MEAN VALUE (EXPECTED VALUE, EXPECTATION)

Definition. Let X : @ — R be a random variable (r.v.) with distribution
function F'(z). The mean value (or expected value or expectation) of
X is the quantity

u= E[X] :/OoxdF($)
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(the integration is in the Riemann-Stieltjes sense) provided the integral is
absolutely convergent. If
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then E[X] does not exist.
The quantity p, = E[X"™] is called the moment of order n or the n-th
moment of X.

Remarks. (i) If X is a discrete r.v. with values x1, z9,z3,... and (mass)
probability function p(z;), then

p=E[X] =Y wjp(zy),

provided the sum is absolutely convergent (the sum extends over all values
x; taken by X). If

> lzslp(as) = o0,
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then E[X] does not exist.
(ii) If X is a continuous r.v. with probability density function f(x), then

p=EX) = [ afa)da
provided the integral is absolutely convergent. If
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then F[X] does not exist.

(iii) If the graph of f(x) (or p(x;)) has an axis of symmetry z = x¢ and
u = E[X] exists, then pu = zp.

* %% Properties of the Mean Value:

All properties below hold as long as the mean values exist.

0. If ¢ is a constant, then Flc] = c.



1. If X <Y, then E[X] < E[Y].

2. (a) Let g(z) be a real-valued function defined on R.
If X is a discrete r.v. with values z1,22,23,... and (mass) probability

function p(z;), then
= Z 9(x;)p(x;)
x;

where the sum extends over all values x; taken by X.
If X is a continuous r.v. with probability density function f(x), then

(b) Let g(x,%) be a real-valued function defined on R2.
If X and Y are discrete r.v.’s with values z1,z2,23,... and y1,92, 93, ...
respectively and joint (mass) probability function p(z;,yy), then

V)= gl un)p(e;, un),

where the sums extend over all values x; of X and all values y;, of Y.
If X and Y are continuous r.v.’s with joint probability density function

f(x,y), then
Elg(X,Y)] = /Oo /OO 9(z,y) f(z,y)dzdy,

3 (Linearity of the Mean Value). If X,Y are r.v.’s and a,b are constants,
then
ElaX +bY] = aE[X] + bE[Y]

(the property tells us that the mean value respects linear operations).
4. If X,Y are independent r.v.’s, then
E[XY] = E[X]|E]Y].
However, if E[XY] = E[X]|E[Y], we cannot conclude that X,Y are inde-
pendent.

Let us justify Property 4 for the case where X and Y are continuous r.v.’s
with a joint probability density function f(x,y) (the discrete case can be
also justified by the appropriate adaptation of the argument).

Since X,Y are independent, we must have f(z,y) = fx(z)fy(y). Thus (by
using Property 2(b) with g(z,y) = xy)

E[XY] = / / 2y f (z, y)dady = / / 2y fx(x) - (y)dady

—/_Ooxfx() /_myfy( )dy = E[X]E[Y].



VARIANCE

Definition. Let X : @ — R be a r.v. such that u = E[X] exists. The
variance of X is the quantity

o’ =VI[X]=E[(X —p)?]

(it may be oo). Also, the quantity o = /V[X] is called the standard
deviation of X.

The variance is a measure of the “spreadness” of the values of X.

* x * Properties of the Variance:

0. By its definition we have that V[X] > 0. If V[X] = 0, then X = p a.s.
(i.e. with probability 1), where p = E[X].

1. V[X] = E[X?] - E[X]%

This property follows by setting X = Y in Property 2 of the covariance,
given below.

An implication of Property 1 is that we always have

E[X?] > E[X]?
and equality happens if and only if V[X] = 0.
2. If a, b are constants, then

ViaX +b] = a*V[X].

Proof. Let pn = E[X]. Then E[aX + b] = ap + b, hence the definition of the
variance gives

V[aX+b] = E [{(aX +b— (ap + b)}ﬂ =E [a*(X — p)?] = a®E [(X — p)?]

and the proof is finished since E [(X — p)?] = V[X] by definition. [

3 (A “Pythagorean Theorem”). If XY are independent r.v.’s, then
VIX +Y]=V[X]+ V[Y].

