
MEAN VALUE (EXPECTED VALUE, EXPECTATION)

Definition. Let X : Ω → R be a random variable (r.v.) with distribution
function F (x). The mean value (or expected value or expectation) of
X is the quantity

µ = E[X] =

∫ ∞

−∞
x dF (x)

(the integration is in the Riemann-Stieltjes sense) provided the integral is
absolutely convergent. If ∫ ∞

−∞
|x| dF (x) = ∞,

then E[X] does not exist.
The quantity µn = E[Xn] is called the moment of order n or the n-th
moment of X.

Remarks. (i) If X is a discrete r.v. with values x1, x2, x3, . . . and (mass)
probability function p(xj), then

µ = E[X] =
∑
xj

xj p(xj),

provided the sum is absolutely convergent (the sum extends over all values
xj taken by X). If ∑

xj

|xj | p(xj) = ∞,

then E[X] does not exist.
(ii) If X is a continuous r.v. with probability density function f(x), then

µ = E[X] =

∫ ∞

−∞
xf(x)dx,

provided the integral is absolutely convergent. If∫ ∞

−∞
|x|f(x)dx = ∞,

then E[X] does not exist.
(iii) If the graph of f(x) (or p(xj)) has an axis of symmetry x = x0 and
µ = E[X] exists, then µ = x0.

⋆ ⋆ ⋆ Properties of the Mean Value:

All properties below hold as long as the mean values exist.

0. If c is a constant, then E[c] = c.

1



1. If X ≤ Y , then E[X] ≤ E[Y ].

2. (a) Let g(x) be a real-valued function defined on R.
If X is a discrete r.v. with values x1, x2, x3, . . . and (mass) probability
function p(xj), then

E[g(X)] =
∑
xj

g(xj)p(xj),

where the sum extends over all values xj taken by X.
If X is a continuous r.v. with probability density function f(x), then

E[g(X)] =

∫ ∞

−∞
g(x)f(x)dx.

(b) Let g(x, y) be a real-valued function defined on R2.
If X and Y are discrete r.v.’s with values x1, x2, x3, . . . and y1, y2, y3, . . .
respectively and joint (mass) probability function p(xj , yk), then

E[g(X,Y )] =
∑
yk

∑
xj

g(xj , yk)p(xj , yk),

where the sums extend over all values xj of X and all values yk of Y .
If X and Y are continuous r.v.’s with joint probability density function
f(x, y), then

E[g(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y)dxdy,

3 (Linearity of the Mean Value). If X,Y are r.v.’s and a, b are constants,
then

E[aX + bY ] = aE[X] + bE[Y ]

(the property tells us that the mean value respects linear operations).

4. If X,Y are independent r.v.’s, then

E[XY ] = E[X]E[Y ].

However, if E[XY ] = E[X]E[Y ], we cannot conclude that X,Y are inde-
pendent.

Let us justify Property 4 for the case where X and Y are continuous r.v.’s
with a joint probability density function f(x, y) (the discrete case can be
also justified by the appropriate adaptation of the argument).
Since X,Y are independent, we must have f(x, y) = fX(x)fY (y). Thus (by
using Property 2(b) with g(x, y) = xy)

E[XY ] =

∫ ∞

−∞

∫ ∞

−∞
xyf(x, y)dxdy =

∫ ∞

−∞

∫ ∞

−∞
xyfX(x)fY (y)dxdy

=

∫ ∞

−∞
xfX(x)dx

∫ ∞

−∞
yfY (y)dy = E[X]E[Y ].
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VARIANCE

Definition. Let X : Ω → R be a r.v. such that µ = E[X] exists. The
variance of X is the quantity

σ2 = V [X] = E
[
(X − µ)2

]
(it may be ∞). Also, the quantity σ =

√
V [X] is called the standard

deviation of X.

The variance is a measure of the “spreadness” of the values of X.

⋆ ⋆ ⋆ Properties of the Variance:

0. By its definition we have that V [X] ≥ 0. If V [X] = 0, then X = µ a.s.
(i.e. with probability 1), where µ = E[X].

1. V [X] = E[X2]− E[X]2.
This property follows by setting X = Y in Property 2 of the covariance,
given below.
An implication of Property 1 is that we always have

E[X2] ≥ E[X]2

and equality happens if and only if V [X] = 0.

2. If a, b are constants, then

V [aX + b] = a2V [X].

Proof. Let µ = E[X]. Then E[aX + b] = aµ+ b, hence the definition of the
variance gives

V [aX+b] = E
[
{(aX + b− (aµ+ b)}2

]
= E

[
a2(X − µ)2

]
= a2E

[
(X − µ)2

]
and the proof is finished since E

[
(X − µ)2

]
= V [X] by definition. �

3 (A “Pythagorean Theorem”). If X,Y are independent r.v.’s, then

V [X + Y ] = V [X] + V [Y ].

