

# Mean-Field Games and Applications in Finance

New Challenges in Financial and Energy Markets — Math, Data & Al

Stefanos Theodorakopoulos 31/10/2025

Technische Universität Berlin

## Table of contents

1. Introduction to stochastic differential N-Player Games

2. Applications in Finance

3. The General Mean Field approach

# Introduction to stochastic differential N-Player Games

# Definition: N-Player Game

An **N-player game**, see [1], consists of *N* interacting agents, each controlling their own state process and seeking to minimize an individual cost functional.

#### State dynamics:

$$dX_t^i = b(t, X_t^i, \mu_t^N, \alpha_t^i) dt + \sigma(t, X_t^i, \mu_t^N, \alpha_t^i) dW_t^i,$$

#### where:

- $X_t^i \in \mathbb{R}^d$ : state of player i,
- $\alpha_t^i \in A$ : control (action),
- $W_t^i$ : independent Brownian motion,
- $\mu_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{\chi_t^i}$ : empirical distribution of states.

# **Objective Function**

Each player *i* minimizes the expected cost:

$$J_i^N(\alpha^1,\ldots,\alpha^N) = \mathbb{E}\left[\int_0^T f(t,X_t^i,\mu_t^N,\alpha_t^i)\,dt + g(X_T^i,\mu_T^N)\right],$$

where:

- f: running cost,
- · g: terminal cost.

# **Objective Function**

Each player *i* minimizes the expected cost:

$$J_i^N(\alpha^1,\ldots,\alpha^N) = \mathbb{E}\left[\int_0^T f(t,X_t^i,\mu_t^N,\alpha_t^i)\,dt + g(X_T^i,\mu_T^N)\right],$$

where:

- f: running cost,
- · g: terminal cost.

#### Goal

Each player chooses  $\alpha^i$  to minimize  $J_i^N$  given the others' strategies.

# Nash Equilibrium

A strategy profile

$$(\alpha^{1,*},\ldots,\alpha^{N,*})$$

is a **Nash equilibrium** if, for all i and any alternative control  $\alpha^i$ ,

$$J_i^N(\alpha^{1,*},\ldots,\alpha^{N,*}) \leq J_i^N(\alpha^{1,*},\ldots,\alpha^i,\ldots,\alpha^{N,*}).$$

# Nash Equilibrium

A strategy profile

$$(\alpha^{1,*},\ldots,\alpha^{N,*})$$

is a **Nash equilibrium** if, for all i and any alternative control  $\alpha^i$ ,

$$J_i^N(\alpha^{1,*},\ldots,\alpha^{N,*}) \leq J_i^N(\alpha^{1,*},\ldots,\alpha^i,\ldots,\alpha^{N,*}).$$

Interpretation

No player can unilaterally change their control to achieve a lower expected cost.

# **Best Response function**

Let  $A = A_1 \times \cdots \times A_N$  be the set of strategy profiles, and for a profile  $\alpha = (\alpha^1, \dots, \alpha^N) \in A$ , we write  $\alpha^{-i} := (\alpha^1, \dots, \alpha^{i-1}, \alpha^{i+1}, \dots, \alpha^N)$  and  $\alpha = (\alpha^i, \alpha^{-i})$ .

**Definition 1.1.** The *best responses* of agent i to the actions  $\alpha^{-i}$  of the other agents is the subset

$$B_i(\alpha^{-i}) := \arg\min_{\gamma \in A_i} J_i(\gamma, \alpha^{-i}).$$

Moreover, if we assume that there exists a unique minimum for every  $B_i$  each time, then the best response function (for all agents simultaneously) is the map

$$B: A \to A, \quad B(\alpha) = (B_1(\alpha^{-1}), \cdots, B_N(\alpha^{-N})).$$

# Best Response function

Hence, in this setting, a strategy profile  $\alpha^\star \in A$  is a Nash equilibrium for the N-player game if and only if

$$B(\alpha^*) = \alpha^*,$$

i.e. each  $\alpha^{\star i}$  is a best response to

$$\alpha^{\star -i}$$
.

In other words,  $\alpha^*$  is a fixed point for the best response function B.

## Connection to Mean Field Games

As  $N \to \infty$ , the empirical measure

$$\mu_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{\chi_t^i}$$

converges to a deterministic flow of measures  $m_t$ .

### Connection to Mean Field Games

As  $N \to \infty$ , the empirical measure

$$\mu_t^N = \frac{1}{N} \sum_{j=1}^N \delta_{X_t^j}$$

converges to a deterministic flow of measures  $m_t$ .

