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What Are Language Models?

@ Al systems that understand and generate human language.
@ Trained on large datasets of text to predict words and phrases.

@ Examples of LLM families: GPT, Llama, Gemini and more
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What Are Language Models?

@ Al systems that understand and generate human language.
@ Trained on large datasets of text to predict words and phrases.
@ Examples of LLM families: GPT, Llama, Gemini and more

Core Idea: Language models guess the next word based on context.
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How D y Work?

Key Concept: Sequence Probability

n
P(Xl,Xg, e 7Xn) = H P(X,"Xl, ‘o ,X,'_1)
i=1
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How Do They Work?

Key Concept: Sequence Probability
P(Xl,XQ, e 7Xn) = H P(X,"Xl, ‘o ,X,'_1)
i=1
How Do Models Use This?

@ Models learn relationships between words by training on large
datasets.

@ They predict the next word based on the previous ones (context).
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How Do They Work?

Key Concept: Sequence Probability

n
P(Xl,XQ, e 7Xn) = H P(X,"Xl, ‘o ,X,'_1)
i=1

How Do Models Use This?

@ Models learn relationships between words by training on large
datasets.
@ They predict the next word based on the previous ones (context).
Why Is This Useful?

@ Helps generate meaningful text by understanding word relationships.
@ Enables applications like:

o Autocomplete (predicting your next word).
o Text generation (creating new sentences).
e Translation (understanding word context for accurate results).
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Focusing on Key Information: Attention Mechanism

Attention Formula:

T
Attention(Q, K, V) = softmax ( ) %
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Focusing on Key Information: Attention Mechanism

Attention Formula:

Attention(Q, K, V) = softmax (QKT) %
) ) \/Fk
Q: Query — Represents what we are focusing on (e.g., a word in the
input).
K: Key — Encodes the context or other words in the input.
V: Value — Holds the information we want to retrieve.
di: Dimensionality of the key vectors, used to scale the scores.
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Focusing on Key Information: Attention Mechanism

Attention Formula:

Attention(Q, K, V) = softmax (QKT) %
o Vi
Q: Query — Represents what we are focusing on (e.g., a word in the
input).
o K: Key — Encodes the context or other words in the input.
@ V: Value — Holds the information we want to retrieve.
@ di: Dimensionality of the key vectors, used to scale the scores.
How Does It Work?
© Compute similarity between the query (Q) and the keys (K) by
calculating QK.
@ Scale the scores by dividing by \/dj to ensure stable gradients.
© Apply the softmax function to convert these scores into probabilities.
@ Use these probabilities to weigh the values (V) and produce the
output.
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Focusing on Key Information: Attention Mechanism

Attention Formula:

Attention(Q, K, V) = softmax (QKT) %
o Vi
Q: Query — Represents what we are focusing on (e.g., a word in the
input).
o K: Key — Encodes the context or other words in the input.
@ V: Value — Holds the information we want to retrieve.
@ di: Dimensionality of the key vectors, used to scale the scores.
How Does It Work?
© Compute similarity between the query (Q) and the keys (K) by
calculating QK.
@ Scale the scores by dividing by \/dj to ensure stable gradients.
© Apply the softmax function to convert these scores into probabilities.
@ Use these probabilities to weigh the values (V) and produce the
output.
Reference: Vaswani et al., Attention Is All You Need, NeurlPS 2017.
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Tokenizers

What is a Tokenizer?
@ A tokenizer maps a text sequence T into a sequence of tokens

{t1,t2,..., tn}.
@ Mathematically:

T —{ti,to,...,tn}, tEV

where V is the vocabulary of the tokenizer.
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Tokenizers

What is a Tokenizer?
@ A tokenizer maps a text sequence T into a sequence of tokens
{ti, 2, .., ta}.
@ Mathematically:

T —{ti,to,...,tn}, tEV

where V is the vocabulary of the tokenizer.
Objective:
@ Minimize the vocabulary size |V| while maximizing coverage of text.
o Efficiently encode rare words as sequences of subwords.
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Tokenizers

What is a Tokenizer?

