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What Are Language Models?

AI systems that understand and generate human language.

Trained on large datasets of text to predict words and phrases.

Examples of LLM families: GPT, Llama, Gemini and more

Core Idea: Language models guess the next word based on context.
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How Do They Work?

Key Concept: Sequence Probability

P(x1, x2, . . . , xn) =
n∏

i=1

P(xi |x1, . . . , xi−1)

How Do Models Use This?

Models learn relationships between words by training on large
datasets.

They predict the next word based on the previous ones (context).

Why Is This Useful?

Helps generate meaningful text by understanding word relationships.

Enables applications like:

Autocomplete (predicting your next word).
Text generation (creating new sentences).
Translation (understanding word context for accurate results).
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Focusing on Key Information: Attention Mechanism

Attention Formula:

Attention(Q,K ,V ) = softmax

(
QKT

√
dk

)
V

Q: Query – Represents what we are focusing on (e.g., a word in the
input).
K : Key – Encodes the context or other words in the input.
V : Value – Holds the information we want to retrieve.
dk : Dimensionality of the key vectors, used to scale the scores.

How Does It Work?
1 Compute similarity between the query (Q) and the keys (K ) by

calculating QKT .
2 Scale the scores by dividing by

√
dk to ensure stable gradients.

3 Apply the softmax function to convert these scores into probabilities.
4 Use these probabilities to weigh the values (V ) and produce the

output.

Reference: Vaswani et al., Attention Is All You Need, NeurIPS 2017.
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Tokenizers

What is a Tokenizer?

A tokenizer maps a text sequence T into a sequence of tokens
{t1, t2, . . . , tn}.
Mathematically:

T → {t1, t2, . . . , tn}, ti ∈ V

where V is the vocabulary of the tokenizer.

Objective:

Minimize the vocabulary size |V| while maximizing coverage of text.
Efficiently encode rare words as sequences of subwords.

Popular Tokenizers: Byte Pair Encoding (BPE), WordPiece
Tokenizers in the Context of LLMs:

Tokenization is the first step in processing text for an LLM:

Raw text T → Tokens {t1, t2, . . . , tn} → Embeddings

The model receives token embeddings as inputs, which represent
tokens numerically.
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Embeddings: Representing Tokens Numerically

What are Embeddings?

Embeddings are dense vector representations of tokens.

They map each token ti ∈ V to a high-dimensional numerical vector
ei ∈ Rd .

Why Use Embeddings? Capture semantic relationships:

cosine similarity(e”king”, e”queen”) ≈ cosine similarity(e”man”, e”woman”)

How are Embeddings Used?

After tokenization, tokens {t1, t2, . . . , tn} are converted to
embeddings {e1, e2, . . . , en}.
These embeddings are input to the language model for further
processing.
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Positional Encoding: Capturing Sequence Order

Why Positional Encoding?

Transformers lack a natural sense of word order.
Positional encodings are added to input embeddings to incorporate
sequence information.

Mathematical Representation:

PE(pos, 2i) = sin

(
pos

10000
2i
d

)
, PE(pos, 2i + 1) = cos

(
pos

10000
2i
d

)
where:

pos: Position in the sequence.
i : Dimension index of the embedding vector.
d : Total embedding dimension.

How Does it Work?

Positional encodings generate unique patterns for each position in the
sequence.
These patterns are added to the input embeddings:

Einput = Etoken + PE
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Cross-Entropy Loss: Training Language Models

What is Cross-Entropy Loss?

Cross-entropy measures the difference between the predicted
probability distribution (ŷ) and the true distribution (y).
It is the most commonly used loss function for training language
models.

Mathematical Formula:

L = −
n∑

i=1

yi log ŷi

where:

yi : True probability (1 for the correct token, 0 otherwise).
ŷi : Predicted probability for token i .

How is it Used?

At each training step, the model predicts a probability distribution
over the vocabulary for the next token.
Cross-entropy loss is computed by comparing this distribution with
the true next token.
Example:

Target: ”cat” Predicted: ŷ = [0.1, 0.8, 0.1]

Loss for this step:
L = − log(0.8)
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Reinforcement Learning with Human Feedback (RLHF)

What is RLHF?

RLHF is a technique used to improve model alignment with human
preferences.

Combines:

Reinforcement learning (RL) for model optimization.
Feedback from humans to define what a “good” response looks like.

Optimization Objective:

max
θ

E[R(fθ(x))]

where:

fθ: the model being optimized,

x : input data, and

R: the reward function from the reward model.
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Prompt Engineering: Teaching AI Through Inputs

What is Prompt Engineering?