#### Mean Field Limit

In the limit, each player interacts only with the **mean field**  $m_t$ , not with individual players.

- The limiting control problem defines a Mean Field Game (MFG).
- MFGs represent the infinite-population limit of N-player games.

# Mean Field Limit: Symmetry and Law of Large Numbers

Symmetry: All players have identical data and

$$\alpha_t^i = \phi(t, X_t^i), \ \forall i \in \{1, ..., N\}, \ t \in [0, T]$$

 $\Rightarrow$  all the players in the game are statistically identical.

#### Representative agent problem:

$$\begin{cases} dX_t = b(t, X_t, m_t, \alpha_t) dt + \sigma(t, X_t, m_t, \alpha_t) dW_t, \\ \text{Minimize } J(\alpha; m) = \mathbb{E} \Big[ \int_0^T f(t, X_t, m_t, \alpha_t) dt + g(X_T, m_T) \Big]. \end{cases}$$

Each player optimizes given  $m = (m_t)$ ; equilibrium requires self-consistency.

# Mean Field Game Equilibrium

#### Mean-field best response:

$$\widehat{\alpha}[m] = \arg\min_{\alpha \in \mathcal{A}} J(\alpha; m),$$

where  $J(\alpha; m)$  is the representative agent's cost given  $m = (m_t)$ .

#### Self-consistency (mean-field equilibrium):

$$m_t = (X_t^{\widehat{\alpha}[m]}), \quad \forall t \in [0, T].$$

#### Connection:

Best-response fixed point (Nash)  $\implies$  Self-consistent fixed point (MFG).

**Applications in Finance** 

# Mean Field Game of Systemic Risk

#### **Economic Context**

- Population of N banks interacting through interbank borrowing/lending.
- Each bank manages its liquidity reserve  $X_t^i$  over [0, T].
- No common noise: only idiosyncratic shocks  $W_t^i$ .

### Dynamics of Bank i

$$dX_t^i = a(\bar{X}_t - X_t^i) dt + \alpha_t^i dt + \sigma dW_t^i, \quad \bar{X}_t = \frac{1}{N} \sum_{j=1}^N X_t^j.$$

- a > 0: rate of mean reversion to the interbank average  $\bar{X}_t$ .
- $\alpha_t^i$ : control = borrowing/lending rate (decision variable).
- $\sigma$ : volatility of individual liquidity shocks.

# Mean Field Game of Systemic Risk

#### Cost Functional

$$J^{i}(\alpha^{i}; \bar{X}_{t}) = \mathbb{E}\left[\int_{0}^{T} \left(\frac{1}{2}(\alpha_{t}^{i})^{2} + \frac{q}{2}(X_{t}^{i} - \bar{X}_{t})^{2}\right) dt + \frac{c}{2}(X_{T}^{i} - \bar{X}_{T})^{2}\right].$$

- $(\alpha_t^i)^2$ : cost of active borrowing/lending.
- $(X_t^i \bar{X}_t)^2$ : deviation from system average.
- $(X_T^i \bar{X}_T)^2$ : terminal imbalance.

# Mean Field Limit and Equilibrium System

Mean Field Limit ( $N \to \infty$ )

$$dX_t = a(\bar{X}_t - X_t) dt + \alpha_t dt + \sigma dW_t, \quad \bar{X}_t = \mathbb{E}[X_t].$$

Objective:

$$J(\alpha; \bar{X}) = \mathbb{E}\left[\int_0^T \left(\frac{1}{2}\alpha_t^2 + \frac{q}{2}(X_t - \bar{X}_t)^2\right)dt + \frac{c}{2}(X_T - \bar{X}_T)^2\right].$$

Consistency (Equilibrium Conditions)

$$\bar{X}_t = \mathbb{E}[X_t], \qquad \bar{Y}_t = \mathbb{E}[Y_t].$$

**Interpretation:** Each bank optimally adjusts liquidity relative to system average. Collectively, equilibrium captures the feedback between individual actions and systemic stability.

# Interpretation of the Parameter q

#### Mathematical Role

Appears in the running cost:

$$\frac{q}{2}(X_t - \bar{X}_t)^2$$

penalizing deviations from the mean liquidity.

· In the adjoint equation:

$$dY_t = -((a+q)Y_t - a\overline{Y}_t + q(X_t - \overline{X}_t))dt + Z_t dW_t.$$

 Controls the coupling strength between agents and affects stability and variance of X<sub>t</sub>.

