Sweedler theory for double categories

Christina Vasilakopoulou

National Technical University of Athens, Greece

CT2023, Université catholique de Louvain

5 July 2023

Outline

- 1. Motivation and background
- 2. Sweedler theory for monoidal double categories
- 3. Oplax monoidal double structure
- 4. Further directions

Fibered versus enriched categories

• A V-enriched category has hom-objects that belong to V , and composition rule is a morphism in V , for a monoidal category V

• A category fibered over a category β is an ordinary category, whose objects and morphisms lie over specified objects and morphisms in B , with certain (cartesian) liftings

. . . a common pattern in what follows is

⋆ Bunge / Shulman: enriched indexed categories, over a fixed base. Above picture? Theory of enriched fibrations, over different bases.

Monoids and comonoids

Suppose (V, \otimes, I) is monoidal category.

▶ A monoid is an object A together with maps *µ*: A ⊗ A → A and $\eta: I \rightarrow A$ which are associative and unital:

▶ Dually, a comonoid is an object C together with maps *δ* : C → C ⊗ C and $\epsilon: \mathcal{C} \rightarrow I$ which are coassociative and counital.

⋆ These form categories Mon and Comon, with maps preserving structure.

When $(\mathcal{V}, \otimes, I, \sigma)$ is braided, Mon and Comon are monoidal, with *I* and

$$
\mathit{A} \otimes \mathit{B} \otimes \mathit{A} \otimes \mathit{B} \xrightarrow{1 \otimes \sigma \otimes 1} \mathit{A} \otimes \mathit{A} \otimes \mathit{B} \otimes \mathit{B} \xrightarrow{\mu \otimes \mu} \mathit{A} \otimes \mathit{B}
$$

 \blacksquare If ${\mathcal V}$ is also closed, induced $[.,.]$: $\mathsf{Comon}({\mathcal V})^\mathrm{op}\times\mathsf{Mon}({\mathcal V})\to\mathsf{Mon}({\mathcal V})$ makes $[C, A]$ into a monoid via *convolution*

 \star In Vect_k, linear dual $C^* = \mathrm{Hom}_k(C, k)$ for a *k*-coalgebra is a *k*-algebra $-$ while A^* for a k -algebra is a k -coalgebra only if it is finite dimensional.

 $\sqrt{\frac{Sweedler \text{ dual 'fixes' that: } A^o = \{f \in A^* \mid \text{kerf contains cofinite ideal}\}}$ is a *k*-coalgebra, and $\mathsf{Alg}(A, C^*) \cong \mathsf{Coalg}(C, A^o)$ by adjunction

 \sim

'Sweedler theory' for monoidal categories

▶ Universal measuring k-coalgebra Alg(A*,* [C*,* B])∼=Coalg(C*,* P(A*,* B)), algebraically as terminal object in category of k-coalgebras that *measure*.

⋆ Moving to general context of braided monoidal closed categories, local presentability gives passage from Vect_k to (d) g Vect_k , Mod_R &many more.

Suppose $\mathcal V$ is a braided monoidal closed and locally presentable category. There is a parameterized adjunction between

 $[-,-]$: Comon^{op} × Mon \rightarrow Mon convolution

 $P(-, \cdot)$: Mon^{op} × Mon \rightarrow Comon universal measuring

 $P(A, B) = \int_{A}^{C} \text{Mon}(A, [C, B]) \cdot C \mid \text{in Set is } \text{Mon}(A, B); \text{ in Vect}_k \text{ contains } k$ k -algebra maps as grouplike; in dg Vect_k , relates to bar-cobar adjunction.

 \blacktriangleright Convolution $[-, -]$ is an *action* of the monoidal Comon^(op) on Mon.

Any parameterized adjoint of an action $\bullet: \mathcal{V} \times \mathcal{C} \rightarrow \mathcal{C}$ gives rise to a V-enriched structure on C, and all tensored V-categories arise this way.

If V further symmetric, Mon is enriched in symmetric monoidal Comon.

