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Introduction and motivation

Wind and solar energy are expanding renewable generation capacity,
experiencing record growth in the last years.

Installed Wind and Solar Power over the years
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Figure 1: Worldwide installed wind and solar power 2010–2019 IRENA, 2020.
We recall the importance of accurate forecasts to use green energies
optimally.
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Introduction and motivation

Reliable wind power generation forecasting is crucial for the follow-
ing applications (see, for example, Giebel et al., 2011, Chang, 2014,
Zhou et al., 2013):

Allocation of energy reserves such as water levels in dams or oil,
and gas reserves.
Operation scheduling of controllable power plants.
Optimization of the price of electricity for different parties such as
electric utilities, Transmission system operator (TSOs), Electricity
service providers (ESPs), Independent power producers (IPPs),
and energy traders.
Maintenance planning such as that of power plants components
and transmission lines.
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Introduction and motivation

In recent years, Uruguay has triggered a remarkable change in its
energy matrix. In (IRENA, 2019, p.23), Uruguay was among those
countries showcasing innovation, like Denmark, Ireland, Germany,
Portugal, Greece and Spain, with proven feasibility of managing
annual variable renewable energy (VRE) higher than 25% in
power systems.
According to (REN21, 2019, pp.118–119), in 2018,
Uruguay achieved 36% of its electricity production from variable
wind energy and solar PV, raising the share of generation from
wind energy more than five-fold in just four years, from 6.2% in
2014 to 36% in 2018.
Including hydropower, Uruguay now produces more than 97% of
its electricity from renewable energy sources.
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Introduction and motivation
At present, Uruguay is fostering even higher levels of wind
penetration by boosting regional power trading with Argentina and
Brazil. In this rapidly evolving scenario, it is essential to analyze
national data on wind power production with wind power
short-term forecasting to orientate and assess the strategies and
decisions of wind energy actors and businesses.

Figure 2: Renewables: Top Ten countries according to REN21 in 2018.
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Data description
Wind power production data in Uruguay between April and December
2019, normalized with respect to the maximum installed wind power
capacity (1474 MW). Each day, wind power production recordings are
available every ten minutes. Data from three different forecast providers,
available each day starting at 1 pm.
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Figure 3: Two 24-hour segments with the normalized wind power real
production in Uruguay (blue line) recorded every ten minutes, and the hourly
wind power production forecasted by provider A (black line).
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Wind production forecast error histograms
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Curtailment

Figure 4: A real headache: Example of a day with curtailment

In Figure 4, we plot the real and corrected data corresponding to the
day 19/01/2019. We observe from this figure that this day shows signs
of curtailment at the beginning. The data "Real" represents the raw real
production and "Real_corrected" is the real production with a tentative
correction made by the provider to curb the curtailment. The days con-
taining curtailment are removed from the dataset as they induce error.
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Forecast error, no curtailment (147 daily segments)
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Forecast error transition histograms

Figure 5: Forecast error transition histograms, applying the first-order
difference operator to the forecast errors.
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Phenomenological model

Let X = {Xt , t 2 [0,T ]} be a [0, 1]-valued stochastic process that rep-
resents the normalized wind power production, defined by the following
Itô stochastic differential equation (SDE):

⇢
dXt = a (Xt ; pt , ṗt ,✓) dt + b (Xt ; pt , ṗt ,✓) dWt , t 2 [0,T ]
X0 = x0 2 [0, 1] (1)

where:
a (·, pt , ṗt ,✓) : [0, 1] ! R denotes a drift function,
b (·; pt , ṗt ,✓) : [0, 1] ! R+ is a diffusion function,
✓ is a vector of unknown parameters,
(pt)t2[0,T ] is the given forecast, taking values in [0,1] and (ṗt)t2[0,T ]
is its time derivative,
(Wt)t2[0,T ] is a standard real-valued Wiener process.
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Specification of the drift function

Time-dependent drift function that features the mean-reverting property
as well as derivative tracking:

a (Xt ; pt , ṗt ,✓) = ṗt � ✓t (Xt � pt) (2)

where (✓t)t2[0,T ] is a positive deterministic function, whose range de-
pends on ✓, that controls the speed of reversion.
Observe: Given E [X0] = p0, apply Itô’s lemma on the forecast error,
Vt = Xt � pt , yielding

dVt = dXt � ṗtdt = �✓t Vtdt + btdWt ,

and taking expectations yields, for t > 0,

dE [Vt ]

dt
= �✓t E [Vt ]

implying E [Vt ] = 0 for t > 0. [Centering property]
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At this stage, the process defined by (1) with drift (2) satisfies the two
following properties:

it reverts to its mean pt , with a time-varying parameter ✓t ,
it tracks the time derivative ṗt .