#### **Economic Interpretation**

- q = alignment penalty: strength of pressure to follow the system's average liquidity.
- High q: strong interbank coordination, lower dispersion, higher contagion risk.
- Low q: weaker coupling, more heterogeneity, lower systemic dependence.
- Models peer effects, market discipline, or regulatory incentives to remain close to the mean.

# Interpretation of the Control $\alpha_t$

### **Economic Interpretation**

- $\alpha_t$ : Active liquidity adjustment or net borrowing/lending rate.
- $\alpha_t > 0$ : bank borrows  $\Rightarrow$  increases reserves.
- $\alpha_t$  < 0: bank lends  $\Rightarrow$  reduces reserves.
- Cost  $\frac{1}{2}\alpha_t^2$ : funding or transaction friction.
- · Balances:
  - (i) aligning with market average  $(X_t \approx \bar{X}_t)$ ,
  - (ii) limiting costly liquidity adjustments.

Summary:  $\alpha_t$  governs the bank's optimal liquidity response to systemic conditions — balancing stability and cost.

# Systemic Risk with Common Noise

#### Model Setup

Banks manage log-reserves under idiosyncratic and common shocks:

$$dX_t^{i,N} = [a(\bar{X}_t - X_t^{i,N}) + \alpha_t^i] dt + \sigma \sqrt{1 - \rho^2} dW_t^i + \sigma \rho dW_t^0, \quad \bar{X}_t = \frac{1}{N} \sum_{i=1}^N X_t^{i,N}.$$

Cost:

$$J^{i} = \mathbb{E}\left[\int_{0}^{T} \left(\frac{1}{2}(\alpha_{t}^{i})^{2} - q \,\alpha_{t}^{i}(X_{t} - \bar{X}_{t}) + \frac{c}{2}(X_{t} - \bar{X}_{t})^{2}\right) dt + \frac{1}{2}(X_{T} - \bar{X}_{T})^{2}\right].$$

# Systemic Risk with Common Noise

#### Mean Field Limit

As  $N \rightarrow \infty$ :

$$dX_t = [a(\bar{X}_t - X_t) + \alpha_t] dt + \sigma \sqrt{1 - \rho^2} dW_t + \sigma \rho dW_t^0,$$

with random mean  $\bar{X}_t = \mathbb{E}[X_t|W^0]$  (conditional law).

#### Interpretation

Captures contagion and liquidity effects with systemic shocks. Common noise ⇒ stochastic mean field (random equilibrium measure).

# Resource Extraction and Energy Markets

#### Model Setup

A continuum of producers extracts a commodity. Market price depends on total production  $\bar{\alpha}_t$ .

$$\begin{split} dX_t^i &= \alpha_t^i \, dt, \\ P_t^N &= P_0 - \gamma \, \tfrac{1}{N} \sum_{j=1}^N \alpha_t^j, \\ J^i &= \mathbb{E} \left[ \int_0^T \left( C(\alpha_t^i) - \alpha_t^i P_t^N \right) dt + G(X_T^i, \bar{\alpha}_T^N) \right]. \end{split}$$

# Resource Extraction and Energy Markets

#### Mean Field Limit

$$dX_t = \alpha_t dt, \quad P_t = P_0 - \gamma \, \bar{\alpha}_t, \quad J(\alpha; \bar{\alpha}) = \mathbb{E}\left[\int_0^T \left(C(\alpha_t) - \alpha_t P_t\right) dt + G(X_T, \bar{\alpha}_T)\right],$$

with  $\bar{\alpha}_t = \mathbb{E}[\alpha_t]$ .

#### Interpretation

Firms' extraction rates jointly determine price. Mean control  $\bar{\alpha}_t$  creates price externalities  $\rightarrow$  **Extended MFG**. Applications: oil production, renewables, emission markets.

# **Energy Transition with Common Policy Noise**

#### Model Setup

Firms control emissions  $\alpha_t^i$  facing random policy shocks:

$$dX_t^i = \alpha_t^i dt + \sigma_1 dW_t^i + \sigma_0 dW_t^0, \quad X_0^i = X_0.$$

Common noise models regulatory or macroeconomic shocks. Coupling through  $\bar{X}_t$  represents aggregate emissions effects.

