
The Cameron-Martin-Girsanov (CMG) Theorem
There are many versions of the CMG Theorem. In some sense, there are
many CMG Theorems. The first version appeared in [1] in 1944. Here we
present a standard version, which gives the “spirit” of these theorems.

1 Introductory material

Let (Ω,F , P ) be a probability space. We can introduce other probability
measures on (Ω,F) and obtain other probability spaces with the same sam-
ple space Ω and the same σ-algebra of events F . One “easy” way to do that
is to start with a random variable Θ of (Ω,F) such that

Θ ≥ 0 P -a.s. and EP [Θ] = 1, (1.1)

where EP [ · ] denotes the expectation associated to the measure P . Then,
we can obtain a probability measure Q on (Ω,F) by setting

Q(A) = EP [Θ1A] for all A ∈ F , (1.2)

where 1A is the indicator (function) of the event A.
It is easy to see that Q is a probability measure on (Ω,F) and, furthermore,
that

Q(A) = 0 whenever P (A) = 0. (1.3)

Recall that if two measures P and Q are related as in formula (1.3), we say
that Q is absolutely continuous with respect to P and denote this as

Q ≪ P. (1.4)

In fact, the Radon-Nicodym Theorem states that the above construction
of Q is the only way to obtain probability measures, which are absolutely
continuous with respect to P , namely: If Q is a probability measure on
(Ω,F) and Q ≪ P , then there is a random variable Θ on (Ω,F) satisfying
(1.1), for which Q(A) = EP [Θ1A] for all A ∈ F . The random variable Θ is
called the Radon-Nicodym derivative of Q with respect to P . Symbolically,

Θ =
dQ

dP

and it is not hard to see that Θ is unique P -a.s.
Furthermore, if we also have that P ≪ Q, then

dP

dQ
=

1

Θ
.

If EQ[ · ] is the expectation associated to the measure Q of (1.2), then

EQ[1A] = Q(A) = EP [Θ1A] for all A ∈ F ,
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and hence

EQ[X] = EP [ΘX] for any r.v. X of (Ω,F) (1.5)

(if EP [ΘX] does not exist, then so does EQ[X]).
The following proposition tells us how we can express conditional expecta-
tions associated to the measure Q of (1.2) in terms of conditional expecta-
tions associated to P .

Proposition 1. Let B be a subalgebra of F . Then

EQ[X | B] = EP [ΘX | B]
EP [Θ | B]

Q-a.s. (1.6)

Proof. For typographical convenience let us put

Ψ := EP [Θ | B]. (1.7)

Of course, Ψ ≥ 0 P -a.s., Ψ ∈ M(B) (i.e. Ψ is B-measurable), and

EP [Ψ] = EP

[
EP [Θ | B]

]
= EP [Θ] = 1. (1.8)

Because of the above we can define another probability measure on (Ω,F)
as

Q̃(A) = EP [Ψ1A]. (1.9)

Observe that, for A ∈ B we have

Q(A) = EP [Θ1A] = EP

[
EP [Θ1A | B]

]
= EP

[
1AEP [Θ | B]

]
= EP [Ψ1A],

that is (in view of (1.9))

Q(A) = Q̃(A) for all A ∈ B, (1.10)

which also implies immediately that

EQ[X] = EQ̃[X] for all X ∈ M(B). (1.11)

We continue by setting

Y1 := EP [ΘX | B] and Y2 := ΨEQ[X | B]. (1.12)

Then, formula (1.6) is equivalent to

Y1 = Y2 Q-a.s. (1.13)

Notice that Y1, Y2 ∈ M(B). Hence, in view of (1.10), to establish (1.13) it
suffices to show that

EQ̃[Y11A] = EQ̃[Y21A] for all A ∈ B. (1.14)
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Now

EQ̃[Y11A] = EP [ΨY11A] = EP

[
ΨEP [ΘX | B]1A

]
= EP

[
EP [ΨΘX1A | B]

]
= EP [ΨΘX1A] = EQ[ΨX1A]

and (with the help of (1.11))

EQ̃[Y21A] = EQ̃

[
ΨEQ[X | B]1A

]
= EQ̃

[
EQ[ΨX1A | B]

]
= EQ

[
EQ[ΨX1A | B]

]
= EQ[ΨX1A].