Obs: A mean-reverting model without derivative tracking shows a de-
layed path behavior.

Example: Consider the diffusion model (1) with

a(Xt ; pt ,✓) = �✓0(Xt � pt) , ✓0 > 0.

Then, given E [X0] = p0, this diffusion has mean

E [Xt ] = pt � e�✓0t
Z t

0
ṗse✓0sds 6= pt . [Not Centered]
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Models with and without derivative tracking
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Figure 6: Pointwise confidence bands fitted, for the same daily segment,
through diffusion models without derivative tracking (plot on the left) and with
derivative tracking (plot on the right).
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Specification of the diffusion function
Let ✓ = (✓0,↵), and choose a state-dependent diffusion term that avoids
the process exiting from the range [0, 1] as follows:

b (Xt ;✓) =
p

2↵✓0Xt (1 � Xt) (3)

where ✓0 > 0, ↵ > 0 is an unknown parameter that controls the path
variability.
This diffusion term belongs to the Pearson diffusion family,
in particular, it defines a Jacobi type diffusion.
Recall (Forman and Sørensen, 2008) that a Pearson diffusion is a sta-
tionary solution to a stochastic differential equation of the form

dXt = �✓(Xt � µ)dt +
q

2✓
�
aX 2

t + bXt + c
�
dWt (4)

where ✓ > 0, and a, b, and c are parameters such that the square root
is well defined when Xt is in the state space.
These parameters, together with µ, determine the state space of the diffusion
as well as the shape of the invariant distribution.
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Normalized wind power production model

Normalized wind power production model

⇢
dXt = (ṗt � ✓t (Xt � pt))dt +

p
2↵✓0Xt (1 � Xt)dWt , t 2 [0,T ]

X0 = x0 2 [0, 1]
(5)

To ensure that Xt is the unique solution to (5) 8t 2 [0,T ] with state
space [0,1] a.s., the mean-reversion time-dependent function ✓t
must satisfy the condition:

✓t � max

✓
↵✓0 + ṗt

1 � pt
,
↵✓0 � ṗt

pt

◆
. (6)
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Theorem (Existence and Uniqueness)

Assume that

8t 2 [0,T ], 0  ṗt + ✓tpt  ✓t , and sup
t2[0,T ]

|✓t | < +1. (A)

Then, there is a unique strong solution to (5) s.t. for all t 2 [0,T ],
Xt 2 [0, 1] a.s.
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Truncated prediction function

Issue: If we choose the equality in (6), then ✓t becomes
unbounded when pt = 0 or pt = 1.
Our approach: Introduce a truncation parameter, 0 < ✏ << 1.
Consider the following truncated prediction function

p✏
t =

8
<

:

✏ if pt < ✏
pt if ✏  pt < 1 � ✏

1 � ✏ if pt � 1 � ✏

that satisfies p✏
t 2 [✏, 1 � ✏] for any 0 < ✏ < 1

2 and t 2 [0,T ],
implying that ✓t is bounded for every t 2 [0,T ].

Theorem
Take 0 < ✏ < 1/2 and let (6) hold. Once we truncate p into p✏, the
solution X to (5) does not reach the boundary of [0, 1] a.s.
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Forecast error of the normalized wind power
production

Model for the forecast error of the normalized wind power
production
The model for the forecast error of the normalized wind power
productionV = {Vt , t 2 [0,T ]}, Vt = Xt � pt , 8t 2 [0,T ] is defined by
the following Itô stochastic differential equation (SDE):
⇢

dVt = �✓tVtdt +
p

2↵✓0 (Vt + pt) (1 � Vt � pt)dWt , t 2 [0,T ]
V0 = v0 2 [�p0, 1 � p0]