@ A tokenizer maps a text sequence T into a sequence of tokens
{t1,t2,..., tn}
@ Mathematically:

T —{ti,to,...,tn}, tEV
where V is the vocabulary of the tokenizer.
Objective:

@ Minimize the vocabulary size |V| while maximizing coverage of text.
o Efficiently encode rare words as sequences of subwords.
Popular Tokenizers: Byte Pair Encoding (BPE), WordPiece
Tokenizers in the Context of LLMs:

o Tokenization is the first step in processing text for an LLM:
Raw text T — Tokens {ti1,t,..., t,} — Embeddings

@ The model receives token embeddings as inputs, which represent
tokens numerically.
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Embeddings: Representing Tokens Numerically

What are Embeddings?
@ Embeddings are dense vector representations of tokens.

@ They map each token t; € V to a high-dimensional numerical vector
d
e; € RY,
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Embeddings: Representing Tokens Numerically

What are Embeddings?
@ Embeddings are dense vector representations of tokens.

@ They map each token t; € V to a high-dimensional numerical vector
e; c RY.
Why Use Embeddings? Capture semantic relationships:

cosine similarity(e’king” , € queen” ) & cosine similarity(e” man”, € woman" )
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Embeddings: Representing Tokens Numerically

What are Embeddings?
@ Embeddings are dense vector representations of tokens.

@ They map each token t; € V to a high-dimensional numerical vector
e; c RY.
Why Use Embeddings? Capture semantic relationships:

cosine similarity(e’king” , € queen” ) & cosine similarity(e” man”, € woman" )

How are Embeddings Used?

o After tokenization, tokens {t1, ta,..., t,} are converted to
embeddings {ej,ez,...,e,}.

@ These embeddings are input to the language model for further
processing.
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Positional Encoding: Capturing Sequence Order

Why Positional Encoding?
@ Transformers lack a natural sense of word order.
@ Positional encodings are added to input embeddings to incorporate
sequence information.
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Positional Encoding: Capturing Sequence Order

Why Positional Encoding?
@ Transformers lack a natural sense of word order.

@ Positional encodings are added to input embeddings to incorporate
sequence information.

Mathematical Representation:

PE(pos, 2i) = sin <pc)52> . PE(pos,2i + 1) = cos (;3052>
10000« 100004
where:
@ pos: Position in the sequence.
@ i: Dimension index of the embedding vector.
@ d: Total embedding dimension.
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Positional Encoding: Capturing Sequence Order

Why Positional Encoding?
@ Transformers lack a natural sense of word order.

@ Positional encodings are added to input embeddings to incorporate
sequence information.
Mathematical Representation:

PE(pos, 2i) = sin (”OS _ > . PE(pos,2i +1) = cos (pos _ )
10000« 100004
where:
@ pos: Position in the sequence.
@ i: Dimension index of the embedding vector.
@ d: Total embedding dimension.
How Does it Work?
@ Positional encodings generate unique patterns for each position in the
sequence.
@ These patterns are added to the input embeddings:
Eioui = Eioen + PE

0 0
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Cross-Entropy Loss: Training Language Models

What is Cross-Entropy Loss?
@ Cross-entropy measures the difference between the predicted
probability distribution (§) and the true distribution (y).

@ It is the most commonly used loss function for training language
models.

Eleni Verteouri (NTUA Athens) Intro to Language Models: How Generative A November 20, 2024



Cross-Entropy Loss: Training Language Models

What is Cross-Entropy Loss?

@ Cross-entropy measures the difference between the predicted
probability distribution (§) and the true distribution (y).

@ It is the most commonly used loss function for training language
models.

Mathematical Formula:

n
L==) yilogJ
i=1
where:

@ y;: True probability (1 for the correct token, 0 otherwise).
@ y;: Predicted probability for token i.
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Cross-Entropy Loss: Training Language Models

What is Cross-Entropy Loss?
@ Cross-entropy measures the difference between the predicted
probability distribution (§) and the true distribution (y).

@ It is the most commonly used loss function for training language
models.