Cost functional:

$$J^{i} = \mathbb{E}\left[\int_{0}^{T} \left(c_{1}(\alpha_{t}^{i}) + c_{2}(X_{t}^{i}, \bar{X}_{t})\right) dt + \Phi(X_{T}^{i}, \bar{X}_{T})\right], \quad \bar{X}_{t} = \mathbb{E}[X_{t} \mid W^{0}].$$

# Mean Field Equilibrium

Given  $\bar{X}_t$ , each firm's best response  $\alpha^*(\bar{X})$  yields

$$\bar{X}_t = \mathbb{E}[X_t^{\alpha^*(\bar{X})} \mid W^0].$$

# Price Impact under Common Market Shocks

#### Model Setup

Traders control execution rates  $\alpha_t^i$  affecting the market price:

$$\begin{split} dX_t^i &= \alpha_t^i \, dt + \sigma \, dW_t^i, \\ dS_t^N &= \kappa \, \tfrac{1}{N} \sum_{j=1}^N \alpha_t^j \, dt + \sigma_0 \, dW_t^0. \end{split}$$

Market-wide noise  $W^0$  drives price shocks. Each trader adapts to the common market factor.

Objective:

$$J^{i} = \mathbb{E}\left[\int_{0}^{T} e^{-rt} \left(\frac{1}{2}(\alpha_{t}^{i})^{2} + \lambda \alpha_{t}^{i} S_{t}^{N}\right) dt + \frac{q}{2} (X_{T}^{i})^{2}\right].$$

#### Mean Field Limit

$$dS_t = \kappa \mathbb{E}[\alpha_t \mid W^0] dt + \sigma_0 dW_t^0, \quad \bar{\alpha}_t = \mathbb{E}[\alpha_t \mid W^0].$$

The General Mean Field approach

# Neural Networks, Hidden Layers, and Neurons

A neural network is a function

$$f_{\Theta}: \mathbb{R}^{d_{\mathsf{in}}} \to \mathbb{R}^{d_{\mathsf{out}}},$$

built as a composition of layers:

$$f_{\Theta}(x) = W_L \sigma(W_{L-1} \sigma(\dots \sigma(W_1 x + b_1) \dots) + b_{L-1}) + b_L.$$

It approximates complex nonlinear mappings between inputs and outputs.

A hidden layer transforms its input through multiple neurons:

$$h = \sigma(Wx + b),$$

where W is the weight matrix, b is the bias, and  $\sigma$  is an activation function. The outputs h are internal feature representations, not directly observed.

# Neural Networks, Hidden Layers, and Neurons

#### Neuron

A **neuron** is a single computational unit:

$$h_i = \sigma(w_i \cdot x + b_i),$$

which takes an input x, applies a linear transformation, adds a bias, and passes it through a nonlinearity.

Neurons form hidden layers, and layers compose the neural network.

# Universal Approximation Theorem

Theorem (Universal Approximation) Let  $\sigma: \mathbb{R} \to \mathbb{R}$  be a continuous, non-polynomial activation function (e.g. sigmoid, ReLU, tanh). Then, for any continuous function  $f \in C(K)$ , defined on a compact set  $K \subset \mathbb{R}^d$ , and for every  $\varepsilon > 0$ , there exists a neural network of the form

$$f_N(x) = \sum_{i=1}^N a_i \, \sigma(w_i \cdot x + b_i),$$

such that

$$\sup_{x\in K}|f(x)-f_N(x)|<\varepsilon.$$

#### Interpretation

A one-hidden-layer neural network with sufficiently many neurons can approximate any continuous function on a compact domain, to arbitrary accuracy.

Depth adds efficiency, but width alone ensures universality.

# Shallow vs. Deep Neural Networks: Expressive Power and Efficiency

#### Key Idea

All sufficiently wide neural networks can approximate any continuous function (universal approximation), but adding depth dramatically improves efficiency.

# Shallow Networks (1 hidden layer)

- Can approximate any  $f \in C(K)$ , but may require exponentially many neurons
- Represent functions as wide, single-step mappings.
- Difficult to capture hierarchical or compositional structures.

#### Deep Networks (many layers)

- Achieve similar accuracy with polynomially many neurons.
- Build complexity through successive nonlinear compositions.
- Efficiently reuse features learned at earlier layers.

# Model: One-Hidden-Layer Neural Network

We shall follow [5].

#### **Network Structure**

$$g_{\theta}^{N}(x) = \frac{1}{N} \sum_{i=1}^{N} c_{i} \sigma(w_{i} \cdot x), \quad \theta = (c_{1}, \dots, c_{N}, w_{1}, \dots, w_{N}).$$
$$\mathcal{L}_{N}(\theta) = \frac{1}{2} \mathbb{E}_{(X,Y)} [(Y - g_{\theta}^{N}(X))^{2}].$$

# Model: One-Hidden-Layer Neural Network

We shall follow [5].

