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ASYMPTOTIC NORMALITY FOR RANDOM SIMPLICES AND

CONVEX BODIES IN HIGH DIMENSIONS

D. ALONSO-GUTIÉRREZ, F. BESAU, J. GROTE, Z. KABLUCHKO, M. REITZNER,
C. THÄLE, B.-H. VRITSIOU, AND E. WERNER

Abstract. Central limit theorems for the log-volume of a class of random
convex bodies in Rn are obtained in the high-dimensional regime, that is, as
n → ∞. In particular, the case of random simplices pinned at the origin and
simplices where all vertices are generated at random is investigated. The coor-
dinates of the generating vectors are assumed to be independent and identically
distributed with subexponential tails. In addition, asymptotic normality is es-
tablished also for random convex bodies (including random simplices pinned at
the origin) when the spanning vectors are distributed according to a radially
symmetric probability measure on the n-dimensional ℓp-ball. In particular,
this includes the cone and the uniform probability measure.

1. Introduction and main results

1.1. Motivation. Central limit theorems for random polytopes in R
n are widely

known if the space dimension n is kept fixed, while the number of generating points
tends to infinity. We refer, for example, to the survey articles of Bárány [3], Hug
[8] and Reitzner [17] for results in this direction and for further references. In the
present paper we investigate the case where the number of generating points is
essentially equal to the space dimension and both tend to infinity simultaneously.
To be more precise, we consider the case of random n-dimensional simplices in Rn,
where we distinguish between the case of (n+1) generating points chosen at random,
or the case where we only have n random points and the (n + 1)st vertex is fixed
at the origin. The latter construction is called a pinned simplex in the following.
Asymptotic normality for the log-volume of random simplices in high dimensions
has previously been considered by Ruben [18], Maehara [11] and Mathai [10]. Note
however, that in their results the dimension of the random (pinned) simplices is
kept fixed, while the space dimension n tends to infinity. For Gaussian and so-called
beta simplices Eichelsbacher and Knichel [6] and Grote, Kabluchko and Thäle [7]
recently also studied a number of probabilistic limit theorems where the simplex
dimension tends to infinity as well.

Our main result is a central limit theorem for the log-volume of a random n-
dimensional simplix in Rn, see Theorem 1.1 below. For an n-dimensional random
simplex that is pinned, it is known that its volume is determined by the absolute
value of the determinant of the matrix whose columns are given by the generating
vectors from the origin. As a consequence, if these columns are filled by independent
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and identically distributed (i.i.d.) random variables, a central limit theorem for the
log-volume of random pinned simplex follows from the central limit theorem for
random determinants with i.i.d. entries established by Nguyen and Vu [13].

The same arguments cannot directly be applied if the coordinates of the gen-
erating points are not independent, that is, for example if the points are chosen
with respect to a probability measure in the ℓp-ball Bn

p ⊂ Rn with p 6= ∞. How-
ever, we still succeed in establishing a central limit theorem for random pinned
simplices in the ℓp-ball for certain radially symmetric probability measures, which
include in particular the uniform probability measure and the cone-volume mea-
sure, see Theorem 1.3 below. In our proof we employ different tools, most notably a
Schechtman-Zinn-type probabilistic representation of Barthe, Guédon, Mendelson
and Naor [4], which allow us to relate the log-volume of the random pinned sim-
plex to the determinant of a matrix with independent entries. Hence, although the
coordinates of the generating vectors are now no longer independent, at the core of
our argument we can still rely on the central limit theorem for the determinant of
random matrices with i.i.d. entries.

1.2. Main results: the case of independent coordinates. Let µ be a proba-
bility measure on Rn (n ≥ 1) and let X0, . . . , Xn be independent random vectors
distributed according to µ. We define the random simplex

Σn := conv
(

{X0, X1, . . . , Xn}
)

,

as well as the random pinned simplex

Σ0
n := conv

(

{0, X1, . . . , Xn}
)

.

In what follows, we shall focus on the case where the coordinates ξi
j , j ∈ {1, . . . , n},

of the random vectorsXi = (ξi
1, . . . , ξ

i
n) are independent copies of a random variable

ξ. Furthermore, we assume that the random variable ξ is symmetric, has variance
one and subexponential tails with exponent α > 0. By the latter we mean that
there are constants c1, c2 > 0 such that

(1) P
(

|ξ| ≥ tα
)

≤ c1e
−c2t, t > 0.

