AlxMarkets: Blessing or Curse?

Konstantinos (Kostas) E. Zachariadis

Professor of Financial Economics and Director of Research Queen Mary University of London (QMUL)

Research Associate Hellenic Observatory, Financial Markets Group & Systemic Risk Centre London School of Economics (LSE)

New Challenges in Financial and Energy Markets: Math, Data & Al 31 October 2025

Organised by NTUA & Athens Exchange Group

Why This Matters Now

A Changing Market Reality

- A large share of order flow on major venues is algorithmic (share varies by venue and instrument).
- Al systems increasingly make allocation, pricing, and compliance decisions.
- Yet our economic and market-design theories still assume human agents.

Framing Question

What happens when markets are run not just with AI tools, but by AI agents?

Roadmap

- 1 The Blessing: Al as a Tool
- The Curse: Al as Agent

The Two Faces of AI in Economics

An Economist's View of Modern Al

We have moved beyond simple automation to **end-to-end, goal-oriented optimization** in a much larger modeling space. This creates two roles for Al.

The Blessing: Al as a Tool

- Tackling complexity: Deep RL for hard objectives (e.g., portfolio optimization).
- Counterfactuals: Generative models (GANs, diffusion) for realistic what-ifs.
- **Structural estimation:** Data-driven solutions to previously intractable questions.

The Curse: Al as an Agent

- New agents: Not just human proxies; Al agents have distinct behaviors.
- Bias at scale: Human-like biases can be embedded and scaled.
- Interactions: Rich dynamics among Als and humans need study.

Our Roadmap

First: the *Blessing* (Al as a tool). Then: the *Curse* (Al as agent).

Part 1: The Blessing

Al in Quant Finance: Pricing and Portfolio Choice (based on the work of Yongxin Yang @ QMUL EECS)

Option Pricing: Accuracy & Speed

- Normalizing Flows: $\sim 10 \times$ lower pricing error.
- Neural surrogates: ~ 300× faster evaluation.
- **Hypernetworks**: full surface from ~ 9 samples.

Portfolio Choice: Sparse Replication

- Track a large index with a small, fixed subset (non-convex).
- Stochastic NNs: $\sim 10 \times$ faster than traditional solvers.
- Meta-learning: learns how to learn from history.

Limitation

These are computational wins; the underlying asset models are often standard.

Part 1: The Blessing

Case: Bridging Data Silos with Federated Learning (based on the work of Ahmed Sayed @ QMUL EECS)

The Problem

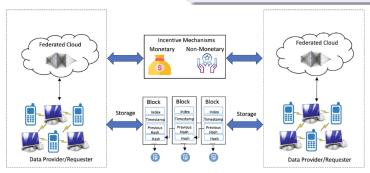
Collaboration in finance is needed, but data is siloed and private.

- Examples: anti-money laundering, credit risk.
- Laws prevent direct data sharing.

Federated Learning (FL)

Train models across institutions without sharing raw data.

- Private FL systems for AML (e.g., industry pilots).
- FL for credit scoring: reported AUC improvements in deployments.



Source: Data Marketplaces (Springer, 2024)

From Trading Assets to Trading Knowledge

The Economic Shift Behind AlxMarkets

From Assets to Knowledge

Markets now trade not just goods and securities, but **knowledge itself** — data, models, and algorithms.

- These are hard to value ex ante because value emerges only in use or through combination.
- They are often **complementary**: one firm's model + another's dataset create value only together.
- Revealing enough information to price knowledge may destroy its private value (Arrow's paradox).

The Challenge

We need new market mechanisms to enable the exchange of knowledge — while preserving privacy and incentives.

Designing a Market for Knowledge (MARKSE)

From Concept to Mechanism

Mechanism Sketch: Combinatorial Double Auction (CDA)

- Combinatorial: allows bids on bundles (handles complementarities).
- Double auction: two-sided price discovery (reduces uncertainty through competition).

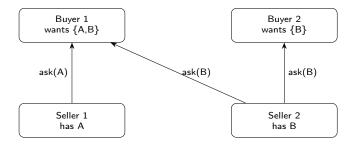
The Role of Al

- Al as a solver: speeds up winner determination / clearing (MILP + neural heuristics).
- Al as an agent: populates the market with MARL traders to test price discovery and efficiency.

Punchline

Use AI to both solve realistic market designs and stress-test them with learning agents.

CDA Intuition: Bundle Bids



The market clears bundles to maximize surplus subject to feasibility.

Next Step

We now switch from this general CDA picture to a minimal laboratory: the BBDA.

Roadmap

1 The Blessing: Al as a Tool

2 The Curse: Al as Agent

Part 2: The Curse

When the Algos Run the Asylum

Double Auctions Are Everywhere

- Financial & Commodities: stock, bond, carbon markets.
- Energy: day-ahead/real-time electricity, smart grids.
- Digital Platforms: online ad auctions, ride-sharing.
- Compute & Data: cloud compute, emerging data/model markets.

The Problem

Al agents are already pervasive participants in many of these real markets.

The Core Function: What is Price Discovery?

Most Important Job of a Market

Aggregate and impound dispersed private information into a public signal: the price.

Why It Matters

- Decentralized identification of the rational-expectations value.
- Critical for financial, energy, and data/Al-model markets.
- ullet Informational efficiency: how much information price reveals o Price Discovery
- ullet Allocational efficiency: how optimally are goods allocated o Resource Allocation
- Tests how strategic behavior impacts efficiency.