#### **Network Structure**

$$g_{\theta}^{N}(X) = \frac{1}{N} \sum_{i=1}^{N} c_{i} \sigma(w_{i} \cdot X), \quad \theta = (c_{1}, \dots, c_{N}, w_{1}, \dots, w_{N}).$$
$$\mathcal{L}_{N}(\theta) = \frac{1}{2} \mathbb{E}_{(X,Y)} [(Y - g_{\theta}^{N}(X))^{2}].$$

- $c_i \in \mathbb{R}$ : output weights,
- $w_i \in \mathbb{R}^d$ : hidden layer weights,
- $\sigma$ : activation function (ReLU, sigmoid, etc.),
- The factor 1/N ensures bounded outputs as  $N \to \infty$ .

# Training a Neural Network

#### Goal

Adjust the parameters  $\theta$  (weights and biases) so that

$$f_{\theta}(x) \approx y$$

for given training data (x, y), where y =output of x.

#### Optimization Problem

Minimize the expected loss:

$$\mathcal{L}(\theta) = \frac{1}{2} \mathbb{E}_{(x,y)} [(f_{\theta}(x) - y)^2].$$

Objective:

$$\theta^* = \arg\min_{\theta} \mathcal{L}(\theta).$$

## Stochastic Gradient Descent (SGD)

### Goal: Minimize Expected Loss

Given a parameter vector  $\theta \in \mathbb{R}^d$ , minimize

$$\mathcal{L}(\theta) = \mathbb{E}_{\xi}[\ell(\theta;\xi)],$$

where  $\ell(\theta; \xi)$  is the loss on a random data sample  $\xi$ .

#### Discrete-Time SGD Iteration

At each iteration k:

$$\theta_{k+1} = \theta_k - \alpha_k \nabla_{\theta} \ell(\theta_k; \xi_k)$$

- $\alpha_k$ : learning rate.
- $\xi_k$ : randomly drawn sample or mini-batch.
- $\nabla_{\theta} \ell(\theta_k; \xi_k)$ : stochastic gradient estimate of  $\nabla L(\theta_k)$ .

In our case  $\xi = (x, y)$ .

# Step 0: Initialization in Stochastic Gradient Descent

#### Definition

Before training, initialize all neuron parameters:

$$\theta_i^0 = (c_i^0, w_i^0) \sim \mu_0, \quad i = 1, \dots, N.$$

## Step 0: Initialization in Stochastic Gradient Descent

#### Definition

Before training, initialize all neuron parameters:

$$\theta_i^0 = (c_i^0, w_i^0) \sim \mu_0, \quad i = 1, \dots, N.$$

- $\mu_0$ : initial distribution of parameters (e.g. Gaussian, uniform).
- · Parameters are usually drawn i.i.d., ensuring

$$u_0^N = \frac{1}{N} \sum_i \delta_{\theta_i^0} \Rightarrow \mu_0.$$

· Sets the initial condition for the mean-field PDE:

$$\partial_t \rho_t + \nabla_\theta \cdot (\rho_t \mathsf{V}_t) = 0, \quad \rho_{t=0} = \mu_0.$$

Step 0 defines the initial particle cloud in parameter space — the seed for the mean-field dynamics.

## Stochastic Gradient Descent (SGD) Updates

Discrete SGD (for sample 
$$(x_k, y_k)$$
)
$$c_i^{k+1} = c_i^k + \alpha_N(y_k - g_{\theta^k}^N(x_k)) \, \sigma(w_i^k \cdot x_k),$$

$$w_i^{k+1} = w_i^k + \alpha_N(y_k - g_{\theta^k}^N(x_k)) \, c_i^k \, \sigma'(w_i^k \cdot x_k) x_k.$$

## Stochastic Gradient Descent (SGD) Updates

Discrete SGD (for sample 
$$(x_k, y_k)$$
)

$$c_{i}^{k+1} = c_{i}^{k} + \alpha_{N}(y_{k} - g_{\theta^{k}}^{N}(x_{k})) \, \sigma(w_{i}^{k} \cdot x_{k}),$$
  

$$w_{i}^{k+1} = w_{i}^{k} + \alpha_{N}(y_{k} - g_{\theta^{k}}^{N}(x_{k})) \, c_{i}^{k} \, \sigma'(w_{i}^{k} \cdot x_{k}) \, x_{k}.$$

- $\alpha_N$ : learning rate (scaled with N for limit).
- · Each neuron adjusts parameters based on prediction error.
- The evolution of  $\{(c_i, w_i)\}$  forms a particle system.

