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The category Alg of k-algebras is enriched in Coalg of k-coalgebras. J
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Background

Monoids and comonoids
Suppose (V, ®, 1) is monoidal category.
A monoid is an object A together with maps yu: A®Q A — A and
n: I — A which are associative and unital
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Dually, a comonoid is an object C together with maps §: C - C® C
and €: C — [ which are coassociative and counital.

* These form categories Mon and Comon, with maps preserving structure.
When (V,®, I, o) is symmetric, Mon and Comon are monoidal with

ceD® cocobDobD %L coDoCoD
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Background

B If V is monoidal closed, induced [-,-]: Comon(V)°PxMon(V)—Mon(V)
makes [C, A] into a monoid via convolution
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* In Vecty, linear dual C* = Homy(C, k) for a k-coalgebra is a k-algebra
— while A* for a k-algebra is a k-coalgebra only if it is finite dimensional.

Sweedler dual 'fixes' that: A°={fecA* | kerf contains cofinite ideal}
is a k-coalgebra, and Alg(A, C*) = Coalg(C, A°).

More generally, there exists universal measuring k-coalgebra with
Alg(A, Hom(C, B)) = Coalg(C, P(A, B)) —so A° = P(A, k).

Christina Vasilakopoulou (NTUA) Enriched duality in double categories 4/16



Background

Moving to general context of symmetric monoidal closed categories, local
presentability gives passage from Vect, to (d)gVect,, Modg etc.

Suppose V is a symmetric monoidal closed and locally presentable
category. There is a parameterized adjunction between

[-,-]: Comon®® x Mon — Mon convolution
P(-,-): Mon®? x Mon — Comon universal measuring
e In Set, P(A, B) is Mon(A, B); in Vecty, it contains k-algebra maps as
grouplike elements; in dgVect,, it relates to bar-cobar adjunction.

* Convolution [-,-] is an action of the monoidal Comon(°?) on Mon.

An adjoint of an action e: V x C — C gives rise to
a V-enriched structure on C.

The category Mon is enriched in the monoidal Comon.
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Enriched duality in monoidal double categories

From monoidal to double categories
One to many objects: generalize from monoids in V, to V-categories.

What about comonoids? Opcategories=V°P-categories not as convenient,
formally. . . identify common framework!

A double category D has object category Dy (0-cells & vertical 1-cells),
arrow category D; (horizontal 1-cells & 2-maps)

X 4y
filloz ig

5 o] .
and Dg l) Dy, Dy = Do, Dy xp,D1 — Dy + coherent isos.
t

0-cells, horizontal 1-cells, globular 2-maps
make horizontal bicategory H (D).
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Enriched duality in monoidal double categories

A monad in a double category D is A: X — X with associative, unital

X A, x A, x  x-X%,x
Il " Il o un Nl
X g X X — X

Dually, comonad C: X — X. These form categories Mnd(D) & Cmd(D).

* Morphisms are different than those for (co)monads in bicategories.
For D = V-Mat of sets, functions and V-matrices S: X —— Y i.e.

{S(x,y)} €V with (So T)(x,2) =3, T(x,y) ® S(y, 2),
Mnd(V-Mat) = V-Cat and Cmd(V-Mat) = V-Cocat.

A V-cocategory comes with cocomposition C(x,z)— 3>, C(x,y)®C(y,2)
and coidentities C(x, x) — I, coassociative and counital.
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Enriched duality in monoidal double categories

For D a (...) double category, Mnd(DD) is enriched in Cmd(D).

B Fibrant: vertical 1-cells f turn to horizontal, companion f& conjoint fl
lif ix=y

In V-Mat, f: X — Y gives matrices 7(x,y) = f(y,x) =
giv ices f(x,y) = f(y,x) {Oiffx#y

Mnd(ID) — Dy is a fibration; reindexing fo-of : Mnd(ID)y — Mnd(DD)x.
Dually, Cmd(DD) — Dy is an opfibration.

B Monoidal: Dy & D; monoidal, (NoM)®(N' oM )=(N @ N')o(M @ M').
In V-Mat, (X®Y)=XxY & (S&T)((x,y),(z,w))=S(x,z)@T(y, w).

Mnd(DD) and Cmd(ID) are monoidal, with C ® D comonad via
CRD— (CoC)®(DoD)=(C®D)o(C®D).
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Enriched duality in monoidal double categories

B Monoidal closed : lax double functor H: D°P x D — D such that Dy &
D1 monoidal closed, s,t maps of adjunctions.