Mathematical Formula:

n
L=-Y yilogyi
i=1
where:
@ y;: True probability (1 for the correct token, 0 otherwise).
@ y;: Predicted probability for token i.
How is it Used?
@ At each training step, the model predicts a probability distribution
over the vocabulary for the next token.
@ Cross-entropy loss is computed by comparing this distribution with

the true next token.
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Reinforcement Learning with Human Feedback (RLHF)

What is RLHF?
@ RLHF is a technique used to improve model alignment with human
preferences.
@ Combines:

o Reinforcement learning (RL) for model optimization.
o Feedback from humans to define what a “good” response looks like.

Eleni Verteouri (NTUA Athens) Intro to Language Models: How Generative A November 20, 2024 9/18



Reinforcement Learning with Human Feedback (RLHF)

What is RLHF?
@ RLHF is a technique used to improve model alignment with human
preferences.
@ Combines:

o Reinforcement learning (RL) for model optimization.
o Feedback from humans to define what a “good” response looks like.

Eleni Verteouri (NTUA Athens) Intro to Language Models: How Generative A November 20, 2024 9/18



Reinforcement Learning with Human Feedback (RLHF)

What is RLHF?

@ RLHF is a technique used to improve model alignment with human
preferences.

o Combines:

o Reinforcement learning (RL) for model optimization.
o Feedback from humans to define what a “good” response looks like.

Optimization Objective:
max B[R (f(x))]

where:
o fp: the model being optimized,
@ x: input data, and

@ R: the reward function from the reward model.
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Prompt Engineering: Teaching Al Through Inputs

What is Prompt Engineering?
@ The process of designing prompts to guide language model outputs.
@ Prompts act as instructions or context for the model to generate
desired responses.
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Prompt Engineering: Teaching Al Through Inputs

What is Prompt Engineering?

@ The process of designing prompts to guide language model outputs.

@ Prompts act as instructions or context for the model to generate
desired responses.
Optimization Goal:
min L(fy(x + p), y)

where:
@ fy: The model,
@ x: Input data,
e p: Prompt (custom input), and
@ y: Desired output.

10/18
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Prompt Engineering: Teaching Al Through Inputs

What is Prompt Engineering?

@ The process of designing prompts to guide language model outputs.

@ Prompts act as instructions or context for the model to generate
desired responses.
Optimization Goal:
min L(fy(x + p), y)

where:
@ fy: The model,
@ x: Input data,
e p: Prompt (custom input), and
@ y: Desired output.
Why Prompt Engineering?
@ Enhances the model's ability to follow specific instructions.
@ Reduces errors or irrelevant responses by providing clearer context.
@ Widely used in applications like zero-shot and few-shot learning.
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One-Shot and Few-Shot Learning

What is One-Shot Learning?
@ The model learns to perform a task from a single example.
@ Requires strong generalization capabilities.
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One-Shot and Few-Shot Learning

What is One-Shot Learning?
@ The model learns to perform a task from a single example.
@ Requires strong generalization capabilities.
What is Few-Shot Learning?
@ The model learns from a small number of examples (typically 2-5).
@ Allows LLMs to adapt to new tasks without extensive fine-tuning.
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One-Shot and Few-Shot Learning

What is One-Shot Learning?

@ The model learns to perform a task from a single example.
@ Requires strong generalization capabilities.
What is Few-Shot Learning?
@ The model learns from a small number of examples (typically 2-5).

@ Allows LLMs to adapt to new tasks without extensive fine-tuning.
Mathematical Representation:

P(y‘X, {(X1;Y1)7 sy (Xkayk)})
where:
@ x: New input.
o {(x1,y1),.--,(Xk, ¥k)}: Few examples.
@ y: Predicted output based on the context of examples.
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One-Shot and Few-Shot Learning

What is One-Shot Learning?
@ The model learns to perform a task from a single example.
@ Requires strong generalization capabilities.
What is Few-Shot Learning?
@ The model learns from a small number of examples (typically 2-5).
@ Allows LLMs to adapt to new tasks without extensive fine-tuning.
Mathematical Representation:

Pyl {(xx)s - O yi) )

where:

@ x: New input.

o {(x1,y1),.--,(Xk, ¥k)}: Few examples.