(7)
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Lamperti transform
John Lamperti (Lamperti, 1964) first showed that the use of Itô’s for-
mula on a well-chosen transformation of a diffusion process is again a
diffusion process solving a SDE with unit, constant diffusion coefficient.
(Nonlinear) Lamperti transform with unknown parameters:

Zt = h(Vt , t ;✓) =
Z

dv
�(v)

�����
v=Vt

=
1p

2↵✓0

Z
1p

(v + pt)(1 � v � pt)
dv

�����
v=Vt

= �

s
2

↵✓0
arcsin(

p
1 � Vt � pt)

(8)

By Itô’s lemma, if h(v , t) is C2([�pt , 1 � pt ]) for v and C1([0,T ]) for t ,
then:

dZt =

✓
@th + @v h (�✓tVt) +

1
2
@2

v h �2
◆

dt + @v h � dWt .
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SDE with state independent unit diffusion term

Zt satisfies the SDE with constant, unitary diffusion coefficient,

dZt =

2

664

ṗt � ✓t

✓
1 � pt � sin2

⇣
�
q

↵✓0
2 Zt

⌘◆

p
2↵✓0 cos

⇣
�
q

↵✓0
2 Zt

⌘
sin
⇣
�
q

↵✓0
2 Zt

⌘

�1
4

p
2↵✓0

✓
1 � 2 cos2

⇣
�
q

↵✓0
2 Zt

⌘◆

cos
⇣
�
q

↵✓0
2 Zt

⌘
sin
⇣
�
q

↵✓0
2 Zt

⌘

3

775 dt + dWt

=


2ṗt � ✓t(1 � 2pt) + (↵✓0 � ✓t) cos(�

p
2↵✓0Zt)p

2↵✓0 sin (�
p

2↵✓0Zt)

�
dt + dWt .

(9)
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Z-Forecast error transition histograms after Lamperti T.

Figure 7: Lamperti transformed forecast error transition histograms between
April and December 2019 without wind power production curtailment:
low-power (upper-left plot), mid-power (upper-right plot), high-power
(lower-left plot), and the global range of power (lower-right plot).
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Likelihood in the V�space (1/2)

M non-overlapping paths of the continuous-time Itô process V .
Each path is sampled at N + 1 equispaced discrete points with a
given interval length �.
We denote this random sample by

V M,N+1 =
n

V N+1
t1 ,V N+1

t2 , . . . ,V N+1
tM

o
,

where tj is the start time of the path j and
V N+1

tj =
n

Vtj+i�, i = 0, . . . ,N
o

, 8j 2 {1, . . . ,M}.

Let ⇢(v |vj,i�1;✓) be the conditional probability density of Vtj+i� ⌘ Vj,i
given Vj,i�1 = vj,i�1 evaluated at v , where ✓ = (✓0,↵) are the unknown
model parameters.
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Likelihood in the V�space (2/2)

The Itô process defined by the SDE (7) is Markovian.
The likelihood function of the sample V M,N+1 can be written as
follows:

L
⇣
✓;V M,N+1

⌘
=

MY

j=1

( NY

i=1

⇢
⇣

Vj,i |Vj,i�1; p[tj,i�1,tj,i ],✓
⌘)

where tj,i ⌘ tj + i� for any j = 1, . . . ,M and i = 0, . . . ,N.

Obs: We have used an independence assumption over the index j in
the likelihood above.
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Moment matching technique

Closed-form expression for the transition densities of V ,
⇢
�
Vj,i |Vj,i�1;✓

�
are rarely available (Egorov et al., 2003).

Approximate likelihood methods
(Särkkä and Solin, 2019, Chapter 9).
Moment matching technique:

assume a surrogate transition density for V .
match the conditional moments of the surrogate density for V with
the conditional moments of the SDE models (7).

m1(t) ⌘ E [Vt |Vtj,i�1 = vj,i�1] = e
�

R t
tj,i�1

✓sds
vj,i�1, for any t 2 [tj,i�1, tj,i [,

j = 1, . . . ,M and i = 1, . . . ,N .