Examples are the uniform distribution on the cube [−
√

3,
√

3]n, the uniform dis-
tribution on the discrete cube {−1,+1}n, the two-sided exponential distribution,
standard Gaussian distribution on Rn or, more generally, the p-generalized Gauss-
ian distribution with density proportional to e−|t|p/a (for an appropriate choice of
a > 0) for any p > 0.

In our first result we establish a central limit theorem for the log-volume of
the high-dimensional random simplices Σn and Σ0

n, as n → ∞. In the following

Z ∼ N (0, 1) always denotes a standard Gaussian random variable and
d−→ indicates

convergence in distribution.

Theorem 1.1 (CLT for random simplices). Let ξ be a symmetric random variable

with variance one and subexponential tails with exponent α > 0.

i) Assume Σn := conv
(

{X0, X1, . . . , Xn}
)

is a random simplex in Rn with Xi

having i.i.d. coordinates ξi
j ∼ ξ. Then

ln voln(Σn) + n
2 lnn− n

2 + 1
4 lnn

√

1
2 lnn

d−→ Z, as n → ∞.
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ii) Assume Σ0
n := conv

(

{0, X1, . . . , Xn}
)

is a random simplex in Rn with Xi

having i.i.d. coordinates ξi
j ∼ ξ. Then

ln voln(Σ0
n) + n

2 lnn− n
2 + 3

4 lnn
√

1
2 lnn

d−→ Z, as n → ∞.

Part ii) of Theorem 1.1 can be reformulated for the parallelotope spanned by the
vertices of the pinned simplex from the origin. Even more generally, for a convex
body K ⊂ Rn, that is a compact convex subset with non-empty interior, and n
random points X1, . . . , Xn ∈ R

n we define the random convex body

(2) Ξn(K) := K[X1, . . . , Xn] =

{

n
∑

i=1

yiXi : (y1, . . . , yn) ∈ K

}

.

We note that for each n ∈ N and each convex body K ⊂ Rn, Ξn(K) is a random
closed set in the usual sense of stochastic geometry, cf. [9, Chapter 16]. In particular,
this implies that that the volume voln(Ξn(K)) of Ξn(K) is an ordinary random
variable. As observed by Paouris and Pivovarov [15, 16], this concept generalizes a
number of common constructions. Namely,

a) if K is the standard simplex

T n =

{

(x1, . . . , xn) ∈ R
n : xi ≥ 0 and

n
∑

i=1

xi ≤ 1

}

,

then Ξn(T n) coincides with the pinned simplex Σ0
n.

b) if K is the unit cube Cn = [0, 1]n, then Ξn(Cn) is the parallelotope spanned
by (Xi)

n
i=1 from the origin.

c) if K = Bn
∞ = [−1, 1]n is the symmetric cube, then Ξn(Bn

∞) is the zonotope
generated by the segments [−Xi, Xi], i.e.,

Ξn(Bn
∞) =

{

n
∑

i=1

λiXi : λi ∈ [−1, 1]

}

.

d) if K = Bn
1 is the cross-polytope, then Ξn(Bn

1 ) is the symmetric convex hull
of the 2n points {±Xi : i = 1, . . . , n}.

e) if K = Bn
2 is the unit ball, then Ξn(Bn

2 ) is an ellipsoid, that is, it is the
image of the unit ball under the linear map whose matrix is generated by
the random points (Xi)

n
i=1.

As a generalization of part ii) of Theorem 1.1 we obtain the following central limit
theorem for the log-volume of the random convex bodies Ξn(K). In the following
we denote by distK(−,−) the Kolmogorov distance between random variables, that
is, for two random variables X,Y we have

distK(X,Y ) := sup
t∈R

∣

∣P(X ≤ t) − P(Y ≤ t)
∣

∣.

Note that convergence in the Kolmogorov distance implies convergence in distribu-
tion. Also, by o(1) we denote some sequence (an)n∈N with an → 0, as n → ∞.
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Kn voln(Kn) central limit theorem

T n 1
n!

ln voln(Ξn(T n))+ n

2
ln n− n

2
+ 3

4
ln n√

1
2

ln n

d−→ Z

Cn 1
ln voln(Ξn(Cn))− n

2
ln n+ n

2
+ 1

4
ln n√

1
2

ln n

d−→ Z

Bn
∞ 2n ln voln(Ξn(Bn

∞
))− n

2
ln n−(ln 2− 1

2
)n+ 1

4
ln n√

1
2

ln n

d−→ Z

B∞
1

2n

n!

ln voln(Ξn(Bn

1 ))+ n

2
ln −(ln 2+ 1

2
)n+ 3

4
ln n√

1
2

ln n

d−→ Z

Table 1. Special cases of the central limit theorem for the log-
volume of random covex bodies (Theorem 1.2). Here, Z is a stan-
dard Gaussian random variable.