@ y: Predicted output based on the context of examples.
Why is it Important?

@ Reduces the need for large labeled datasets.

@ Enables models to handle novel tasks dynamically.
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Chain-of-Thought Prompting

What is Chain-of-Thought Prompting?

@ A technique to guide LLMs through intermediate reasoning steps
before generating a final answer.
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Chain-of-Thought Prompting

What is Chain-of-Thought Prompting?

@ A technique to guide LLMs through intermediate reasoning steps
before generating a final answer.

Mathematical Representation:

P(y|x,z1, 22, ..., 2zk)
where:
o x: Input query.

o {z1,20,...,2}: Intermediate reasoning steps.
e y: Final output.
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Chain-of-Thought Prompting

What is Chain-of-Thought Prompting?

@ A technique to guide LLMs through intermediate reasoning steps
before generating a final answer.

Mathematical Representation:

P(y|x,z1, 22, ..., 2zk)
where:
o x: Input query.
o {z1,20,...,2}: Intermediate reasoning steps.

e y: Final output.
Why is it Important?
@ Improves reasoning and accuracy for complex tasks.

@ Allows LLMs to handle multi-step problems effectively.
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Hyperparameter: Temperature

What is Temperature?
@ Controls the randomness of token selection in LLM output.
@ Scales the logits (model’s raw token scores) before applying softmax.
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Hyperparameter: Temperature

What is Temperature?

@ Controls the randomness of token selection in LLM output.
@ Scales the logits (model’s raw token scores) before applying softmax.

Mathematical Representation:
z
P(t|x) = softm <—)
(t|x) = softmax T
where:

e z: Logits (model's raw scores for each token).
@ T: Temperature hyperparameter.
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Hyperparameter: Temperature

What is Temperature?
@ Controls the randomness of token selection in LLM output.

@ Scales the logits (model’s raw token scores) before applying softmax.
Mathematical Representation:

P(t|x) = softmax <£)
T

where:

o z: Logits (model’s raw scores for each token).

@ T: Temperature hyperparameter.
Effect of Temperature:

@ T — 0: Results become almost deterministic.

e Only the highest-probability token is selected.
@ T = 1: Standard sampling.
@ T > 1: Increases randomness, sampling from lower-probability tokens.

Eleni Verteouri (NTUA Athens) Intro to Language Models: How Generative A November 20, 2024 13/18



Hyperparameter: Temperature

What is Temperature?
@ Controls the randomness of token selection in LLM output.

@ Scales the logits (model’s raw token scores) before applying softmax.
Mathematical Representation:

P(t|x) = softmax <;)

where:

o z: Logits (model’s raw scores for each token).

@ T: Temperature hyperparameter.
Effect of Temperature:

@ T — 0: Results become almost deterministic.

e Only the highest-probability token is selected.

e T =1: Standard sampling.

@ T > 1: Increases randomness, sampling from lower-probability tokens.
Applications:

@ Low T: Suitable for factual queries or tasks requiring precision.

@ High T: Useful for creative tasks like poetry or storytelling.
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Hyperparameter: Top-p (Nucleus Sampling)

What is Top-p?
@ Controls the breadth of vocabulary in token selection.
o Filters tokens based on cumulative probability.
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Hyperparameter: Top-p (Nucleus Sampling)

What is Top-p?
@ Controls the breadth of vocabulary in token selection.
o Filters tokens based on cumulative probability.
How Does It Work?
@ Sort tokens by their probabilities.
@ Retain only the top p fraction of cumulative probability:

> P(tx) = p

tEtop-p

@ Discard tokens beyond this threshold.
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Hyperparameter: Top-p (Nucleus Sampling)
What is Top-p?

@ Controls the breadth of vocabulary in token selection.

o Filters tokens based on cumulative probability.
How Does It Work?