For k � 2, let mk (t) ⌘ E
⇥
V k

t |Vtj,i�1 = vj,i�1
⇤

apply Itô’s lemma on
g(Vt) = V k

t , yielding
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Moment matching technique

dmk (t)
dt

= �k(✓t + (k � 1)↵✓0)mk (t)

+ k(k � 1)↵✓0(1 � 2pt)mk�1(t)
+ k(k � 1)↵✓0pt(1 � pt)mk�2(t). (10)

with initial conditions mk (tj,i�1) = vk
j,i�1 .

For any t 2 [tj,i�1, tj,i [, the first two moments of V , m1(t) and m2(t),
solve the following ODE system

8
><

>:

dm1(t)
dt = �m1(t)✓t

dm2(t)
dt = �2(✓t + ↵✓0)m2(t) + 2↵✓0(1 � 2pt)m1(t)

+2↵✓0pt(1 � pt)

(11)

with initial conditions m1(tj,i�1) = vj,i�1 and m2(tj,i�1) = v2
j,i�1 .
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Approximate log-likelihood in the V�space

For any t 2 [tj,i�1, tj,i [, approximate the transition densities of the
process V using a Beta distribution (the invariant distribution of
the Jacobi type processes) with parameters ⇠1 and ⇠2.

⇠1(t) = �
(µt + 1 � ✏)(µ2

t + �2
t � (1 � ✏)2)

2(1 � ✏)�2
t

,

⇠2(t) =
(µt � 1 + ✏)(µ2

t + �2
t � (1 � ✏)2)

2(1 � ✏)�2
t

,

(12)

where µt = m1(t) and �2
t = m2(t)� m1(t)2 .

The approximate log-likelihood ˜̀(·; vM,N+1) of the observed
sample vM,N+1 :
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Approximate log-likelihood in the V�space

˜̀
�
✓; vM,N+1�

=
MX

j=1

NX

i=1

log

(
1

2(1 � ✏)

1
B(⇠1(t�j,i ), ⇠2(t�j,i ))

✓
vj,i + 1 � ✏

2(1 � ✏)

◆⇠1(t�j,i )�1

⇥
✓

1 � ✏� vj,i

2(1 � ✏)

◆⇠2(t�j,i )�1
)
, (13)

where the shape parameters ⇠1(t�j,i ) and ⇠2(t�j,i ), according to (12),
depend on the left limit moments, µ(t�j,i ;✓) and �2(t�j,i ;✓), as t " tj,i .
These are computed solving numerically the initial-value problem (11).
B(⇠1, ⇠2) denotes the Beta distribution with parameters ⇠1 and ⇠2.
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Approximate likelihood in the Z�space

The transition density of the process Z , which has been defined through
the Lamperti transformation (8) of V , can be conveniently approximated
by a Gaussian surrogate density.
The drift coefficient a(Zt ; pt , ṗt ,✓) of the process Z that satisfies (9) is
nonlinear. After linearizing the drift around the mean of Z , µZ (t) ⌘
E [Zt ], we obtain the following system of ODEs to compute, for any t 2
[tj,i�1, tj,i [, the approximations of the first two central moments of Z , say
µ̃Z (t) ⇡ E [Zt ] and ṽZ (t) ⇡ Var [Zt ]:

(
d µ̃Z (t)

dt = a
�
µ̃Z (t); pt , ṗt ,✓

�

dṽZ (t)
dt = 2a0�µ̃Z (t); pt , ṗt ,✓

�
ṽZ (t) + 1

(14)
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Approximate likelihood in the Z�space
with initial conditions µ̃Z (tj,i�1) = zj,i�1 and ṽZ (tj,i�1) = 0 , and where

a0 (µ̃Z (t); pt , ṗt ,✓)

=
(↵✓0 � ✓t)� cos(

p
2↵✓0Zt)[✓t(1 � 2pt)� 2ṗt ]

sin2 (
p

2↵✓0Zt)
.