Theorem 1.2. Let ξ be a symmetric random variable with variance one and subex-

ponential tails with exponent α > 0. Let (Kn)n∈N be a sequence of convex bodies

such that Kn ⊂ Rn. If X1, . . . , Xn are random points in Rn with i.i.d. coordinates

ξi
j ∼ ξ, and Ξn(Kn) is the random convex body as defined by (2), then

Sn :=
ln voln(Ξn(Kn)) − ln voln(Kn) − n

2 lnn+ n
2 + 1

4 lnn
√

1
2 lnn

d−→ Z, as n → ∞.

More precisely, we have that

distK(Sn, Z) ≤ (lnn)− 1
3

+o(1).

As an application of Theorem 1.2 we may revisit the special cases a) – d) of
the random convex bodies Ξn(Kn) mentioned above. The resulting central limit
theorems are summarized in Table 1. In particular, taking Kn = T n for each n ∈ N,
we also obtain part ii) of Theorem 1.1.

1.3. Main results: the case of ℓp-balls. For 0 < p ≤ ∞ the n-dimensional
ℓp-ball Bn

p ⊂ Rn is defined as

Bn
p := {x ∈ R

n : ‖x‖p ≤ 1},
where the p-norm (or quasi-norm if 0 < p < 1) of x = (x1, . . . , xn) ∈ R

n is

‖x‖p :=











(

n
∑

i=1

|xi|p
)1/p

if 0 < p < ∞,

max{|x1|, . . . , |xn|} if p = ∞.

In our next result we consider pinned simplices, denoted by Σ0
n(ν), which are

spanned by the origin and n points X1, . . . , Xn chosen at random with respect
to a radially symmetric probability measure ν = νn(mn, p) on the n-dimensional
ℓp-ball Bn

p . More specifically, ν belongs to a family of measures including the cone
probability measure and the uniform probability measure on Bn

p which is driven
by a parameter mn ≥ 0. This model contains a number of special cases that are
of particular interest (see Theorem 1, Theorem 3, Corollary 3 and Corollary 4 in

4



[4] as well as the discussion before Theorem 1.1 in [2]). Namely, if mn = 0, then
the random points X1, . . . , Xn are distributed according to the cone probability
measure on the boundary of Bn

p , i.e., the ℓp-sphere in Rn. It is well known that this
measure coincides with the normalized surface measure precisely if p ∈ {1, 2,∞}.
Next, if mn = 1, then X1, . . . , Xn are selected according to the uniform distribution
on Bn

p . Finally, if mn = m/p for some m ∈ N, then the distribution corresponds

to the image of the cone probability measure on Bn+m
p under the orthogonal pro-

jection onto the first n coordinates. Similarly, if mn = 1 + m/p, then the points
are sampled according to the image of the uniform distribution on Bn+m

p under the
same projection. We refer to Section 3 for the precise construction of ν.

Theorem 1.3 (CLT for random convex bodies in the ℓp-ball). Let X1, . . . , Xn be

n independent random points in the ℓp-ball Bn
p with respect to a probability measure

ν = νn(mn, p) as defined in Section 3.1. Let (Kn)n∈N be a sequence of convex

bodies such that Kn ⊂ Rn and Ξn(Kn) be the random convex body generated by

ν-distributed random points X1, . . . , Xn as defined by (2). Then

Sn :=
ln voln(Ξn(Kn)) − ln voln(Kn) − 1

2 ln (n− 1)! + n
p ln(a(mn + n

p ))
√

1
2 lnn

d−→ Z,

as n → ∞, where a = (Γ(1/p)/Γ(3/p))p/2
. More precisely, we have that

distK(Sn, Z) ≤ (lnn)− 1
3

+o(1).

By choosing for each n ∈ N, Kn as the standard simplex T n we obtain the
following central limit theorem as a direct corollary to Theorem 1.3.

