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The category Alg of k-algebras is enriched in Coalg of k-coalgebras.
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Monoids and comonoids
Suppose (V, ⊗, I) is monoidal category.
▶ A monoid is an object A together with maps µ : A ⊗ A → A and
η : I → A which are associative and unital

A ⊗ A ⊗ A A ⊗ A

A ⊗ A A

µ⊗1

1⊗µ µ

µ

I ⊗ A A ⊗ A A ⊗ I

A

η⊗1

µ

1⊗η

▶ Dually, a comonoid is an object C together with maps δ : C → C ⊗ C
and ϵ : C → I which are coassociative and counital.
⋆ These form categories Mon and Comon, with maps preserving structure.

When (V, ⊗, I, σ) is symmetric, Mon and Comon are monoidal with

C ⊗ D δ⊗δ−−→ C ⊗ C ⊗ D ⊗ D 1⊗σ⊗1−−−−→ C ⊗ D ⊗ C ⊗ D
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■ If V is monoidal closed, induced [-, -] : Comon(V)op×Mon(V)→Mon(V)
makes [C , A] into a monoid via convolution

[C , A]⊗[C , A]⊗C [C , A]⊗[C , A]⊗C⊗C [C , A]⊗C⊗[C , A]⊗C

(f ∗g)(c)=
∑
(c)

f (c1)g(c2) A ⊗ A

A

1⊗δ 1⊗σ⊗1

ev⊗ev

µ

⋆ In Vectk , linear dual C∗ = Homk(C , k) for a k-coalgebra is a k-algebra
– while A∗ for a k-algebra is a k-coalgebra only if it is finite dimensional.�
�

�
Sweedler dual ‘fixes’ that: Ao={f ∈A∗ | kerf contains cofinite ideal}

is a k-coalgebra, and Alg(A, C∗) ∼= Coalg(C , Ao).

More generally, there exists universal measuring k-coalgebra with
Alg(A, Homk(C , B)) ∼= Coalg(C , P(A, B)) – so Ao = P(A, k).
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Moving to general context of symmetric monoidal closed categories, local
presentability gives passage from Vectk to (d)gVectk , ModR etc.

Suppose V is a symmetric monoidal closed and locally presentable
category. There is a parameterized adjunction between

[-, -] : Comonop × Mon → Mon convolution
P(-, -) : Monop × Mon → Comon universal measuring

• In Set, P(A, B) is Mon(A, B); in Vectk , it contains k-algebra maps as
grouplike elements; in dgVectk , it relates to bar-cobar adjunction.

⋆ Convolution [-, -] is an action of the monoidal Comon(op) on Mon.�



�
	An adjoint of an action • : V × C → C gives rise to

a V-enriched structure on C.

The category Mon is enriched in the monoidal Comon.
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From monoidal to double categories
One to many objects: generalize from monoids in V, to V-categories.
What about comonoids? Opcategories=Vop-categories not as convenient,
formally. . . identify common framework!

▶ A double category D has object category D0 (0-cells & vertical 1-cells),
arrow category D1 (horizontal 1-cells & 2-maps)

X Y

Z W

A

f ⇓α g

B

and D0
1−→ D1, D1

s
⇒
t
D0, D1×D0D1

◦−→ D1 + coherent isos.�
�

�
0-cells, horizontal 1-cells, globular 2-maps

make horizontal bicategory H(D).
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▶ A monad in a double category D is A : X X with associative, unital

X X X

X X

A

⇓µ

A

A

X X

X X

1X

⇓η

A

Dually, comonad C : X X . These form categories Mnd(D) & Cmd(D).
⋆ Morphisms are different than those for (co)monads in bicategories.

For D = V-Mat of sets, functions and V-matrices S : X Y i.e.
{S(x , y)} ∈ V with (S ◦ T )(x , z) =

∑
y T (x , y) ⊗ S(y , z),

Mnd(V-Mat) = V-Cat and Cmd(V-Mat) = V-Cocat.

A V-cocategory comes with cocomposition C(x , z)→
∑

y C(x , y)⊗C(y , z)
and coidentities C(x , x) → I, coassociative and counital.
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For D a (. . . ) double category, Mnd(D) is enriched in Cmd(D).

■ Fibrant: vertical 1-cells f turn to horizontal, companion f̂ & conjoint f̌ .

In V-Mat, f : X → Y gives matrices f̂ (x , y) = f̌ (y , x) =
{

I if fx = y
0 if fx ̸= y

Mnd(D) → D0 is a fibration; reindexing f̌ ◦-◦f̂ : Mnd(D)Y → Mnd(D)X .
Dually, Cmd(D) → D0 is an opfibration.

■ Monoidal: D0 & D1 monoidal, (N◦M)⊗(N ′◦M ′)∼=(N ⊗ N ′)◦(M ⊗ M ′).
In V-Mat, (X⊗Y )=X×Y & (S⊗T )((x , y), (z , w))=S(x , z)⊗T (y , w).

Mnd(D) and Cmd(D) are monoidal, with C ⊗ D comonad via
C ⊗ D → (C ◦ C) ⊗ (D ◦ D) ∼= (C ⊗ D) ◦ (C ⊗ D).
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■ Monoidal closed : lax double functor H : Dop × D → D such that D0 &
D1 monoidal closed, s, t maps of adjunctions.