## **Empirical Measure Representation**

#### **Empirical Measure of Neuron Parameters**

$$\nu_k^N(dc,dw) = \frac{1}{N} \sum_{i=1}^N \delta_{(c_i^k,w_i^k)}(dc,dw), \quad g_{\theta^k}^N(x) = \int c \, \sigma(w \cdot x) \, \nu_k^N(dc,dw).$$

## **Empirical Measure Representation**

#### **Empirical Measure of Neuron Parameters**

$$\nu_k^N(dc,dw) = \frac{1}{N} \sum_{i=1}^N \delta_{(c_i^k,w_i^k)}(dc,dw), \quad g_{\theta^k}^N(x) = \int c \, \sigma(w \cdot x) \, \nu_k^N(dc,dw).$$

- Network output becomes an average over the neuron distribution.
- Each update slightly changes the empirical measure  $\nu_k^N$ .
- This is the **mean-field representation** of the network.

## Time Scaling for Mean-Field Limit

### **Need for Scaling**

Since  $f_N(x) = \frac{1}{N} \sum_i c_i \sigma(w_i \cdot x)$ , each gradient step is  $\mathcal{O}(1/N)$ . Without rescaling, dynamics vanish as  $N \to \infty$ .

## Time Scaling for Mean-Field Limit

### **Need for Scaling**

Since  $f_N(x) = \frac{1}{N} \sum_i c_i \sigma(w_i \cdot x)$ , each gradient step is  $\mathcal{O}(1/N)$ . Without rescaling, dynamics vanish as  $N \to \infty$ .

#### **Rescaled Continuous Time**

Define  $t = k\alpha_N/N$  and interpolate the SGD:

$$\frac{d\theta_i(t)}{dt} = -\nabla_{\theta_i} \mathcal{L}_N(\theta(t)).$$

## Time Scaling for Mean-Field Limit

#### **Need for Scaling**

Since  $f_N(x) = \frac{1}{N} \sum_i c_i \sigma(w_i \cdot x)$ , each gradient step is  $\mathcal{O}(1/N)$ . Without rescaling, dynamics vanish as  $N \to \infty$ .

#### **Rescaled Continuous Time**

Define  $t = k\alpha_N/N$  and interpolate the SGD:

$$\frac{d\theta_i(t)}{dt} = -\nabla_{\theta_i} \mathcal{L}_N(\theta(t)).$$

- Each neuron moves slowly (O(1/N)).
- The collective distribution evolves on an O(1) time scale.

## Mean-Field Limit: PDE for the Parameter Distribution

#### Limit as $N \to \infty$

The empirical measure  $\nu_t^N$  converges to  $\rho_t$ , which satisfies:

$$\partial_t \rho_t + \nabla_{\theta} \cdot (\rho_t \, V_t(\theta)) = 0.$$
$$V_t(\theta) = -\nabla_{\theta} \mathcal{L}(\rho_t).$$

## Mean-Field Limit: PDE for the Parameter Distribution

#### Limit as $N \to \infty$

The empirical measure  $\nu_t^N$  converges to  $\rho_t$ , which satisfies:

$$\partial_t \rho_t + \nabla_{\theta} \cdot (\rho_t \, V_t(\theta)) = 0.$$
 
$$V_t(\theta) = -\nabla_{\theta} \mathcal{L}(\rho_t).$$

#### Equivalent Integral Form

$$f(x; \rho_t) = \int c \, \sigma(w \cdot x) \, \rho_t(dc, dw), \quad \mathcal{L}(\rho_t) = \frac{1}{2} \mathbb{E} [(Y - f(X; \rho_t))^2].$$

Training becomes a deterministic gradient flow of  $\rho_t$  in parameter space.

· Law of Large Numbers:

$$\nu_t^N \Rightarrow \rho_t \quad \text{as } N \to \infty.$$

The empirical measure converges to a deterministic limit.

· Law of Large Numbers:

$$\nu_t^N \Rightarrow \rho_t \quad \text{as } N \to \infty.$$

The empirical measure converges to a deterministic limit.

• Propagation of Chaos: Finite collections of neurons become independent with common law  $\rho_t$ .

· Law of Large Numbers:

$$\nu_t^N \Rightarrow \rho_t \quad \text{as } N \to \infty.$$

The empirical measure converges to a deterministic limit.

- Propagation of Chaos: Finite collections of neurons become independent with common law  $\rho_t$ .
- Gradient Flow Structure:  $\rho_t$  evolves according to a Wasserstein gradient flow of the limiting loss functional  $\mathcal{L}(\rho_t)$ .

· Law of Large Numbers:

$$\nu_t^N \Rightarrow \rho_t \quad \text{as } N \to \infty.$$

The empirical measure converges to a deterministic limit.