Therefore (1.14) is true and the proof is completed. �
Why do we need to consider more than one probability measures? First of all
for educational purposes, since it helps to clarify certain concepts and issues.
But, also, because such situations arise in applications. For example, two
persons want to divide a pie (or a property) into two pieces so that each of
them feels (s)he got a fair share. However, each person may have a different
measure of fairness.

2 An example

A random variable X of (Ω,F) is a F-measurable function X : Ω → R.
Thus,X depends on Ω and F . However,X does not depend on the probability
measure put on (Ω,F). It is the distribution of X which depends on the
measure. For instance, if P and Q are two probability measures on (Ω,F),
then the distribution functions of X with respect to P and Q respectively
are

FP (x) = P{X ≤ x} and FQ(x) = Q{X ≤ x}.

Of course, in general FP (x) ̸= FQ(x). Thus, e.g., the phrase “X is a nor-
mal random variable” (i.e. “X is a normally distributed random variable”)
may be misleading (or, at least, equivocal), if we work with more than one
probability measures, since the distribution of X depends on the measure.
The same remarks apply, of course, to random vectors and stochastic pro-
cesses. For example, a process which is a Brownian motion with respect to
a measure P , it will probably not be a Brownian motion with respect to an-
other measure Q. Furthermore, if X and Y are random variables which are
independent with respect to P , they may not be independent with respect
to another measure Q. These issues do not come up if there is only one
measure, but if there are more than one measures around, then they may
become very important.

Let us look at a specific example (taken from [3]). Suppose we have a
probability space (Ω,F , P ) and a random variable Z of this space, which
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has the standard normal distribution (with respect to P ). That is

P{Z ≤ z} = Φ(z) =

∫ z

−∞

1√
2π

e−ξ2/2 dξ, z ∈ R. (2.1)

For typographical convenience we write Z P  N(0, 1). Of course, there are
many random variables of (Ω,F , P ) having the standard normal distribution
(e.g., due to the symmetry of Φ(z), if Z is such a variable, then so is −Z).
Recall that

EP [Z] = 0, VP [Z] = 1 (2.2)

(where VP [ · ] is the variance with respect to P ), and

EP

[
eµZ

]
= eµ

2/2 for any µ ∈ C . (2.3)

Equation (2.3) can be written as

EP

[
eµZ− 1

2
µ2
]
= 1. (2.4)

Thus, for a Z as above and a µ ∈ R we can introduce the probability measure
Q defined by

Q(A) = EP

[
eµZ− 1

2
µ2
1A

]
, A ∈ F . (2.5)

A question arising here is: What is the distribution of Z with respect to Q?
We have

Q{Z ≤ x} = EP

[
eµZ− 1

2
µ2
1{Z≤x}

]
=

∫ ∞

−∞
eµz−

1
2
µ2
1{z≤x}

1√
2π

e−z2/2 dz

=

∫ x

−∞

1√
2π

e−
(z−µ)2

2 dz,

i.e., with respect to Q, Z is a normal random variable with mean µ and
variance 1; symbolically, Z Q  N(µ, 1), which can be written equivalently
as (Z − µ) Q  N(0, 1), i.e. Z − µ has the standard normal distribution
with respect to Q.
To extend this example, let the random variables Z1, . . . , Zn be independent
and identically distributed with respect to P , all having the standard normal
distribution. We now set

