J.F., Liu, M.Q., Column expanded Latin hypercube
designs, Journal of Statistical Planning and Inference, 234, January 2025,
106208

[10] Ye, K.Q., Orthogonal column Latin hypercubes and their application in
computer experiments, Journal of the American Statistical Association,
93, 1430-1439, 1998