The process of designing prompts to guide language model outputs.

Prompts act as instructions or context for the model to generate
desired responses.

Optimization Goal:
min
θ

L(fθ(x + p), y)

where:

fθ: The model,

x : Input data,

p: Prompt (custom input), and

y : Desired output.

Why Prompt Engineering?

Enhances the model’s ability to follow specific instructions.

Reduces errors or irrelevant responses by providing clearer context.

Widely used in applications like zero-shot and few-shot learning.
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One-Shot and Few-Shot Learning

What is One-Shot Learning?

The model learns to perform a task from a single example.

Requires strong generalization capabilities.

What is Few-Shot Learning?

The model learns from a small number of examples (typically 2-5).

Allows LLMs to adapt to new tasks without extensive fine-tuning.

Mathematical Representation:

P(y |x , {(x1, y1), . . . , (xk , yk)})

where:

x : New input.

{(x1, y1), . . . , (xk , yk)}: Few examples.

y : Predicted output based on the context of examples.

Why is it Important?

Reduces the need for large labeled datasets.

Enables models to handle novel tasks dynamically.
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Chain-of-Thought Prompting

What is Chain-of-Thought Prompting?

A technique to guide LLMs through intermediate reasoning steps
before generating a final answer.

Mathematical Representation:

P(y |x , z1, z2, . . . , zk)

where:

x : Input query.

{z1, z2, . . . , zk}: Intermediate reasoning steps.

y : Final output.

Why is it Important?

Improves reasoning and accuracy for complex tasks.

Allows LLMs to handle multi-step problems effectively.
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Hyperparameter: Temperature

What is Temperature?

Controls the randomness of token selection in LLM output.
Scales the logits (model’s raw token scores) before applying softmax.

Mathematical Representation:

P(t|x) = softmax
( z

T

)
where:

z : Logits (model’s raw scores for each token).
T : Temperature hyperparameter.

Effect of Temperature:
T → 0: Results become almost deterministic.

Only the highest-probability token is selected.

T = 1: Standard sampling.
T > 1: Increases randomness, sampling from lower-probability tokens.

Applications:

Low T : Suitable for factual queries or tasks requiring precision.
High T : Useful for creative tasks like poetry or storytelling.
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Mathematical Representation:
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( z

T

)
where:

z : Logits (model’s raw scores for each token).
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Hyperparameter: Top-p (Nucleus Sampling)

What is Top-p?

Controls the breadth of vocabulary in token selection.

Filters tokens based on cumulative probability.

How Does It Work?

Sort tokens by their probabilities.

Retain only the top p fraction of cumulative probability:∑
t∈top-p

P(t|x) ≥ p

Discard tokens beyond this threshold.

Effect of Top-p:

Low p: Narrow selection of high-probability tokens (more focused).

High p: Broader selection of tokens (more diverse outputs).

Applications:

Low p: Useful for tasks requiring coherent, precise outputs.

High p: Encourages creative and exploratory outputs.
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Retrieval-Augmented Generation (RAG): Enhancing
Outputs

Definition: RAG enhances LLM outputs by incorporating external
knowledge into the generation process.

Steps in RAG:
1 Query Embedding: q = Eq(x)
2 Document Retrieval: D = {d1, d2, ..., dk}
3 Scoring:

score(q, d) = cos(Eq(q),Ed(d))

4 Augmented Input: xaug = [x ;D]
5 Generation: y = fθ(xaug )

Key Components:

Eq, Ed : Embedding functions for queries and documents

D: Retrieved documents

xaug : Augmented input combining original query and retrieved
information
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Fine-Tuning: Specializing LLMs

Definition: Fine-tuning adapts a pre-trained LLM to specific tasks or
domains by updating its parameters using task-specific data.

Optimization Objective:

min
θ

L(fθ(x), y)

where:

L: Loss function (e.g., cross-entropy)
x : Input data
y : Target output

Parameter Update:

θnew = θold − α∇θL(fθ(x), y)

where:

α: Learning rate

Why Fine-Tune?

Adapts the model to domain-specific tasks
Retains general knowledge from pre-training while focusing on
task-specific performance
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Why It Matters

Language models are transforming how we interact with AI.

Accessible tools like ChatGPT make AI more user-friendly.

Understanding the basics helps in leveraging their full potential.

Takeaway: You don’t need to be an expert to start using AI effectively!
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Questions?

Thank you for attending!

Feel free to ask questions or share your thoughts.
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