Q(A) = EP

[
e
∑n

j=1 µjZj− 1
2

∑n
j=1 µ

2
j1A

]
, A ∈ F , (2.6)

where µ1, . . . µn ∈ R are given constants. It is not hard to see that Q is
a probability measure on (Ω,F). Again, we would like to find the (joint)
distribution of Z1, . . . , Zn with respect to Q.
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For a “reasonable” (say bounded and continuous) function g : Rn → R we
have (recall (1.5))

EQ[g(Z1, . . . , Zn)] = EP

[
e
∑n

j=1 µjZj− 1
2

∑n
j=1 µ

2
j g(Z1, . . . , Zn)

]
=

∫ ∞

−∞
· · ·

∫ ∞

−∞
g(z1, . . . , zn)e

∑n
j=1 µjzj− 1

2

∑n
j=1 µ

2
j

1

(2π)n/2
e
−
(

z21
2
+···+ z2n

2

)
dz1 · · · dzn

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
g(z1, . . . , zn)

1

(2π)n/2
e−

(z1−µ)2

2 · · · e−
(zn−µ)2

2 dz1 · · · dzn.

It follows that the joint probability density function of Z1, . . . , Zn (with
respect to Q) is

fQ(z1, . . . , zn) =
1

(2π)n/2
e−

(z1−µ)2

2 · · · e−
(zn−µ)2

2 , (2.7)

which tells us that, with respect to Q, the variables Z1, . . . , Zn are indepen-
dent and furthermore Zj Q  N(µj , 1), i.e. (Zj − µj) Q  N(0, 1), for
j = 1, . . . , n. Thus, the random variable

n∑
j=1

Zj −
n∑

j=1

µj (2.8)

is, with respect to Q, normally distributed with mean 0 and variance n.

Roughly speaking, the Cameron-Martin-Girsanov Theorem is a “continuous
version” of the above simple example. In fact, having this example in mind,
one can guess the statement of the CMG Theorem (see the remark after
Theorem 1 in the next section).

3 The Cameron-Martin-Girsanov Theorem

3.1 CMG Theorem in R1

Consider a probability space (Ω,F , P ) and an one-dimensional Brownian
motion process {Bt = B(t)}t≥0 (with respect to P ) with associated filtration
{Ft}t≥0. Of course Ft is a subalgebra of F for every t ≥ 0.
Next, let {Xt = X(t)}t≥0 be a (real-valued) stochastic process, adapted to
the filtration {Ft}t≥0. We assume that for some constant T > 0 we have∫ T

0
X2

t dt < ∞ P -a.s. (3.1)

Having Xt we introduce

Mt := eYt , where Yt := −1

2

∫ t

0
X2

sds+

∫ t

0
XsdBs (3.2)
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(notice that Mt > 0 P -a.s.). In differential notation we have

dYt = −1

2
X2

t dt+XtdBt, Y0 = 0. (3.3)

Applying Itô Calculus to (3.2) yields

dMt = eYtdYt +
1

2
eYtX2

t dt = MtXtdBt, M0 = 1. (3.4)

Of course, (3.4) can be written equivalently as an integral equation

Mt = 1 +

∫ t

0
MsXsdBs. (3.5)

It follows that the Itô process Mt (being a stochastic integral) is an Ft-
martingale (with respect to P ). In particular,

EP [Mt] = EP [M0] = 1 for all t ∈ [0, T ]. (3.6)

Having Mt, and in view of (3.6), we introduce the probability measures on
(Ω,F)

Q(A) = EP [MT1A]; Qt(A) = EP [Mt1A], 0 < t < T. (3.7)

Observe that, for 0 ≤ t ≤ T we have Mt = EP [MT | Ft] (since Mt is a
martingale). Hence, as in (1.10), we have

Qt(A) = Q(A) for all A ∈ Ft. (3.8)

Theorem 1 (CMG in R1). Let (Ω,F , P ), Bt, Xt, Ft, and T be as above.
Set

Wt := Bt −
∫ t

0
Xsds, t ∈ [0, T ]. (3.9)

Then, for any fixed T > 0 the process Wt, 0 ≤ t ≤ T is an Ft-Brownian
motion on (Ω,F , Q) (i.e. with respect to Q).