The approximate Lamperti log-likelihood ˜̀Z
�
·; zM,N+1� for the observed

sample zM,N+1 is given by

˜̀Z
⇣
✓; zM,N+1

⌘

=
MX

j=1

NX

i=1

log

8
<

:
1q

2⇡ṽZ (t�j,i ;✓)
exp

 
�

(zj,i � µ̃Z (t�j,i ;✓))
2

2ṽZ (t�j,i ;✓)

!9=

; , (15)

where the limits µ̃Z (t�j,i ;✓) and ṽZ (t�j,i ;✓) are computed solving numeri-
cally the initial-value problem (14).
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Initial guess for (✓0,↵)

We use least square minimization and quadratic variation over the data
to find an initial guess (✓⇤0,↵

⇤).
We consider the observed data vM,N+1 with length between observa-
tions �, where i 2 {0, . . . ,N � 1} and j 2 {1, . . . ,M}.

For any t 2 [tj,i , tj,i+1[, the random variable (Vj,i+1|vj,i) has a
conditional mean that can be approximated by the solution of the
following system:

⇢
dE[V ](t) = �✓tE[V ](t)dt
E [V ] (tj,i) = vj,i

in the limit t " tj,i+1, i.e., E [V ] (t�j,i+1).

If we assume that ✓t = c 2 R+ for all t 2 [tj,i , tj,i+1[, then
E [V ] (t�j,i+1) = vj,i e�c�.
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Initial guess for (✓0,↵)

Given M ⇥ N transitions, we can write the regression problem for
the conditional mean with L2 loss function as:

c⇤ = argmin
c�0

2

4
MX

j=1

N�1X

i=0

⇣
vj,i+1 � E[V ]

⇣
t�j,i+1

⌘⌘2
3

5

= argmin
c�0

2

4
MX

j=1

N�1X

i=0

⇣
vj,i+1 � vj,i e�c�

⌘2
3

5

⇡ argmin
c�0

2

4
MX

j=1

N�1X

i=0

�
vj,i+1 � vj,i(1 � c�)

�2

3

5 (16)
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Initial guess for (✓0,↵)

Least square minimization
As equation (16) is convex in c, then

c⇤ ⇡
PM

j=1
PN�1

i=0 vj,i
�
vj,i � vj,i+1

�

�
PM

j=1
PN�1

i=0
�
vj,i
�2

Set ✓⇤0 = c⇤ .
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Initial guess for (✓0,↵)

Quadratic variation
We approximate

the quadratic variation of the ltô’s process V is
[V ]t =

R t
0 b(Vs;✓, ps)2ds

where b(Vs;✓, ps) =
p

2↵✓0 (Vs + ps) (1 � Vs � ps)
with
the discrete process quadratic variation :

P
0<tj,it

�
Vtj,i+1 � Vtj,i

�2.

Initial guess for the diffusion variability coefficient ✓0↵:

✓⇤0↵
⇤ ⇡

PM
j=1
PN�1

i=0
�
vj,i+1 � vj,i

�2

2�
PM

j=1
PN�1

i=0
�
vj,i+1 + pj,i+1

� �
1 � vj,i+1 � pj,i+1

�

where � is the length of the time interval between two consecutive
measurements.
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Model specification with the additional parameter �

To ensure that E(Xt) = pt at all times, we need E [V0] = 0. For most
days, the forecast error at time tj,0 = 0 is not zero.

1 Assume that there is a time in the past tj,�� < tj,0, such that the
forecast error is zero, Vj,�� = 0.

2 Extrapolate backward linearly the truncated prediction function to
get its value at time tj,��, pj,��, and set vtj,�� = 0.
Given the parameters (✓0,↵), find � by maximizing the likelihood of
initial transitions:

argmax
�

L̃�

⇣
✓, �; vM,1

⌘
= argmax

�

MY

j=1

⇢0
�
vj,0|vj,��;✓, �

�
, (17)

where L̃� is the approximated ��likelihood.
Now assume that the initial transition density has a Beta
distribution and apply the moment matching technique.
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Model specification with the additional parameter �

The approximated complete likelihood L̃c , which estimates the vector
(✓0,↵, �), is given by

L̃c

⇣
✓, �; vM,N+1

⌘
= L̃

⇣
✓; vM,N+1

⌘
L̃�

⇣
✓, �; vM,1

⌘
, (18)

where L̃
�
✓; vM,N+1� is the non-log version of (13). As we can provide

initial guesses for ✓ and �, we have a starting point for the numerical
optimization of the approximated complete likelihood (18).
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Application: Uruguay wind and forecast dataset

Partition the 147 segments of normalized wind power production, each
24-hours long. Select 73 non-contiguous segments for the models’ cal-
ibration procedure, assigning them to the training set. The other 74
non-contiguous segments compose the test set.