Corollary 1.4 (CLT for random pinned simplices in the ℓp-ball). Let Σ0
n(ν) be the

random pinned simplex that is spanned by the origin and n independent random

points in the ℓp-ball Bn
p which are distributed according to a probability measure

ν = νn(mn, p) as defined in Section 3.1. Then

ln voln(Σ0
n(ν)) + n

2 lnn− n
2 + 3

4 lnn+ n
p ln(a(mn + n

p ))
√

1
2 lnn

d−→ Z, as n → ∞,

where a = (Γ(1/p)/Γ(3/p))
p/2

.

1.4. Plan of the paper. In the next Section we outline the proof of Theorem 1.1
and of Theorem 1.2. We will collect the relevant tools along the way. As mentioned
in the introduction, the proof of Theorem 1.1 essentially relies on the central limit
theorem for determinants of random matrices of Nguyen and Vu [13] with additional
arguments for the non-pinned case. In Section 3 we present the details of the proof
of Theorem 1.3 and recall the definition of the special measure ν = ν(mn, p). For
the proof of Theorem 1.3 we especially need the Schechtman-Zinn-type probabilistic
representation from [4].

Acknowledgment. The authors started this project within a working group that
formed during the Mini-Workshop Perspectives in High-dimensional Probability and

Convexity at the Mathematisches Forschungsinstitut Oberwolfach (MFO). All sup-
port is gratefully acknowledged.
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Figure 1. Illustration of the identification of the random simplex
Σn with a pinned simplex Σ0

n+1 in the two dimensional case.
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2. Proof of Theorem 1.1 and Theorem 1.2

2.1. Proof of Theorem 1.2 and part ii) of Theorem 1.1. Let us first recall
the central limit theorem of Nguyen and Vu for the log-determinant of random
matrices with independent entries.

Theorem 2.1 ([13, Theorem 1.1]). Let An be an n×n random matrix whose entries

are independent random variables with zero mean, variance one and subexponential

tails with exponent α > 0. Further, let Z ∼ N (0, 1) be a standard Gaussian random

variable. Then,

Zn :=
ln |detAn| − 1

2 ln (n− 1)!
√

1
2 lnn

d−→ Z, as n → ∞.

More precisely, the rate of convergence is

(3) distK(Zn, Z) ≤ (lnn)−1/3+o(1),

for all n large enough.

Next, we recall the definition (2) of the random convex bodies Ξn(Kn) and
observe that

(4) voln(Ξn(Kn)) = |det(X1| . . . |Xn)| voln(Kn),

see, for example, [16, Proposition 2.1]. This implies that

ln voln(Ξn(Kn)) − ln voln(Kn) − 1
2 ln (n− 1)!

√

1
2 ln n

=
ln |det(X1| . . . |Xn)| − 1

2 ln (n− 1)!
√

1
2 ln n

6



and hence Theorem 1.2 is a direct consequence of Theorem 2.1. Moreover, taking
Kn = T n for each n ∈ N and recalling that Σ0

n = Ξn(T n), we may derive part ii)
in Theorem 1.1 by Stirling’s formula,

lnn! = n lnn− n+
1

2
lnn+O(1).

2.2. Proof of part i) in Theorem 1.1. We now prove the central limit theorem
for the log-volume of random simplices Σn. First, notice that the volume of Σn

can be identified with the volume of a pinned simplex in Rn+1 by the classical
projective construction (see also Figure 1). Given n + 1 points X0, X1, . . . , Xn

in Rn we consider the points X ′
i := (Xi, 1) ∈ Rn+1 for i = 0, . . . , n. We set

Σ0
n+1 := conv({0, X ′

0, . . . , X
′
n}) and find that

voln(Σn) = (n+ 1) voln+1(Σ0
n+1) =

1

n!
|det(X ′

0| . . . |X ′
n)|.