Digression: semi-Hopf V-categories generalize bimonoids $\cdot H(x, y) \otimes H(y, z) \rightarrow H(z, x), I \rightarrow H(x, x)$ 'global' multipl $\cdot H(a, b) \rightarrow H(a, b) \otimes H(a, b), H(a, b) \rightarrow I$ 'local' comultipl

$$
H_{x,y} \otimes H_{y,z} \longrightarrow \delta_{xy} \otimes \delta_{yz} \longrightarrow H_{x,y} \otimes H_{x,y} \otimes H_{y,z} \otimes H_{y,z}
$$

\n
$$
\downarrow_{(H_{xyz} \otimes \mu_{xyz}) \circ (1 \otimes \sigma \otimes 1)}
$$

\n
$$
H_{x,z} \longrightarrow \delta_{xz} \longrightarrow H_{x,z} \otimes H_{x,z}
$$

The category of monoids in V is a semi-Hopf V -category.

(Co)modules enter the picture

 \triangleright For monoid A, an A-module M comes with associative and unital $\mu: A \otimes M \to M$, and dually a C-comodule X comes with $\chi: X \to C \otimes X$. With maps preserving (co)actions, categories $_A$ Mod and $_C$ Comod.

■ 'Global' categories Mod, Comod of (co)modules for any (co)monoid, maps for Mod are $g: {}_AM \rightarrow {}_BN$ in V with $f: A \rightarrow B$ in Mon that

$$
\begin{array}{ccc}\nA \otimes M & \xrightarrow{\mu} & M \\
\downarrow^{\text{1} \otimes g \downarrow} & & \downarrow^{\text{g}} \\
A \otimes N & \xrightarrow{f \otimes 1} & B \otimes N & \xrightarrow{\mu} & N\n\end{array}
$$

 \star Naturally form fibration Mod \to Mon and opfibration Comod \to Comon.

If V symmetric monoidal closed&locally presentable, adjunction between $[-,-]$: Comod^{op} × Mod \rightarrow Mod convolution $Q(-,-)$: Mod^{op} × Mod \rightarrow Comod universal measuring and Mod is enriched in the symmetric monoidal Comod.

From one to many objects

Goal: generalize from monoids in V , to V -categories!

Method: work 'bottom-up' (technical but direct), or identify general framework and work 'top-down'

A V-module M consists of ${M(x)}_{x\in X}$ in V with an action $(\sum_{\mathsf y}){\mathsf A}(\mathsf x,\mathsf y)\otimes{\mathsf M}(\mathsf y)\to{\mathsf M}(\mathsf x)$ for ${\mathsf A}$ some ${\mathcal V}\text{-}\mathsf{category}\;({\mathsf A}\to{\mathcal I}).$ ▶ For V with coproducts preserved by \otimes , a V-cocategory C consists of $\{C(x, z)\}_X$ in V with $C(x, z) \rightarrow \sum_y C(x, y) \otimes C(y, z)$, $C(x, x) \rightarrow I$. ▶ For V with coproducts preserved by \otimes , a V-comodule K consists of $\{\mathcal{K}(x)\}_{x\in\mathcal{X}}$ in $\mathcal V$ with a coaction $\mathcal{K}(x)\to\sum_{y}\mathcal{C}(x,y)\otimes\mathcal{K}(y).$

From monoidal to double categories

 \star Opcategories $=$ $\mathcal{V}^{\mathrm{op}}$ -categories? Not as convenient, formally!

A double category $\mathbb D$ has $\mathbb D_0$ (0-cells&vertical 1-cells), $\mathbb D_1$ (horizontal 1 -cells&2-maps) and $\mathbb{D}_0 \overset{1}{\to} \mathbb{D}_1$, $\mathbb{D}_1 \overset{\mathfrak{s}}{\rightrightarrows}$ \mathbb{D}_{0} , $\mathbb{D}_{1}\times_{\mathbb{D}_{0}}\mathbb{D}_{1} \stackrel{\circ}{\rightarrow} \mathbb{D}_{1}+$ coherent isos.

A monad in a double category $\mathbb D$ is $A: X \rightarrow X$ with associative, unital

$$
\begin{array}{ccc}\nX & \xrightarrow{A} & X & \xrightarrow{A} & X & X & \xrightarrow{1_X} & X \\
\parallel & & \parallel & & \parallel & \Downarrow & \parallel \\
X & \xrightarrow{\downarrow} & & & X & X & \xrightarrow{A} & X\n\end{array}
$$

Dually, comonad $C: X \rightarrow X$. These form categories Mnd(D) & Cmd(D). *⋆* Morphisms are different than those for (co)monads in bicategories.