Optimal parameters in the V -space: (✓V
0 ,↵

V ) = (1.93, 0.050)
Optimal parameters in the Z -space: (✓Z

0 ,↵
Z ) = (1.87, 0.043)
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Application: Uruguay wind and forecast dataset

Model comparison and assessment of the forecast providers.
Model 1: (Elkantassi et al., 2017, p.383): This model does not
feature derivative tracking:
⇢

dXt = �✓0(Xt � pt)dt +
p

2↵✓0Xt(1 � Xt)dWt , t 2 [0,T ]
X0 = x0 2 [0, 1],

(19)

with ✓0 > 0, ↵ > 0.

Model 2: This model features derivative tracking and time-varying
mean-reversion parameter, ✓t = max

⇣
✓0,

↵✓0+|ṗt |
min(pt ,1�pt )

⌘
,

⇢
dXt =

�
ṗt � ✓t(Xt � pt)

�
dt +

p
2↵✓0Xt(1 � Xt)dWt , t 2 [0,T ]

X0 = x0 2 [0, 1],
(20)

with ✓0 > 0, ↵ > 0 and ✓t satisfying condition (6).
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Application: Uruguay wind and forecast dataset

Table 1: Model comparison.

Model Forecast
Provider Method Product

✓0↵
AIC BIC

Model 1 Provider A Gaussian Proxy 0.105 -58226 -58211
Shoji-Ozaki 0.104 -58226 -58211
Beta Proxy 0.104 -58286 -58271

Provider B Gaussian Proxy 0.105 -58226 -58211
Shoji-Ozaki 0.104 -58226 -58211
Beta Proxy 0.104 -58288 -58273

Provider C Gaussian Proxy 0.105 -58226 -58211
Shoji-Ozaki 0.104 -58226 -58211
Beta Proxy 0.104 -58286 -58271

Model 2 Provider A Beta Proxy 0.097 -73700 -73685
Provider B Beta Proxy 0.098 -73502 -73487
Provider C Beta Proxy 0.108 -72518 -72503
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Application: Uruguay wind and forecast dataset

The optimal estimates of the parameters of Model 2, for the three fore-
cast providers, with Beta surrogates for the transition density:

Table 2: Optimal parameters for the three different forecast providers using
Model 2 with Beta proxies.

Forecast Provider Parameters (✓0,↵) Product ✓0↵

Provider A (1.93, 0.050) 0.097
Provider B (1.42, 0.069) 0.098
Provider C (1.38, 0.078) 0.108
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Application: Uruguay wind and forecast dataset
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Figure 8: Two days with five simulated wind power production paths.

Given optimal estimates of the parameters of the complete likelihood for
Model 2, obtain empirical pointwise confidence bands for wind power
production (5000 simulations per day).
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Application: Uruguay wind and forecast dataset
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Figure 9: Empirical pointwise confidence bands for the wind power production
using the approximate MLEs for Model 2.
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Summary and conclusions

A methodology is developed to assess the short-term forecast of
the normalized wind power, which is agnostic of the wind power
forecasting technology.
We built a phenomenological stochastic differential equation model
for the normalized wind power production forecast error, with time-
varying mean-reversion parameter and time-derivative tracking of
the forecast in the linear drift coefficient, and state-dependent and
time non-homogenous diffusion coefficient.
The Lamperti transform with unknown parameters provides a ver-
sion of the proposed model with a unit diffusion coefficient.
We used approximate likelihood-based methods for models’ cali-
bration.
The incorporation of an early transition with an additional parame-
ter accounts for the forecast’s uncertainty at the beginning of each
future period.
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Summary and conclusions

We obtained a robust procedure for synthetic data generation that,
using the available forecast input, embraces future wind power pro-
duction paths through empirical pointwise bands with prescribed
confidence.
Application to the wind power production and three forecast providers
dataset in Uruguay between April and December 2019.
An objective tool is available for forecast assessment and compar-
ison through model selection.
This work contributes toward the efficient management of renew-
able energies.
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