- Propagation of Chaos: Finite collections of neurons become independent with common law  $\rho_t$ .
- Gradient Flow Structure:  $\rho_t$  evolves according to a Wasserstein gradient flow of the limiting loss functional  $\mathcal{L}(\rho_t)$ .
- Interpretation: Training an infinitely wide network = evolving a probability distribution over parameters.

# Summary: Particle to Mean-Field Transition

| Finite Network (Particles)                                 | Infinite Network (Mean Field)                         |
|------------------------------------------------------------|-------------------------------------------------------|
| N neurons with parameters $(c_i, w_i)$                     | Continuous density $\rho_t(c, w)$                     |
| Discrete SGD updates                                       | PDE: $\partial_t  ho_t +  abla \cdot ( ho_t v_t) = 0$ |
| Randomness due to data / init.                             | Deterministic evolution                               |
| Output: $\frac{1}{N} \sum_{i} c_{i} \sigma(w_{i} \cdot x)$ | Output: $\int c\sigma(w\cdot x)\rho_t$                |
| Law of large numbers $\nu_t^N \!\Rightarrow\! \rho_t$      | Gradient flow in parameter space                      |

Training dynamics of large networks converge to deterministic mean-field equations.

## From Gradient Descent to Mean-Field Dynamics

## Starting Point: Training a Neural Network

- · A network has many parameters (weights and biases).
- Each parameter is updated by gradient descent or SGD.
- When the number of parameters *N* is very large, their collective behaviour can be described statistically.

#### Key Idea

View each parameter as a particle moving under a force given by the gradient of the loss.

- The "population" of parameters behaves like an interacting particle system.
- Their empirical distribution captures the global learning dynamics.

## From Many Particles to a Distribution

## Particle Description

- Each parameter follows a deterministic (gradient) or noisy (SGD) trajectory.
- · Collectively, they form an evolving cloud in parameter space.
- The shape of this cloud is summarized by its probability distribution  $\rho_t$ .

#### Mean-Field Limit

- As the number of parameters  $N \to \infty$ , random fluctuations average out.
- The distribution  $\rho_t$  evolves deterministically.
- This is the **mean-field approximation** of the learning process.

### The Gradient Flow Picture

#### Continuous-Time Interpretation

- Gradient descent can be viewed as a continuous-time flow: parameters move downhill on the loss landscape.
- In the mean-field regime, the whole distribution  $\rho_t$  flows downhill on a functional loss landscape.

#### Intuition

- Instead of minimizing a scalar loss  $L(\theta)$ , we minimize a functional  $\mathcal{L}(\rho)$ .
- The direction of steepest descent (in the space of distributions) defines the **gradient flow**.

## The Resulting Dynamics

#### Evolution of the Parameter Distribution

- The distribution  $\rho_t$  of parameters drifts toward regions that reduce the global loss.
- · Randomness from SGD adds a small diffusion effect.
- The resulting dynamics resemble a Fokker–Planck equation for  $\rho_t$ .

## Physical Analogy

- Parameters = particles in a potential field (the loss).
- · Gradient descent = deterministic drift downhill.
- SGD noise = thermal motion (temperature  $\propto$  learning rate / batch size).

## **Conceptual Summary**

## Microscopic (Finite N):

- Many particles / parameters.
- Each follows its own gradient update.
- Interactions through shared loss function.

### Macroscopic (Mean-Field Limit):

- Collective behaviour described by  $\rho_{\rm t}$ .
- Smooth deterministic evolution over time.
- Encoded by a mean-field or Wasserstein gradient flow.

From many interacting parameters to one evolving distribution.

## Main Takeaways

- The training dynamics of large neural networks can be viewed as a continuum limit.
- The empirical parameter distribution evolves deterministically in time.
- This evolution is a gradient flow in the space of probability measures.
- Links deep learning to mean-field games, McKean–Vlasov equations, and optimal transport.

Mean-field methods bridge optimization, probability, and learning.