Takeaway

We assess market health by informational and allocational efficiency. We test this in a simple double auction.

Our Laboratory: The Buyer's Bid Double Auction (BBDA)

Buyers' Bids & Sellers' Asks, Uniform Price

Setup for Experiments

We now test price discovery by replacing rational humans with RL agents inside this simple double auction.

- m buyers (want 1 unit) and n sellers (have 1 unit).
- Everyone simultaneously submits bids (buyers) and asks (sellers).
- Order all quotes: $s_{(1)} \leq \cdots \leq s_{(m+n)}$.
- Market clears at uniform price $p = s_{(m+1)}$.
- Buyers with bid $\geq p$ trade; sellers with ask < p trade.

Why This Mechanism?

Foundational for studying allocational efficiency, **informational efficiency** (how private signals map into price), and strategic behavior.

The Model We Test: Correlated Private Values (CPV)

Strategic Bidding with Full Information

Model: Agents See Their True Value

This is a Correlated Private Value (CPV) model.

- Common Value: μ
- Private Value: ε_i
- **Agent Input:** The agent *knows* their true value: $z_i = \mu + \varepsilon_i$
- Strategic Problem: Even knowing their value, buyers must bid strategically ("shade" their bid) to get a better price
- Note that sellers bid truthfully by design

This is the Model We Test

Our experiment (next slides) uses this CPV setup to test if AI agents can find the optimal strategic "offset" from their true value z_i .

Baseline Theory (Humans)

In this simple double auction, with rational agents:

- Practical and robust vs. "optimal" mechanisms (Wilson critique, ex-post losses, budget balance).
- Allocational efficiency is high; losses vanish quickly as markets grow.
- Strategic effects are small relative to sampling noise.

Question

What changes when we replace humans with AI agents?

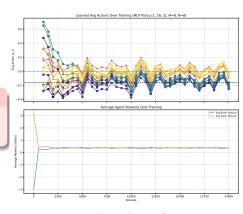
The Curse 1: Failure to Generalize

- Theory: buyer offset halves as market size doubles; seller offset ≈ 0 .
- RL matches theory in each fixed market, but treats each size as a new task.

Market	Buyer Offset (Theory)	Seller
2×2	-0.6896	0
4×4	-0.3398	0
8×8	-0.1639	0
16×16	-0.0805	0

Rule of Thumb

Buyer's optimal offset scales with market size: doubling the market halves the offset. RL fits each size separately and fails to infer this scaling law.



Example: 8×8 buyers/sellers

Lesson

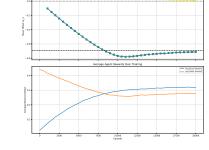
A powerful solver is not necessarily a good extrapolator.

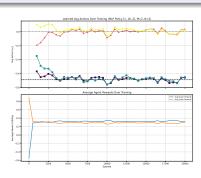
The Curse 2: Need for Informed Priors

Why Economic Structure Still Matters

Economic Insight

Our theory shows that optimal bidding is *independent* of an agent's private value z_i . Embedding this as an **architectural prior** (so the policy ignores z_i) greatly improves learning stability.





Informed AI (stable convergence): policy ignores z_i and learns a constant offset.

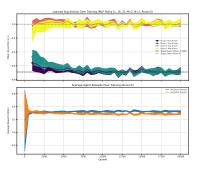
Uninformed AI: policy sees irrelevant z_i and must learn to ignore it (slower, less stable).

Lesson

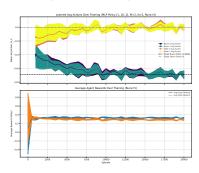
Raw AI is brittle without economic priors and careful mechanism design.

The Curse 3: Sensitivity to Tuning

• Outcomes hinge on exploration vs. exploitation schedules (designer choices).



Less exploration (converges).



More exploration (slower, less stable).

The Verdict: Blessing or Curse?

The Blessing: Al as a Powerful Tool

- Solves complex pricing and portfolio problems.
- Enables privacy-preserving collaboration (FL).
- Shines when paired with **realistic** economic models & mechanisms.

The Curse: Al as a Brittle Agent

- Brittleness: fails to extrapolate simple patterns.
- Inefficiency: needs informed priors to learn efficiently.
- Sensitivity: heavily tuned by design choices.

Take-Home

The future isn't *less* Al in markets – it's **Al guided by economic theory and robust market design**.

Engineering Takeaways

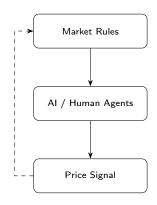
What to Build, Test, and Watch Out For

Design Principles

- $\begin{tabular}{ll} \bullet & {\sf Markets \ are \ systems: \ mechanism} \to {\sf agents} \\ \to & {\sf price \ (feedback)}. \end{tabular}$
- Add economic priors to agents; do not start from scratch.
- Measure informational and allocational efficiency, not only performance.
- Stability over short-run gains; tune exploration schedules.

Where to Extend

- \bullet BBDA \to multi-asset CDA with bundles.
- MARL coordination and equilibria under market rules
- Theory shapes how AI learns—as an inductive bias—and helps check when it fails—as a debugging tool).



Engineering Testbench

Tune the market—AI feedback loop; Measure informational and allocational efficiency.

Thank You

Connect: LinkedIn (QR code)