In V-Mat, [X, Y] =YX and H(S, T)(f,g)= H[S(X ), T(fx, gy)].

H induces functor Cmd(ID)°P x Mnd(DD )—>Mnd( ), an action. convolution |

B Locally presentable : Dy & D locally presentable, s, t cocontinuous
right adjoints, - o - accessible in each variable.

_ _ V-Mat; - Fam(V)
In V-Mat, Set is |. p. & V-Mat; is too as pullback (5 ¢), .

Set? —— Set
by the Limit Theorem.

Induced H has adjoint Mnd(DD)°P? xMnd(D)—Cmd(D).  univ. measuring |

< Obtain enrichment of Mnd(D) in Cmd(D)!
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Oplax monoidal double categories

Moving to other contexts

* For V symmetric monoidal closed & locally presentable, D = V-Mat is
a fibrant, monoidal closed & locally presentable double category.

® Enrichment of V-categories in V-cocategories

Goal: employ/extend theory to apply to D = V-Sym

- objects are sets X, Y, ...

- vertical 1-cells are functions f, g,...

- horizontal 1-cells are coloured symmetric sequences M: SX°PxY—V
- 2-maps are M(x1,...,xn; y) = N(fx, ..., xn; gy)

Horizontal composition is generalization of substitution for species.

B V-Sym is fibrant; but not monoidal double anymore!
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Oplax monoidal double categories

Oplax monoidal double structure

A double category is oplax monoidal with comparison maps

(NOM)@(NIOM/)—>(N®NI)O(M®M/), 1X®1X’_>1X®X’
Il—>110/1, /1—)1/

satisfying coherence axioms.

An oplax monoidal double category with a single object
and vertical arrow is precisely a duoidal category.

End result: V-Sym is an oplax monoidal double category. How? As a
Kleisli-type structure on V-Prof with induced monoidality.
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Oplax monoidal double categories

Kleisli double category
A (vertical) double monad is a double functor T: D — ID with
transformations m: TT = T, e: 1 = T with

TTX M, TTY X M vy

ml umy lmv el dew  lev

It is special when myx, &x exist, and transposes of my,, ey are invertible.

B Each special double monad T: D — I gives double category KI(T)

K|(T)0 iS]D)o

- M: X ~ Y are horizontal M: X = TY inD
X Yy X M Ty

~2-maps ¢y |g are | y |1z inD
7 i w Z - TW

. o M ™ iz
- horizontal composition is X —— TY —— TTZ —— TZ
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Oplax monoidal double categories

Monoidal structure

A double monad T on a monoidal double category D is
pseudomonoidal when T lax monoidal and m, e pseudomonoidal

TTX @ TTX, & TTX; @ TTXo

| Lmm
eg TT(X1®Xp) 4 TX;® TX, Isinvertible
m| 1

T(X1 ® Xo) —— T(X1® X2)

For T a pseudomonoidal special double monad,
if lax structure maps | — T/, TX® TY = T(X ® Y) have companions,
KI(T) is an oplax monoidal double category.

« Induced tensor is MBI N=X ® Z 2% Ty o 7w — 1 T(Y @ W),
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Oplax monoidal double categories

Coloured symmetric sequences

* 'Free symmetric strict monoidal category 2-monad’ S: V-Cat — V-Cat

with Sp(C) (31, s %), 1+ ym)) = 3. [T Coiys 1)

o 1<i<n
extends to such a double monad on the monoidal double category V-Prof
(for V cartesian monoidal).

Kleisli double category is V-CatSym of categorical symmetric
sequences M: SX°Px Y=V, with ‘discrete’ case V-Sym.

Oplax monoidal structure is many-object arithmetic product of species

(MR N)(, (x, 7)) = /y’w S(Y X W)(3, 78 W) x M(7,x) x N(#,2)
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Further directions

Some future directions

Extend previous results from monoidal double to oplax monoidal double
categories : do we still obtain enrichment of monads in comonads?

Further explore V-Sym: is it monoidal closed and locally presentable as
a double category?

[One-object case] If V is symmetric monoidal closed and loc presentable,

® positive operads are enriched in positive cooperads, if VV has

biproducts;
® symmetric operads are enriched in symmetric cooperads, if V is
cartesian.
Mod(D)**"4Comod(DD)
Extend full story fibered| lopfibered to oplax monoidal .
Mnd(D) -.-» Cmd(D)
enriched
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Further directions

Thank you for your attention!

—
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