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Fibered versus enriched categories
• A V-enriched category has hom-objects that belong to V, and
composition rule is a morphism in V, for a monoidal category V

• A category fibered over a category B is an ordinary category, whose
objects and morphisms lie over specified objects and morphisms in B,
with certain (cartesian) liftings

. . . a common pattern in what follows is

C D

A B

fibered

enriched

opfibered

enriched

⋆ Bunge / Shulman: enriched indexed categories, over a fixed base.
Above picture? Theory of enriched fibrations, over different bases.
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Monoids and comonoids
Suppose (V, ⊗, I) is monoidal category.
▶ A monoid is an object A together with maps µ : A ⊗ A → A and
η : I → A which are associative and unital:

A ⊗ A ⊗ A A ⊗ A

A ⊗ A A

µ⊗1

1⊗µ µ

µ

I ⊗ A A ⊗ A A ⊗ I

A

η⊗1

µ

1⊗η

▶ Dually, a comonoid is an object C together with maps δ : C → C ⊗ C
and ϵ : C → I which are coassociative and counital.
⋆ These form categories Mon and Comon, with maps preserving structure.

When (V, ⊗, I, σ) is braided, Mon and Comon are monoidal, with I and

A ⊗ B ⊗ A ⊗ B 1⊗σ⊗1−−−−→ A ⊗ A ⊗ B ⊗ B µ⊗µ−−−→ A ⊗ B
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■ If V is also closed, induced [-, -] : Comon(V)op × Mon(V) → Mon(V)
makes [C , A] into a monoid via convolution

[C , A]⊗[C , A]⊗C [C , A]⊗[C , A]⊗C⊗C [C , A]⊗C⊗[C , A]⊗C

A ⊗ A

A

1⊗δ 1⊗σ⊗1

ev⊗ev

µ

⋆ In Vectk , linear dual C∗ = Homk(C , k) for a k-coalgebra is a k-algebra
– while A∗ for a k-algebra is a k-coalgebra only if it is finite dimensional.'

&

$

%

Sweedler dual ‘fixes’ that: Ao={f ∈A∗ | kerf contains cofinite ideal}
is a k-coalgebra, and Alg(A, C∗) ∼= Coalg(C , Ao) by adjunction

Coalgop Alg

(−)∗

⊥
((−)o)op
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‘Sweedler theory’ for monoidal categories
▶ Universal measuring k-coalgebra Alg(A, [C , B])∼=Coalg(C , P(A, B)),
algebraically as terminal object in category of k-coalgebras that measure.

⋆ Moving to general context of braided monoidal closed categories, local
presentability gives passage from Vectk to (d)gVectk , ModR &many more.

Suppose V is a braided monoidal closed and locally presentable category.
There is a parameterized adjunction between

[-, -] : Comonop × Mon → Mon convolution
P(-, -) : Monop × Mon → Comon universal measuring

P(A, B) =
∫ C Mon(A, [C , B]) · C in Set is Mon(A, B); in Vectk contains

k-algebra maps as grouplike; in dgVectk , relates to bar-cobar adjunction.
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▶ Convolution [-, -] is an action of the monoidal Comon(op) on Mon.

Any parameterized adjoint of an action • : V × C → C gives rise to a
V-enriched structure on C, and all tensored V-categories arise this way.

If V further symmetric, Mon is enriched in symmetric monoidal Comon.

Digression: semi-Hopf V-categories generalize bimonoids
· H(x , y) ⊗ H(y , z) → H(z , x), I → H(x , x) ‘global’ multipl
· H(a, b) → H(a, b) ⊗ H(a, b), H(a, b) → I ‘local’ comultipl

Hx ,y ⊗ Hy ,z Hx ,y ⊗ Hx ,y ⊗ Hy ,z ⊗ Hy ,z

Hx ,z Hx ,z ⊗ Hx ,z

δxy ⊗δyz

µxyz (µxyz ⊗µxyz )◦(1⊗σ⊗1)

δxz

The category of monoids in V is a semi-Hopf V-category.

Christina Vasilakopoulou (NTUA) Sweedler theory for double categories 7 / 18



Background Sweedler theory for monoidal double categories Oplax monoidal double categories Further directions

(Co)modules enter the picture
▶ For monoid A, an A-module M comes with associative and unital
µ : A ⊗ M → M, and dually a C -comodule X comes with χ : X → C ⊗ X .
With maps preserving (co)actions, categories AMod and CComod.
■ ‘Global’ categories Mod, Comod of (co)modules for any (co)monoid,
maps for Mod are g : AM → BN in V with f : A → B in Mon that

A ⊗ M M

A ⊗ N B ⊗ N N
1⊗g

µ

g
f ⊗1 µ

⋆ Naturally form fibration Mod → Mon and opfibration Comod → Comon.