For
$$
\mathbb{D} = \mathcal{V}
$$
-Mat of sets, functions and \mathcal{V} -matrices $S: X \to Y$ i.e. $\{S(x, y)\} \in \mathcal{V}$ with $(S \circ T)(x, z) = \sum_{y} T(x, y) \otimes S(y, z)$,
\n $\text{Mnd}(\mathcal{V}\text{-Mat}) = \mathcal{V}\text{-Cat}$ and $\text{Cmd}(\mathcal{V}\text{-Mat}) = \mathcal{V}\text{-Cocat}$.

A module in $\mathbb D$ is $M\colon Z\to X$ with an action of a monad $A\colon X\to X$

Dually, comodule Q: $W \rightarrow X$ with globular $Q \Rightarrow C \circ Q$ for comonad $C: X \rightarrow X$. These form categories $Mod(D)$ & Comod (D) , with maps

★ Subcategories of interest: fixed-monad _AMod(D), fixed-dom ^ZMod(D), bicat modules ${}^Z_A\mathsf{Mod}(\mathbb{D}) = \mathsf{Mod}(\mathcal{H}(\mathbb{D}))$...several monadicity results.

 $\{*\}$ Mod(V -Mat) = V -Mod and $\{*\}$ Comod(V -Mat) = V -Comod. $\mathsf{Mod}(\mathcal{V}\text{-}\mathbb{M}\mathsf{at})$ has $\{M(x, z)\}_{X\times Z}$ with $A(x, x')\otimes M(x', z)\rightarrow M(x, z).$ For $\mathbb D$ a double category, $Mnd(\mathbb D)$ is enriched in $Cmd(\mathbb D)$ and $Mod(\mathbb D)$ is enriched in $Comod(\mathbb{D})$, under certain conditions.

E Fibrant: vertical 1-cells f turn to horizontal, companion \hat{f} & conjoint \check{f} . In V-Mat, $f: X \to Y$ gives matrices $\hat{f}(x, y) = \check{f}(y, x) = \begin{cases} I & \text{if } f(x) = y \\ 0 & \text{if } f(x) \end{cases}$ 0 if $f x \neq y$

 $\mathsf{Mod}(\mathbb{D}) \to \mathsf{Mnd}(\mathbb{D})$ is a fibration, with reindexing $\check f \circ \text{-} \colon {}_B\mathsf{Mod} \to {}_A\mathsf{Mod}.$ Comod(\mathbb{D}) \rightarrow Cmd(\mathbb{D}) is an opfibration, with $\hat{f} \circ \cdot : c$ Comod $\rightarrow p$ Comod.

■ Monoidal: \mathbb{D}_0 & \mathbb{D}_1 monoidal, $(M \otimes N) \circ (M' \otimes N') {\cong} (M \circ M') {\otimes} (N \circ N')$. In V -Mat, $(X \otimes Y) = X \times Y$ & $(S \otimes T)((x, y), (z, w)) = S(x, z) \otimes T(y, w)$.

Cmd(\mathbb{D}) and Comod(\mathbb{D}) are monoidal, with $Q_C \otimes P_D = (Q \otimes P)_{C \otimes D}$ via $Q \otimes P \rightarrow (C \circ Q) \otimes (D \circ P) \cong (C \otimes D) \circ (Q \otimes P)$. Symmetry is inherited.

■ Locally closed monoidal: lax double functor $H: \mathbb{D}^{\text{op}} \times \mathbb{D} \to \mathbb{D}$ such that \mathbb{D}_0 & \mathbb{D}_1 monoidal closed, s , t maps of adjunctions.

In V-Mat,
$$
[X, Y] = Y^X
$$
 and $H(S, T)(f, g) = \prod_{x,y} [S(x, y), T(fx, gy)].$

Lax double H induce functors $\mathsf{Cmd}(\mathbb D)^{\rm op}\times \mathsf{Mnd}(\mathbb D)$ $\rightarrow \mathsf{Mnd}(\mathbb D)$ and $\mathsf{Comod}(\mathbb{D})^{\mathrm{op}}\times\mathsf{Mod}(\mathbb{D})\to\mathsf{Mod}(\mathbb{D})$ which are actions. convolution

■ Locally presentable: \mathbb{D}_0 & \mathbb{D}_1 locally presentable, s, t accessible right adjoints, **1** accessible, - ◦ - accessible in each variable.

In V-Mat, Set is locally presentable & V-Mat₁ is too (Limit theorem...)