Now let Yi ∈ Rn+1 be the vector whose entries are given by the ith row of the (n+
1)×(n+1) matrix (X ′

0| . . . |X ′
n) for i = 1, . . . , n. Then Yi is a random vector in Rn+1

with independent coordinates distributed like ξ. Notice that the last row in the
matrix (X ′

0| . . . |X ′
n) is just the constant vector Un+1 := (1, . . . , 1) ∈ Rn+1. Let Yn+1

be another random vector with independent entries distributed like ξ. We compare
the random matrix (Y1| . . . |Yn|Un+1) with the random matrix (Y1| . . . |Yn|Yn+1).
Notice that the latter now has independent and identically distributed entries. We
have

1

n!
|det(Y1| . . . |Yn|Un+1)| = dist(Un+1, Ln) voln(conv{0, Y1, . . . , Yn})

and

1

n!
|det(Y1| . . . |Yn|Yn+1)| = dist(Yn+1, Ln) voln(conv{0, Y1, . . . , Yn}),

where Ln is the n-dimensional linear subspace spanned by Y1, . . . , Yn in Rn+1 and
dist(v, Ln) denotes the distance of a vector v ∈ Rn+1 to Ln. Collecting all of the
above we conclude that

ln voln(Σn) = ln |det(X ′
0| . . . |X ′

n)| − lnn!

= ln |det(Y1| . . . |Yn+1)| − ln dist(Yn+1, Ln) + ln dist(Un+1, Ln) − lnn!.

We will show that

ln dist(Un+1, Ln)
√

1
2 lnn

d−→ 0 and
ln dist(Yn+1, Ln)

√

1
2 lnn

d−→ 0,(5)

as n → ∞. Then we may conclude by Slutsky’s theorem (see, for example, [5,
Proposition A.42 (b)]) and the central limit theorem for the log-determinant, The-
orem 2.1, that

ln voln(Σn) + 1
2 lnn!

√

1
2 lnn

=
ln |det(Y1| . . . |Yn+1)| − 1

2 lnn!
√

1
2 lnn

+
ln dist(Un+1, Ln)

√

1
2 lnn

− ln dist(Yn+1, Ln)
√

1
2 lnn
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converges in distribution to a standard Gaussian random variable Z ∼ N (0, 1), as
n → ∞.

To prove (5) we need the following two auxiliary results.

Lemma 2.2 (Berry-Esseen inequality [13, Lemma 8.1]). Let Bn = (b1, . . . , bn) be

a random vector whose coordinates are independent copies of a random variable ξ
with mean zero, variance one and subexponential tails with exponent α > 0 and

let Vn = (v1, . . . , vn) be a fixed unit vector in Rn. Then there exists a constant

c ∈ (0,∞) such that

(6) distK(|〈Vn, Bn〉|, |Z|) ≤ c‖Vn‖∞.

Lemma 2.3 ([14, Theorem 1.4] for subexponential tails, see Remark 2.4 below).
Suppose Ln is a linear subspace spanned by n independent random vectors Y1, . . . , Yn

in R
n+1 each of whose coordinates are independent copies of a random variable ξ

with zero mean, variance one and subexponential tails with exponent α > 0. Let

Nn+1 be a unit normal vector to Ln.

• Then there are constants c1, c2, c3 ∈ (0,∞) such that

P

(

‖Nn+1‖∞ ≥
√

m

n

)

≤ c2 n
2 exp

(

−c3

( m

logn

)
1

2α+1
)

,

for every m ≥ c1(log n)2α+2. As a consequence, with probability 1−c4n
−10,

say, we have that

(7) ‖Nn+1‖∞ ≤ c5
(lnn)α+1

√
n

,

for some constant c4, c5 > 0.

• If (Vn)n∈N is a fixed sequence of unit random vectors Vn ∈ S
n−1, then

(8)
√
n〈Vn, Nn〉 d−→ Z, as n → ∞.

Remark 2.4. Note that [14, Theorem 1.4] is stated for subgaussian random vari-

ables. By [14, Remark 2.3] the theorem holds true also for random variables with

subexponential tails with exponent α > 0, but one has to be more generous with the

estimates.

With probability one the vectors Y1, . . . , Yn span a random n-dimensional linear
subspace Ln in Rn+1 and we denote by Nn+1 ∈ Sn a unit normal vector to Ln.
Then

dist(Un+1, Ln) = |〈Un+1, Nn+1〉| and dist(Yn+1, Ln) = |〈Yn+1, Nn+1〉|,
where 〈 · , · 〉 is the standard scalar product in R

n+1.
For the first estimate we set

Vn+1 :=
1√
n+ 1

Un+1,

use (8), and conclude by the continuous mapping theorem [9, Lemma 4.3], applied
to the absolute-value function, that

(9)
ln dist(Un+1, Ln)

√

1
2 lnn

d−→ 0

as n → ∞. This settles the first case of (5).
8



The second statement of (5) also follows by Slutsky’s theorem once we show that

(10) dist(Yn+1, Ln)
d−→ |Z|, as n → ∞.