If V symmetric monoidal closed&locally presentable, adjunction between
[-, -] : Comodop × Mod → Mod convolution

Q(-, -) : Modop × Mod → Comod universal measuring
and Mod is enriched in the symmetric monoidal Comod.
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From one to many objects
Goal: generalize from monoids in V, to V-categories!�

�

�

�
Mod Comod V-Mod V-Comod

enriched in ⇝ enriched in

Mon Comon V-Cat V-Cocat

Method: work ‘bottom-up’ (technical but direct), or identify general
framework and work ‘top-down’
▶ A V-module M consists of {M(x)}x∈X in V with an action
(
∑

y )A(x , y) ⊗ M(y) → M(x) for A some V-category (A I).
▶ For V with coproducts preserved by ⊗, a V-cocategory C consists of
{C(x , z)}X in V with C(x , z) →

∑
y C(x , y) ⊗ C(y , z), C(x , x) → I.

▶ For V with coproducts preserved by ⊗, a V-comodule K consists of
{K (x)}x∈X in V with a coaction K (x) →

∑
y C(x , y) ⊗ K (y).
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From monoidal to double categories
⋆ Opcategories=Vop-categories? Not as convenient, formally!
▶ A double category D has D0 (0-cells&vertical 1-cells), D1 (horizontal
1-cells&2-maps) and D0

1−→ D1, D1
s
⇒
t
D0, D1×D0D1

◦−→ D1+coherent isos.

▶ A monad in a double category D is A : X X with associative, unital

X X X

X X

A

⇓µ

A

A

X X

X X

1X

⇓η

A

Dually, comonad C : X X . These form categories Mnd(D) & Cmd(D).
⋆ Morphisms are different than those for (co)monads in bicategories.

For D = V-Mat of sets, functions and V-matrices S : X Y i.e.
{S(x , y)} ∈ V with (S ◦ T )(x , z) =

∑
y T (x , y) ⊗ S(y , z),

Mnd(V-Mat) = V-Cat and Cmd(V-Mat) = V-Cocat.
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▶ A module in D is M : Z X with an action of a monad A : X X
Z X X

Z X

M

⇓

A

M
Dually, comodule Q : W X with globular Q ⇒ C ◦ Q for comonad
C : X X . These form categories Mod(D) & Comod(D), with maps

Z X

T Y

MA

g ⇓β f

NB

s.t.

Z X X

Z X

T Y

M

⇓

A

M

⇓βg f

N

=

Z X X

T Y Y

T Y

M

g ⇓β f ⇓α

A

f

N
⇓

B

N

⋆ Subcategories of interest: fixed-monad AMod(D), fixed-dom Z Mod(D),
bicat modules Z

AMod(D) = Mod(H(D))...several monadicity results.

{∗}Mod(V-Mat) = V-Mod and {∗}Comod(V-Mat) = V-Comod.
Mod(V-Mat) has {M(x , z)}X×Z with A(x , x ′) ⊗ M(x ′, z) → M(x , z).
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For D a double category, Mnd(D) is enriched in Cmd(D) and Mod(D)
is enriched in Comod(D), under certain conditions.

■ Fibrant: vertical 1-cells f turn to horizontal, companion f̂ & conjoint f̌ .

In V-Mat, f : X → Y gives matrices f̂ (x , y) = f̌ (y , x) =
{

I if fx = y
0 if fx ̸= y

Mod(D) → Mnd(D) is a fibration, with reindexing f̌ ◦ - : BMod → AMod.
Comod(D) → Cmd(D) is an opfibration, with f̂ ◦ - : CComod → DComod.

■ Monoidal: D0 & D1 monoidal, (M ⊗ N)◦(M ′ ⊗ N ′)∼=(M◦M ′)⊗(N◦N ′).
In V-Mat, (X⊗Y )=X×Y & (S⊗T )((x , y), (z , w))=S(x , z)⊗T (y , w).