However, if V [X + Y ] = V [X] + V [Y ], we cannot conclude that X,Y are
independent.
This property follows from Property 3 of the covariance, given below.
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COVARIANCE

Definition. Let X,Y : Ω → R be r.v.’s, such that the mean values µX =
E[X] and µY = E[Y ] exist. The covariance of X and Y is the quantity

Cov(X,Y ) = E [(X − µX)(Y − µY )] .

The dimensionless quantity

ρ(X,Y ) =
Cov(X,Y )√
V [X]V [Y ]

is called the correlation coefficient of X and Y (it is defined as long as
V [X], V [Y ] are finite and ̸= 0). If Cov(X,Y ) = 0, we say that X and Y are
uncorrelated.

If Cov(X,Y ) > 0, then Y has a tendency to increase when X increases (e.g.,
X = height and Y = weight of a person), while if Cov(X,Y ) < 0, then Y has
a tendency to decrease whenX increases. The equation Cov(X,Y ) = 0 gives
us a first indication of independence of X and Y (see Property 2 below).

Remark. Notice that
Cov(X,X) = V [X].

⋆ ⋆ ⋆ Properties of the Covariance:

0 (Symmetry).
Cov(Y,X) = Cov(X,Y )

(this property follows immediately from the definition of the covariance).

1 (Linearity in each argument). IfX,X1, X2, Y, Y1, Y2 are r.v.’s and a1, a2, b1, b2
are constants, then

Cov(a1X1 + a2X2, Y ) = a1Cov(X1, Y ) + a2Cov(X2, Y ),

Cov(X, b1Y1 + b2Y2) = b1Cov(X,Y1) + b2Cov(X,Y2)

(this property follows easily from the definition of the covariance and the
linearity of the mean value).

2. Cov(X,Y ) = E[XY ]− E[X]E[Y ]
(hence, by Property 4 of the mean value we have that if X and Y are
independent, then Cov(X,Y ) = 0).

Proof. Using the linearity of the mean value we get

Cov(X,Y ) = E [(X − µX)(Y − µY )] = E [XY − µXY − µY X + µXµY ]

= E[XY ]− µXE[Y ]− µY E[X] + µXµY
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and the property follows since µX = E[X] and µY = E[Y ]. �
3.

V [X + Y ] = V [X] + V [Y ] + 2Cov(X,Y ).

Proof. Using Property 1 of the variance and the linearity of the mean value
we get

V [X + Y ] = E
[
(X + Y )2

]
− E[X + Y ]2 = E

[
(X + Y )2

]
− (E[X] + E[Y ])2

= E[X2 + Y 2 + 2XY ]−
(
E[X]2 + E[Y ]2 + 2E[X]E[Y ]

)
= E[X2] + E[Y 2] + 2E[XY ]− E[X]2 −E[Y ]2 − 2E[X]E[Y ]

= E[X2]−E[X]2 + E[Y 2]− E[Y ]2 + 2 (E[XY ]− E[X]E[Y ])

= V [X] + V [X] + 2 (E[XY ]− E[X]E[Y ])

and the property follows from the previous property of the covariance,
namely that Cov(X,Y ) = E[XY ]− E[X]E[Y ]. �
4 (Schwarz Inequality).

Cov(X,Y )2 ≤ V [X]V [Y ].

Equality happens only when (i) there are constants a and b such that Y =
aX + b with probability 1, or (ii) V [X] = 0.

Proof. If V [X] = 0, then X = µX with probability 1, hence Cov(X,Y ) = 0
and our inequality becomes equality. To continue, let us assume V [X] ̸= 0.
For λ ∈ R we set

p(λ) = V [λX+Y ] = V [λX]+V [Y ]+2Cov(λX, Y ) = λ2V [X]+2λCov(X,Y )+V [Y ].

Thus p(λ) is a quadratic polynomial satisfying p(λ) ≥ 0, since it is the
variance of λX + Y . It follows that its discriminant ∆ = 4Cov(X,Y )2 −
4V [X]V [Y ] must be nonpositive, equivalently

Cov(X,Y )2 − V [X]V [Y ] ≤ 0,

which is the inequality we wanted to prove. Now, if we have equality, i.e.
∆ = 0, then p(λ) must have a double real zero, namely

p(λ) = V [X](λ− λ0)
2.

Thus, p(λ0) = 0, i.e. V [λ0X+Y ] = 0, which implies that there is a constant
b such that Y + λ0X = b with probability 1. �
Remark. Proposition 4 above implies that the correlation coefficient satis-
fies

−1 ≤ ρ(X,Y ) ≤ 1.

In the extreme case ρ(X,Y ) = 1 we must have Y = aX + b with probability
1, for some constants a > 0 and b, while if ρ(X,Y ) = −1, then Y = aX + b
with probability 1, for some constants a < 0 and b.
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