To prove this we use Lemma 2.2 and the first part of Lemma 2.3. We condition on
Ln to fix Nn+1 and combine (7) with (6). To be more precise, we have

P(dist(Yn+1, Ln) ≤ t) = EP(|〈Yn+1, Nn+1〉| ≤ t|Ln)).

Here P( · |Ln) denotes the conditional probability given Ln, where Ln is the linear
space spanned by Y1, . . . , Yn ∈ Rn+1 and E denotes expectation with respect to
Y1, . . . , Yn. If we condition on Ln, then Nn+1 is a fixed unit vector in Rn+1 and we
may apply the Berry-Esseen inequality (6) with Vn+1 = Nn+1 there to deduce that

sup
t∈R

∣

∣P(|〈Yn+1, Nn+1〉| ≤ t |Ln) − P(|Z| ≤ t)
∣

∣ ≤ c‖Nn+1‖∞.

Moreover, from (7) we conclude that there exist constants c1, c2, c3 ∈ (0,∞) such
that

0 ≤ sup
t∈R

∣

∣P(|〈Yn+1, Nn+1〉| ≤ t |Ln) − P(|Z| ≤ t)
∣

∣ ≤ c2
(lnn)c3

√
n

holds true with probability 1 − c1n
−10 for sufficiently large n. Hence we have

distK(dist(Yn+1, Ln), |Z|) ≤ E sup
t∈R

|P(|〈Yn+1, Nn+1〉| ≤ t|Ln) − P(|Z| ≤ t)|

≤ c2
(lnn)c3

√
n

(1 − c1n
−10) + 2c1n

−10.

Finally, we notice that the last expression tends to zero, as n → ∞. This yields
(10) and completes the proof. �

3. Proof of Theorem 1.3

3.1. The probability measures ν = νn(mn, p) on the ℓp-ball. Denote for each
i ∈ {1, . . . , n} by Gi

1, . . . , G
i
n random variables with density

t 7→ e−|t|p/a

2a1/pΓ(1 + 1/p)
, where a =

(

Γ(1/p)

Γ(3/p)

)p/2

, t ∈ R.(11)

Note that Gi
j has zero mean and variance one and subexponential tails with ex-

ponent α = 1/p. In addition, let mn ∈ [0,∞) and, for each i ∈ {1, . . . , n}, Qi be
random variables which are gamma distributed with shape mn and rate 1/a. More
specifically this means that Qi has density t 7→ a−mnΓ(mn)−1tmn−1e−t/a for t > 0,
provided that mn > 0, and we use the convention that Qi = 0 with probability
one in case that mn = 0. We shall assume that all the random variables we are
considering are independent.

Next, we define the random vectors X1, . . . , Xn ∈ Rn by putting

Xi :=
Gi

(‖Gi‖p
p +Qi)1/p

, where Gi := (Gi
1, . . . , G

i
n),

for i ∈ {1, . . . , n}. By νn(mn, p) we denote the distribution of the random variables
Xi on the ℓp-ball Bn

p . Finally, we let Ξn(K, ν) be the random convex body that
is generated by a fixed convex body K ⊂ Rn and the independent random points
X1, . . . , Xn for a distribution ν = νn(mn, p), which we consider to be fixed in this
section.
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3.2. Proof of Theorem 1.3. Recall that by (4) we have

voln(Ξn(Kn, ν)) = voln(Kn)|det(X1| . . . |Xn)|

= voln(Kn)|det(G1| . . . |Gn)|
n

∏

i=1

(

‖Gi‖p
p +Qi

)−1/p
,

(12)

which yields

ln voln(Ξn(Kn, ν)) = ln |det(G1| . . . |Gn)| + ln voln(Kn) − 1

p

n
∑

i=1

ln
(

‖Gi‖p
p +Qi

)

.