Proof. We will prove the theorem with the help of the Lévy characterization
of Brownian motion in R1:

A continuous stochastic process W = {Wt} in a probability space (Ω,F , Q)
is an one-dimensional Brownian motion if and only if
(i) Wt is a martingale with respect to FW

t and
(ii) W 2

t − t is a martingale with respect to FW
t .

The proof of this characterization will not be given here (it can be found,
e.g., in [3]). If we accept this characterization of Brownian motion, then, in
order to prove Theorem 1 we only need to check that Wt of (3.9) satisfies
(i) and (ii).

6



Let us check (i). Set
Kt := MtWt, (3.10)

where Mt is given by (3.2). Then, Itô Calculus, (3.4), and (3.9) give

dKt = WtdMt +MtdWt + dWtdMt

=

(
Bt −

∫ t

0
Xsds

)
MtXtdBt +Mt (dBt −Xtdt) +MtXtdt

=

[(
Bt −

∫ t

0
Xsds

)
MtXt +Mt

]
dBt, (3.11)

which implies that Kt = MtWt is an Ft-martingale with respect to P . Now,
for 0 ≤ s ≤ t ≤ T , by (3.8) and Proposition 1 we get

EQ[Wt | Fs] = EQt [Wt | Fs] =
EP [MtWt | Fs]

EP [Mt | Fs]
=

MsWs

Ms
= Ws, Q-a.s.

which says that Wt is an Ft-martingale with respect to Q.
Checking of (ii), namely that W 2

t − t is an Ft-martingale with respect to Q,
can be done in a similar way and is left as an exercise (EXERCISE 1). �
Remark. The quantity Mt of (3.2) can be viewed (at least in the case where
Xt is a deterministic function of t) as a continuous analog of the quantity

e
∑n

j=1 µjZj− 1
2

∑n
j=1 µ

2
j ,

which appears in (2.6). Likewise, by writing Bt =
∫ t
0 dBs (assuming B0 = 0)

we can view the quantity Wt of (3.9) as a continuous analog of the quantity
displayed in (2.8).

Theorem 2 (CMG in Rd). Let {B(t)}t≥0, be a d-dimensional Brownian
motion on (Ω,F , P ), with associated filtration {Ft}t≥0. Also, let {X(t)}t≥0

be a stochastic process with values in Rd, adapted to the filtration {Ft}t≥0.
We assume that for some constant T > 0 we have∫ T

0
|Xt|2dt < ∞ P -a.s. (3.12)

Set

Mt := eYt , where Yt := −1

2

∫ t

0
|Xs|2ds+

∫ t

0
Xs · dBs (3.13)

(notice that Mt > 0 P -a.s.). It is not hard to see that Mt is an Ft-martingale
(with respect to P ) and EP [Mt] = 1 for all t ∈ [0, T ] (EXERCISE 2). If
Q is the probability measure on (Ω,F) defined by

Q(A) = EP [MT1A], (3.14)
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then, for any fixed T > 0, the process

Wt := Bt −
∫ t

0
Xsds, t ∈ [0, T ] (3.15)

is a d-dimensional Ft-Brownian motion on (Ω,F , Q).

Proof. The proof is similar to the proof of Theorem 1 and it is left as an
exercise (EXERCISE 3).
You may use (without proof) the Lévy characterization of Brownian motion
in Rd [3]:

A continuous stochastic processW = {W (t)} in a probability space (Ω,F , Q)
is an d-dimensional Brownian motion if and only if
(i) W (t) is a martingale with respect to FW

t (meaning that each component
Wj(t), j = 1, . . . , d, is a martingale) and
(ii) for any j, k ∈ {1, . . . , d} we have that Wj(t)Wk(t)− δjkt is a martingale
with respect to FW

t (here δjk is the Kronecker delta). �
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