However, if V[X + Y] = V[X]| + V[Y], we cannot conclude that X,Y are
independent.
This property follows from Property 3 of the covariance, given below.



COVARIANCE

Definition. Let X,Y : 2 — R be r.v.’s, such that the mean values pux =
E[X] and py = E[Y] exist. The covariance of X and Y is the quantity

Cov(X,Y) = E[(X — pux)(Y — py)].

The dimensionless quantity

Cov(X,Y)

PN = v

is called the correlation coefficient of X and Y (it is defined as long as
V[X], V[Y] are finite and # 0). If Cov(X,Y) = 0, we say that X and Y are
uncorrelated.

If Cov(X,Y) > 0, then Y has a tendency to increase when X increases (e.g.,
X = height and Y = weight of a person), while if Cov(X,Y) < 0, then Y has
a tendency to decrease when X increases. The equation Cov(X,Y’) = 0 gives
us a first indication of independence of X and Y (see Property 2 below).

Remark. Notice that
Cov(X, X) = V[X].

* % * Properties of the Covariance:

0 (Symmetry).
Cov(Y, X) = Cov(X,Y)

(this property follows immediately from the definition of the covariance).
1 (Linearity in each argument). If X, X1, X5,Y, Y1, Y, arer.v.’sand a1, az, by, by
are constants, then

Cov(a1X1 + as Xo, Y) = alCov(Xl, Y) + CLQCOV(XQ, Y),

COV(X, b1Y1 + bQYQ) = blcOV(X, Yi) + bQCOV(X, YQ)

(this property follows easily from the definition of the covariance and the
linearity of the mean value).

2. Cov(X,Y) = E[XY]| — E[X|E[Y]
(hence, by Property 4 of the mean value we have that if X and Y are
independent, then Cov(X,Y) = 0).

Proof. Using the linearity of the mean value we get

Cov(X,Y) = E[(X — pux)(Y —py)] = E[XY — pxY — py X + pxpy]
= B[XY] - ux E[Y] — py E[X] + pxpy



and the property follows since pxy = E[X] and uy = E[Y]. |
3.
VIX+Y]=V[X]+V[Y]+2Cov(X,Y).
Proof. Using Property 1 of the variance and the linearity of the mean value
we get,
(X+Y)?]-EX+YP=E[(X+Y)*] —(

X2+ Y2 +2XY] - (E[X]* + E[Y]* + ]
X% + E[Y? +2E[XY] - E[X]? - E[Y])? - 2E

—~ E[X*+ E[Y? - E[Y* +2(E[XY] - E[X]E[Y])
X+ V[X]+2(E[XY] - E[X]|E[Y]

~—

and the property follows from the previous property of the covariance,
namely that Cov(X,Y) = E[XY]| — E[X]|E[Y]. [ |

4 (Schwarz Inequality).
Cov(X,Y)? < V[X]VI]Y].
Equality happens only when (i) there are constants a and b such that ¥ =
aX + b with probability 1, or (ii) V[X] = 0.
Proof. 1f V[X] = 0, then X = ux with probability 1, hence Cov(X,Y) =0

and our inequality becomes equality. To continue, let us assume V[X] # 0.
For A € R we set

p(A) = VIAX+Y] = VIAX]+V[V]+2 Cov(AX,Y) = A2V [X]4+2ACov(X, Y)+V[Y].

Thus p(A) is a quadratic polynomial satisfying p(A) > 0, since it is the
variance of AX + Y. It follows that its discriminant A = 4 Cov(X,Y)? —
4V[X]V[Y] must be nonpositive, equivalently

Cov(X,Y)? - V[X]V]Y] <0,

which is the inequality we wanted to prove. Now, if we have equality, i.e.
A =0, then p(\) must have a double real zero, namely

p(N) = VXA = Xo)*.
Thus, p(Ao) = 0, i.e. V[AoX +Y] = 0, which implies that there is a constant

b such that Y + A\ X = b with probability 1. |
Remark. Proposition 4 above implies that the correlation coefficient satis-
fies

-1<p(X,Y) <1

In the extreme case p(X,Y) = 1 we must have Y = aX + b with probability
1, for some constants a > 0 and b, while if p(X,Y) = —1, then Y =aX 4+ b
with probability 1, for some constants a < 0 and b.