Now we may apply the central limit theorem for the log-determinant Theorem 2.1
and obtain

(13) On :=
ln |det(G1| . . . |Gn)| − 1

2 ln (n− 1)!
√

1
2 lnn

d−→ Z, as n → ∞,

and moreover distK(On, Z) ≤ (lnn)− 1
3

+o(1). To complete the proof of Theorem 1.3
we need to show that

(14) Pn :=

1
p

n
∑

i=1

ln
(

‖Gi‖p
p +Qi

)

− n
p ln(a(mn + n

p ))

√

1
2 lnn

d−→ 0,

and then apply Slutsky’s theorem. Indeed, putting together (12) with (13) and (14)
implies that

ln voln(Ξn(Kn, ν)) − ln voln(Kn) − 1
2 ln (n− 1)! + n

p ln(a(mn + n
p ))

√

1
2 lnn

= On − Pn
d−→ Z, as n → ∞,

as desired. For all ε > 0 we have that

distK(On − Pn, Z) ≤ distK(On, Z) + P(|Pn| > ε) + ε,

see for example [2, Lemma 4.1]. Hence, once we show that

(15) P(|Pn| > (lnn)− 1
3 ) ≤ (lnn)− 1

3
+o(1),

we may conclude, by setting ε = (lnn)− 1
3 and applying Theorem 2.1, that

distK(On − Pn, Z) ≤ (lnn)− 1
3

+o(1).

This will finish the proof of Theorem 1.3.

3.3. Proof of (15). We observe that the representation

‖Gi‖p
p =

n
∑

j=1

|Gi
j |p

and the semigroup property of the gamma distributions imply that ‖Gi‖p
p is gamma

distributed with shape n/p and rate 1/a, i.e., the Lebesgue density of ‖Gi‖p
p on R

is given by
1

a
n

p Γ(n
p )
x

n

p
−1e− x

a , x > 0.
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Recalling that by assumption Qi is gamma distributed with shape mn and rate 1/a
we find that ‖Gi‖p

p+Qi is also gamma distributed with parameter shape mn+ n
p and

rate 1/a. Hence, ln(‖Gi‖p
p + Qi) is log-gamma distributed with Lebesgue density

on R given by
1

amn+ n

p Γ(mn + n
p )
ex(mn+ n

p
)− e

x

a , x > 0.

In particular, by direct computation, we find that

(16) µn := E ln(‖Gi‖p
p +Qi) = ψ

(

mn +
n

p

)

+ ln a,

where ψ(x) := d
dx ln Γ(x) is the digamma function (see e.g. [1, page 259]). Similarly,

for the variance, one has that

σ2
n := Var ln(‖Gi‖p

p +Qi) = ψ1

(

mn +
n

p

)

,

with ψ1(x) := d
dxψ(x) being the trigamma function (see e.g. [1, page 260]).

This implies that the auxiliary random variables

An :=

[

1

p

n
∑

i=1

ln
(

‖Gi‖p
p +Qi

)

]

− n

p
µn

satisfy

EAn = 0 and VarAn =
n

p2
ψ1

(

mn +
n

p

)

.

The asymptotic expansions of the digamma and trigamma functions are

ψ(x) = lnx− 1

2x
− 1

12x2
+ o(x−2), ψ1(x) =

1

x
+

1

2x2
+ o(x−2),

for x → ∞ (see [1, page 260]). Hence

n
pµn − n

p ln(a(mn + n
p ))

√

1
2 lnn

=
1√
2

(

1 + p
mn

n

)−1

(lnn)− 1
2 + o((ln n)− 1

2 ) −→ 0,

for n → ∞, and

VarAn =
n

p

1

pmn + n
+
n

2

1

(pmn + n)2
+ o(n−1).

In particular, for all choices of mn we find that VarAn = O(1). By the triangle
inequality we have

|Pn| ≤ |An|
√

1
2 lnn

+
1√
2

(

1 + p
mn

n

)−1

(lnn)− 1
2 + o((ln n)− 1

2 )

and therefore there exists c1 > 0 such that

|Pn| ≤ |An| + c1
√

1
2 lnn

,
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for all n large enough. By the Chebyshev inequality this yields

P(|Pn| > (lnn)− 1
3 ) ≤ P

(

|An| > 1√
2

(lnn)
1
6 − c1

)

≤ P

(

|An| > 1

2
(lnn)

1
6

)

≤
√

2 VarAn

(lnn)
1
3

= (lnn)− 1
3

+o(1),

for all n large enough. Thus, (15) holds true and the proof is complete. �

Remark 3.1. More general distributions for the random variables Qi are possible.

For example, our proof shows that, as long as Qi is a non-negative random variable

and Var ln(‖Gi‖p
p + Qi) = O

(

Var ln(‖Gi‖p
p)

)

= O(p/n), we have a CLT as above

with the same scaling factor and a suitably modified final centering term.
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