@ Sort tokens by their probabilities.
@ Retain only the top p fraction of cumulative probability:
> P(tx) = p
tctop-p
@ Discard tokens beyond this threshold.
Effect of Top-p:

@ Low p: Narrow selection of high-probability tokens (more focused).
e High p: Broader selection of tokens (more diverse outputs).
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Hyperparameter: Top-p (Nucleus Sampling)

What is Top-p?
@ Controls the breadth of vocabulary in token selection.

o Filters tokens based on cumulative probability.
How Does It Work?

@ Sort tokens by their probabilities.
@ Retain only the top p fraction of cumulative probability:
> P(tx) = p
tctop-p

@ Discard tokens beyond this threshold.
Effect of Top-p:

@ Low p: Narrow selection of high-probability tokens (more focused).

e High p: Broader selection of tokens (more diverse outputs).
Applications:

@ Low p: Useful for tasks requiring coherent, precise outputs.

e High p: Encourages creative and exploratory outputs.
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Retrieval-Augmented Generation (RAG): Enhancing

Outputs

Definition: RAG enhances LLM outputs by incorporating external
knowledge into the generation process.
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Retrieval-Augmented Generation (RAG): Enhancing

Outputs

Definition: RAG enhances LLM outputs by incorporating external
knowledge into the generation process.
Steps in RAG:

@ Query Embedding: g = E;(x)
@ Document Retrieval: D = {di, dy, ..., di }
© Scoring:
score(q, d) = cos(Eq(q), Eq(d))
© Augmented Input: x,,; = [x; D]
@ Generation: y = fy(Xaug)
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Retrieval-Augmented Generation (RAG): Enhancing

Outputs

Definition: RAG enhances LLM outputs by incorporating external
knowledge into the generation process.
Steps in RAG:

@ Query Embedding: g = E;(x)
@ Document Retrieval: D = {di, dy, ..., di }
© Scoring:
score(q, d) = cos(Eq(q), Eq(d))
© Augmented Input: x,,; = [x; D]
@ Generation: y = fy(Xaug)
Key Components:
e E4, E4: Embedding functions for queries and documents
@ D: Retrieved documents

@ Xaug: Augmented input combining original query and retrieved
information
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Fine-Tuning: Specializing LLMs

Definition: Fine-tuning adapts a pre-trained LLM to specific tasks or
domains by updating its parameters using task-specific data.
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Fine-Tuning: Specializing LLMs

Definition: Fine-tuning adapts a pre-trained LLM to specific tasks or
domains by updating its parameters using task-specific data.
Optimization Objective:

min L(f5(x), y)
where:

e L: Loss function (e.g., cross-entropy)
@ x: Input data

@ y: Target output
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Fine-Tuning: Specializing LLMs

Definition: Fine-tuning adapts a pre-trained LLM to specific tasks or
domains by updating its parameters using task-specific data.
Optimization Objective:

min L(f5(x), y)
where:

e L: Loss function (e.g., cross-entropy)
@ x: Input data
@ y: Target output

Parameter Update:

Onew = Oold — QVGL(fG(X)7Y)
where:
@ «a: Learning rate
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Fine-Tuning: Specializing LLMs

Definition: Fine-tuning adapts a pre-trained LLM to specific tasks or
domains by updating its parameters using task-specific data.
Optimization Objective:

min L(f(x). )

where:
e L: Loss function (e.g., cross-entropy)
@ x: Input data
@ y: Target output

Parameter Update:

Onew = Oold — QVGL(fG(X)7y)
where:
@ «a: Learning rate
Why Fine-Tune?
@ Adapts the model to domain-specific tasks

@ Retains general knowledge from pre-training while focusing on
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Why It Matters

@ Language models are transforming how we interact with Al.
@ Accessible tools like ChatGPT make Al more user-friendly.

@ Understanding the basics helps in leveraging their full potential.
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Why It Matters

@ Language models are transforming how we interact with Al.
@ Accessible tools like ChatGPT make Al more user-friendly.
@ Understanding the basics helps in leveraging their full potential.

Takeaway: You don't need to be an expert to start using Al effectively!
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Questions?

Thank you for attending!

Feel free to ask questions or share your thoughts.
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