In V-Mat, [X , Y ] = Y X and H(S, T )(f , g)=
∏
x ,y

[S(x , y), T (fx , gy)].

H induces functor Cmd(D)op×Mnd(D)→Mnd(D), an action. convolution

■ Locally presentable : D0 & D1 locally presentable, s, t cocontinuous
right adjoints, - ◦ - accessible in each variable.

In V-Mat, Set is l. p. & V-Mat1 is too as pullback
V-Mat1 Fam(V)

Set2 Set
(s,t)

×

by the Limit Theorem.

Induced H has adjoint Mnd(D)op×Mnd(D)→Cmd(D). univ. measuring

⋄ Obtain enrichment of Mnd(D) in Cmd(D)!
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Moving to other contexts

⋆ For V symmetric monoidal closed & locally presentable, D = V-Mat is
a fibrant, monoidal closed & locally presentable double category.

• Enrichment of V-categories in V-cocategories

Goal: employ/extend theory to apply to D = V-Sym operads

· objects are sets X , Y , . . .

· vertical 1-cells are functions f , g , . . .

· horizontal 1-cells are coloured symmetric sequences M : SX op×Y →V
· 2-maps are M(x1, . . . , xn; y) → N(fx1, . . . , fxn; gy)

Horizontal composition is generalization of substitution for species.

■ V-Sym is fibrant; but not monoidal double anymore!
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Oplax monoidal double structure

▶ A double category is oplax monoidal with comparison maps

(N ◦ M) ⊗ (N ′ ◦ M ′) → (N ⊗ N ′) ◦ (M ⊗ M ′), 1X ⊗ 1X ′ → 1X⊗X ′

I1 → I1 ◦ I1, I1 → 1I

satisfying coherence axioms.�
�

�


An oplax monoidal double category with a single object
and vertical arrow is precisely a

:::::::
duoidal category.

End result: V-Sym is an oplax monoidal double category. How? As a
Kleisli-type structure on V-Prof with induced monoidality.
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Kleisli double category
▶ A (vertical) double monad is a double functor T : D → D with
transformations m : TT ⇒ T , e : 1 ⇒ T with

TTX TTY

TX TY
mX

TTM

⇓mM mY

TM

X Y

TX TY
eX

M

⇓eM eY

TM

▶ It is special when m̂X , êX exist, and transposes of mM , eM are invertible.

■ Each special double monad T : D → D gives double category Kl(T )
· Kl(T )0 is D0
· M : X ⇝ Y are horizontal M : X TY in D

· 2-maps
X Y

Z W

M

⇓f g

N

are
X TY

Z TW

M

⇓f Tg

N

in D

· horizontal composition is X M TY TN TTZ
m̂Z TZ
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Monoidal structure
▶ A double monad T on a monoidal double category D is
pseudomonoidal when T lax monoidal and m, e pseudomonoidal

e.g.

TTX1 ⊗ TTX2 TTX1 ⊗ TTX2

TT (X1 ⊗ X2) TX1 ⊗ TX2

T (X1 ⊗ X2) T (X1 ⊗ X2)

1

⇓

m⊗m

m
1

is invertible

For T a pseudomonoidal special double monad,
if lax structure maps I → TI, TX ⊗ TY τ−→ T (X ⊗ Y ) have companions,

Kl(T ) is an oplax monoidal double category.

⋆ Induced tensor is M ⊠ N=X ⊗ Z M⊗N TY ⊗ TW τ̂ T (Y ⊗ W ).
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Coloured symmetric sequences
⋆ ‘Free symmetric strict monoidal category 2-monad’ S : V-Cat → V-Cat

with Sn(C)((x1, . . . , xn), (y1, . . . , yn)) =
∑

σ

∏
1≤i≤n

C(xσ(i), yi)

extends to such a double monad on the monoidal double category V-Prof
(for V cartesian monoidal).�



�
	Kleisli double category is V-CatSym of categorical symmetric

sequences M : SX op×Y →V, with ‘discrete’ case V-Sym.

▶ Oplax monoidal structure is many-object arithmetic product of species

(M ⊠ N)(⃗a, (x , z)) =
∫ y⃗ ,w⃗

S(Y ×W )(⃗a, y⃗ ⊠ w⃗) × M(y⃗ , x) × N(w⃗ , z)
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Some future directions
▶ Extend previous results from monoidal double to oplax monoidal double
categories : do we still obtain enrichment of monads in comonads?

▶ Further explore V-Sym: is it monoidal closed and locally presentable as
a double category?

[One-object case] If V is symmetric monoidal closed and loc presentable,
• positive operads are enriched in positive cooperads, if V has

biproducts;
• symmetric operads are enriched in symmetric cooperads, if V is

cartesian.

▶ Extend full story
Mod(D) Comod(D)

Mnd(D) Cmd(D)
fibered

enriched

opfibered

enriched

to oplax monoidal D.
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Thank you for your attention!

• Aravantinos-Sotiropoulos, Vasilakopoulou, “Enriched duality in
double categories II: modules and comodules”, arXiv:2408.03180

• Gambino, Garner, Vasilakopoulou, “Monoidal Kleisli bicategories and
the arithmetic product of symmetric sequences”, Documenta
Mathematica (2024)
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