Induced functors H have adjoints $\mathsf{Mnd}(\mathbb{D})^{\mathrm{op}}\times \mathsf{Mnd}(\mathbb{D}){\rightarrow}\mathsf{Cmd}(\mathbb{D})$ and $\mathsf{Mod}(\mathbb{D})^{\mathrm{op}}\times \mathsf{Mod}(\mathbb{D}) \to \mathsf{Comod}(\mathbb{D}).$ universal measuring

 \Diamond Obtain enrichment of Mnd($\mathbb D$) in Cmd($\mathbb D$) & of Mod($\mathbb D$) in Comod($\mathbb D$).

Moving to other contexts

 \star For V symmetric monoidal closed & locally presentable, $\mathbb{D} = \mathcal{V}$ -Mat is a fibrant, locally closed monoidal & locally presentable double category.

- Enrichment of $\mathcal V$ -categories in $\mathcal V$ -cocategories
- Enrichment of V -modules in V -comodules

Goal: employ/extend theory to apply to $\mathbb{D} = \mathcal{V}$ -Sym (operads

- · objects are sets X*,* Y *, . . .*
- · vertical 1-cells are functions f *,* g*, . . .*
- · horizontal 1-cells are coloured symmetric sequences $M: S \times Y \rightarrow V$
- \cdot 2-maps are $M(x_1, \ldots, x_n; v) \rightarrow N(fx_1, \ldots, fx_n; g v)$

Horizontal composition is generalization of substitution for species...

 \blacksquare V -Sym is fibrant; but not monoidal double anymore!

Oplax monoidal double structure

A double category is *oplax* monoidal with comparison maps

$$
(N \circ M) \otimes (N' \circ M') \to (M \otimes M') \circ (N \otimes N'), \quad 1_X \otimes 1_{X'} \to 1_{X \otimes X'}
$$

$$
I_1 \to I_1 \circ I_1, \quad I_1 \to 1_I
$$

making $\otimes: \mathbb{D} \times \mathbb{D} \to \mathbb{D}$, $I: \mathbf{1} \to \mathbb{D}$ into oplax double functors.

✎ An oplax monoidal double category with a single object ✍ and vertical arrow is precisely a <u>duoidal</u> category.

▶ Normality condition (*I* pseudo, \otimes pseudo in each variable) reduces to normal duoidal structure & gives passage to 'oplax monoidal bicategories'.

Idea: show that $V-Sym$ (in fact $V-CatSym...$) is normal oplax monoidal, by expressing it as a *Kleisli double category* of monoidal double $\mathcal{V}\text{-}\mathbb{P}\text{rof}$. ☛

 $\overline{}$

✟

✠

Arithmetic product of coloured symmetric sequences

Kleisli double category is V -CatSym of categorical symmetric sequences $M: SY^{op} \times X \rightarrow V$, with 'discrete' case V -Sym.

▶ Horizontal composition is many-object generalisation of substitution

$$
(N \circ M)(\vec{z}, x) = \int^{SZ, SY} SZ[\vec{z}, \bigotimes_i \vec{w}^i] \times \prod N(\vec{w}^i, y_i) \times M(\vec{y}, x)
$$

Oplax monoidal structure is many-object generalisation of 'arithmetic product' of species

$$
(M\boxtimes N)(\vec{a},(x,z))=\int^{\vec{y},\vec{w}}S(Y\times W)(\vec{a},\vec{y}\boxtimes \vec{w})\times M(\vec{y},x)\times N(\vec{w},z)
$$

Some future directions

▶ Extend 'Sweedler theory' from monoidal double to oplax monoidal double categories: do we still obtain an enrichment of monads in comonads, and of modules in comodules?

 \triangleright Further explore structure of V-Sym: is it locally monoidal closed and locally presentable as a double category, for introduced definitions?

[One-object case] If V is symmetric monoidal closed and loc presentable,

- positive operads are enriched in positive cooperads, if V has biproducts;
- symmetric operads are enriched in symmetric cooperads, if V is cartesian.

▶ Boardman-Vogt tensor of bimodules of symmetric coloured operads and bimodules: abstract double categorical framework behind that?

Thank you for your attention!

- Aravantinos-Sotiropoulos, Vasilakopoulou, "Enriched duality in double categories II: \mathcal{V} -modules and \mathcal{V} -comodules", in preparation
- Gambino, Garner, Vasilakopoulou, "Monoidal Kleisli bicategories and the arithmetic product of symmetric sequences", arXiv:2206.06858