## Forward-Backward Propagation of Chaos (FBPoC)

**From N-Player Game to Mean Field Limit** Each player  $i=1,\ldots,N$  controls

$$\begin{cases} dX_{t}^{i,N} = b(X_{t}^{i,N}, \mu_{t}^{N}, \alpha_{t}^{i,N}) dt + \sigma dW_{t}^{i}, \\ dY_{t}^{i,N} = -\partial_{x} H(X_{t}^{i,N}, \mu_{t}^{N}, Y_{t}^{i,N}) dt + Z_{t}^{i,N} dW_{t}^{i}, \\ Y_{T}^{i,N} = \partial_{x} g(X_{T}^{i,N}, \mu_{T}^{N}), \end{cases} \qquad \mu_{t}^{N} = \frac{1}{N} \sum_{j=1}^{N} \delta_{X_{t}^{i,N}}.$$

- X<sup>i,N</sup>: state (forward dynamics)
- Y<sup>i,N</sup>: adjoint / costate (backward optimality condition)
- H: Hamiltonian of player's control problem

# Forward-Backward Propagation of Chaos

Forward-Backward Propagation of Chaos As  $N \to \infty$ ,

$$(X_t^{1,N},Y_t^{1,N}),\dots,(X_t^{k,N},Y_t^{k,N}) \ \xrightarrow{law} \ (X_t^1,Y_t^1),\dots,(X_t^k,Y_t^k),$$

where  $(X^i, Y^i)$  are i.i.d. copies solving the mean-field FBSDE:

$$\begin{cases} dX_t = b(X_t, \mu_t, \alpha_t) dt + \sigma dW_t, \\ dY_t = -\partial_x H(X_t, \mu_t, Y_t) dt + Z_t dW_t, \\ \mu_t = (X_t). \end{cases}$$

**Interpretation:** independence of both forward and backward variables in the limit.

# Forward-Backward Propagation of Chaos

#### Meaning

- Extends classical propagation of chaos to coupled forward-backward systems.
- Ensures that the *N*-player Nash equilibrium converges to the MFG equilibrium.
- Mathematically delicate: information flows both forward (via X) and backward (via Y).

#### See also

# Backward Propagation of Chaos

Backward Propagation of Chaos mainly initiated by Lauriere and Tangpi in [2] and extended in various directions in [3] by Papapantoleon,Saplaouras and Theodorakopoulos.

# **Interacting Mean-Field BSDE System** For each N, consider a system of interacting BSDEs:

$$Y_t^{i,N} = \xi^{i,N} + \int_t^T f(s, Y_s^{i,N}, Z_s^{i,N}, (Y_s^{i,N})) ds - \int_t^T Z_s^{i,N} dW_s^i, \quad i = 1, \dots, N.$$

Interaction comes via empirical law  $(Y_s^{\cdot,N})$ .

# Backward Propagation of Chaos As $N \to \infty$ , one shows:

$$(Y^{1,N}, Y^{2,N}, \dots, Y^{k,N}) \to (Y^1, \dots, Y^k),$$

where each Y<sup>i</sup> solves a \*\*McKean-Vlasov BSDE\*\*

$$Y_t = \xi + \int_{1}^{T} f(s, Y_s, Z_s, (Y_s)) ds - \int_{1}^{T} Z_s dW_s.$$

## Stability of Backward Propagation of Chaos

Stability of backward propagation of chaos was intro established by Papapantoleon, Saplaouras and Theodorakopoulos in [4].

#### Stability of BPoC

$$D^k := \left( \{ \overline{X}^{k,i} \}_{i \in \mathbb{N}}, T^k, \left\{ \{ \xi^{k,i,N} \}_{i \in \mathbb{N}} \right\}_{N \in \mathbb{N}}, \{ \xi^{k,i} \}_{i \in \mathbb{N}}, f^k \right)$$

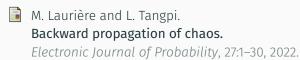
The introduced stability: if a sequence of data sets  $(D^k)$  converges to limit data  $D^{\infty}$ , then the interacting BSDE solutions converge to the McKean–Vlasov solution of  $D^{\infty}$ . Small perturbations in terminal / drivers  $\rightarrow$  small changes in limits.

# Stability of Backward Propagation of Chaos

**Table 1:** The doubly-indexed scheme for the stability of backward propagation of chaos.

#### References i

R. Carmona, F. Delarue, et al. Probabilistic theory of mean field games with applications I-II, volume 3. Springer, 2018.



A. Papapantoleon, A. Saplaouras, and S. Theodorakopoulos. Existence, uniqueness and propagation of chaos for general mckean-vlasov and mean-field bsdes.

arXiv preprint arXiv:2408.13758, 2024.

## References ii



A. Papapantoleon, A. Saplaouras, and S. Theodorakopoulos. **Stability of backward propagation of chaos.** *arXiv preprint arXiv:2506.03562*, 2025.



J. Sirignano and K. Spiliopoulos.

Mean field analysis of neural networks: A law of large numbers.

SIAM Journal on Applied Mathematics, 80(2):725–752, 2020.