Cmd(D) and Comod(D) are monoidal, with QC⊗PD = (Q⊗P)C⊗D via
Q⊗P → (C◦Q)⊗(D◦P)∼=(C⊗D)◦(Q⊗P). Symmetry is inherited.
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■ Locally closed monoidal: lax double functor H : Dop × D → D such
that D0 & D1 monoidal closed, s, t maps of adjunctions.

In V-Mat, [X , Y ] = Y X and H(S, T )(f , g)=
∏
x ,y

[S(x , y), T (fx , gy)].

Lax double H induce functors Cmd(D)op×Mnd(D)→Mnd(D) and
Comod(D)op×Mod(D)→Mod(D) which are actions. convolution

■ Locally presentable: D0 & D1 locally presentable, s, t accessible right
adjoints, 1 accessible, - ◦ - accessible in each variable.

In V-Mat, Set is locally presentable & V-Mat1 is too (Limit theorem. . . )

Induced functors H have adjoints Mnd(D)op×Mnd(D)→Cmd(D) and
Mod(D)op×Mod(D)→Comod(D). universal measuring

⋄ Obtain enrichment of Mnd(D) in Cmd(D) & of Mod(D) in Comod(D).
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Moving to other contexts
⋆ For V symmetric monoidal closed & locally presentable, D = V-Mat is
a fibrant, locally closed monoidal & locally presentable double category.

• Enrichment of V-categories in V-cocategories
• Enrichment of V-modules in V-comodules

Goal: employ/extend theory to apply to D = V-Sym operads

· objects are sets X , Y , . . .

· vertical 1-cells are functions f , g , . . .

· horizontal 1-cells are coloured symmetric sequences M : SX×Y →V
· 2-maps are M(x1, . . . , xn; y) → N(fx1, . . . , fxn; gy)

Horizontal composition is generalization of substitution for species...

■ V-Sym is fibrant; but not monoidal double anymore!
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Oplax monoidal double structure

▶ A double category is oplax monoidal with comparison maps

(N ◦ M) ⊗ (N ′ ◦ M ′) → (M ⊗ M ′) ◦ (N ⊗ N ′), 1X ⊗ 1X ′ → 1X⊗X ′

I1 → I1 ◦ I1, I1 → 1I

making ⊗ : D × D → D, I : 1 → D into oplax double functors.�
�

�


An oplax monoidal double category with a single object
and vertical arrow is precisely a

:::::::
duoidal category.

▶ Normality condition (I pseudo, ⊗ pseudo in each variable) reduces to
normal duoidal structure & gives passage to ‘oplax monoidal bicategories’.

Idea: show that V-Sym (in fact V-CatSym...) is normal oplax monoidal,
by expressing it as a *Kleisli double category* of monoidal double V-Prof.
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Arithmetic product of coloured symmetric sequences�



�
	Kleisli double category is V-CatSym of categorical symmetric

sequences M : SY op×X→V, with ‘discrete’ case V-Sym.

▶ Horizontal composition is many-object generalisation of substitution

(N ◦ M)(⃗z , x) =
∫ SZ ,SY

SZ [⃗z ,
⊗

i
w⃗ i ] ×

∏
N(w⃗ i , yi) × M(y⃗ , x)

▶ Oplax monoidal structure is many-object generalisation of ‘arithmetic
product’ of species

(M ⊠ N)(⃗a, (x , z)) =
∫ y⃗ ,w⃗

S(Y ×W )(⃗a, y⃗ ⊠ w⃗) × M(y⃗ , x) × N(w⃗ , z)
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Some future directions
▶ Extend ‘Sweedler theory’ from monoidal double to oplax monoidal
double categories: do we still obtain an enrichment of monads in
comonads, and of modules in comodules?

▶ Further explore structure of V-Sym: is it locally monoidal closed and
locally presentable as a double category, for introduced definitions?

[One-object case] If V is symmetric monoidal closed and loc presentable,
• positive operads are enriched in positive cooperads, if V has

biproducts;
• symmetric operads are enriched in symmetric cooperads, if V is

cartesian.

▶ Boardman-Vogt tensor of bimodules of symmetric coloured operads
and bimodules: abstract double categorical framework behind that?
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Thank you for your attention!

• Aravantinos-Sotiropoulos, Vasilakopoulou, “Enriched duality in
double categories II: V-modules and V-comodules”, in preparation

• Gambino, Garner, Vasilakopoulou, “Monoidal Kleisli bicategories and
the arithmetic product of symmetric sequences”, arXiv:2206.06858
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