SOME BASIC FACTS FROM LINEAR ALGEBRA

1 Vector Spaces

Definition 1. A *vector space* (or a *linear space*) *X* over a *field* \mathfrak{F} (the elements of F are called *scalars*) is a set of elements called *vectors* equipped with two (binary) operations, namely *vector addition* (the sum of two vectors $\mathbf{x}, \mathbf{y} \in X$ is denoted by $\mathbf{x} + \mathbf{y}$) and scalar multiplication (the scalar product of a scalar $a \in \mathfrak{F}$ and a vector $\mathbf{x} \in X$ is usually denoted by *ax*; the notation *xa* is rare) satisfying the following postulates:

1 (Closure). If $\mathbf{x}, \mathbf{y} \in X$ and $a \in \mathfrak{F}$, then $\mathbf{x} + \mathbf{y} \in X$ and $a\mathbf{x} \in X$.

2 (Associativity for +). $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$, for all $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in X.

3 (Commutativity for +). $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$, for all \mathbf{x}, \mathbf{y} in X.

4 (Identity for Addition). There is a vector $\mathbf{O} \in X$ such that $\mathbf{x} + \mathbf{O} = \mathbf{x}$, for all $\mathbf{x} \in X$.

5 (Additive Inverse). For any $\mathbf{x} \in X$ there is a vector in *X*, denoted by $-\mathbf{x}$, such that $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$.

6 ("Associativity" for Scalar Multiplication). $a(bx) = (ab)x$, for all $x \in X$, $a, b \in \mathfrak{F}$.

7 (Identity for Scalar Multiplication). For any $\mathbf{x} \in X$ we have that $1\mathbf{x} = \mathbf{x}$.

8 (Distributive Laws). $a(\mathbf{x} + \mathbf{y}) = a\mathbf{x} + a\mathbf{y}$ and $(a + b)\mathbf{x} = a\mathbf{x} + b\mathbf{x}$, for all $\mathbf{x}, \mathbf{y} \in X$ and $a, b \in \mathfrak{F}$.

The sum $\mathbf{x} + (-\mathbf{y})$ is denoted by $\mathbf{x} - \mathbf{y}$. For a scalar $a \neq 0$ we can also write \mathbf{x}/a instead of $a^{-1}\mathbf{x}$.

The proof of the following proposition is left as an exercise:

Proposition 1. Suppose *X* is a vector space. Then

9 (Cancellation Law). Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in X$. If $\mathbf{x} + \mathbf{y} = \mathbf{x} + \mathbf{z}$, then $\mathbf{y} = \mathbf{z}$. **10** (Uniqueness of **O** and $-x$). If $x + O' = x$, for some $x \in X$, then $O' = O$; if, for some $\mathbf{x} \in X$, $\mathbf{x} + \mathbf{z} = \mathbf{0}$, then $\mathbf{z} = -\mathbf{x}$. **11.** $0\mathbf{x} = \mathbf{O}$, for all $\mathbf{x} \in X$. **12.** $(-1)\mathbf{x} = -\mathbf{x}$, for all $\mathbf{x} \in X$.

We notice that Postulate 3 (the commutativity for vector addition) is redundant. Actually the distributive laws and Postulate 7 yield

$$
(1+1)(x+y) = (1+1)x + (1+1)y = x + x + y + y
$$

and also

$$
(1+1)(x+y) = 1(x+y) + 1(x+y) = x+y+x+y.
$$

Hence, the cancellation law implies $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ (!)

In what follows the field of scalars \mathfrak{F} will always be either the field of real numbers $\mathbb R$ or the field of complex numbers $\mathbb C$.

Example 1 (examples of vector spaces). (i) $\mathbb{R}^n = \{(x_1, \ldots, x_n) : x_j \in \mathbb{R}\}\$ over \mathbb{R} , and $\mathbb{C}^n = \{(z_1, \ldots, z_n) : z_j \in \mathbb{C}\}\)$ over \mathbb{C} (conventions: $\mathbb{R}^0 = \mathbb{C}^0 =$ $\{0\}$, $\mathbb{R}^1 = \mathbb{R}$, $\mathbb{C}^1 = \mathbb{C}$). Notice, also, that $\mathbb C$ is a vector space over \mathbb{R} .

(ii) The set of all polynomials $p(x)$ of degree $\leq n$ with complex coefficients (convention: $\deg 0 = -\infty$). The field of scalars is \mathbb{C} .

(iii) The set $C[a, b]$ of all continuous complex-valued functions $f(x), x \in [a, b]$. The field of scalars is C.

Definition 2. A *subspace* S of a vector space X is a set such that:

(i) *S ⊂ X*; (ii) if $\mathbf{x}, \mathbf{y} \in S$, then $a\mathbf{x} + b\mathbf{y} \in S$, for all scalars a, b .

Notice that a subspace of a vector space is itself a vector space over the same field of scalars. Given a vector space *X*, the spaces *X* and *{***O***}* are the *trivial subspaces* of *X*. Any other subspace of *X* is a *proper subspace*.

If ${S_\alpha}_{\alpha \in J}$ is any family of subspaces of a vector space X, then the intersection $\bigcap_{\alpha \in J} S_{\alpha}$ is also a subspace of *X* (convention: an empty intersection equals *X*).

Definition 3. Suppose x_1, \ldots, x_k are vector of X. The set of all linear combinations $c_1 \mathbf{x}_1 + \cdots + c_k \mathbf{x}_k$ is called the *linear span of* $\mathbf{x}_1, \ldots, \mathbf{x}_k$ and it is denoted by $\langle \mathbf{x}_1, \ldots, \mathbf{x}_k \rangle$ (convention: $\langle \emptyset \rangle = \{ \mathbf{O} \}$).

Notice that $\langle \mathbf{x}_1, \ldots, \mathbf{x}_k \rangle$ is a subspace of X; in fact, this is a way of constructing subspaces.

Definition 4. A family of vectors $\{x_{\alpha}\}_{{\alpha}\in J}$ in a vector space X is said to be *linearly independent* when each relation of the form

$$
c_1\mathbf{x}_{\alpha_1} + \cdots + c_n\mathbf{x}_{\alpha_n} = \mathbf{O}, \qquad \mathbf{x}_{\alpha_j} \in {\{\mathbf{x}_{\alpha}\}}_{\alpha \in J}
$$

(where the c_j 's are scalars), implies

$$
c_1=\cdots=c_n=0.
$$

If the family $\{x_\alpha\}_{\alpha \in J}$ is not linearly independent, then it is called *linearly dependent*.

If the family $\{x_1, \ldots, x_n\}$ is linearly (in)dependent, we say that the vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are linearly (in)dependent.

Notice that if $O \in {\{\mathbf{x}_{\alpha}\}}_{\alpha \in J}$, then ${\{\mathbf{x}_{\alpha}\}}_{\alpha \in J}$ is linearly dependent. The family $\{x\}$ consisting of just one vector $x \neq 0$ is linearly independent.

If **x**, **y** are linearly dependent, then $y = c\mathbf{x}$, for some scalar *c*, or $\mathbf{x} = c'\mathbf{y}$, for some scalar *c ′* .

Example 2. In the vector space of continuous functions $C[0, 1]$ the set ${e^x, 1, x, x^2, \ldots, x^n, \ldots}$, where

$$
e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!},
$$

is linearly independent.

Definition 5. The *dimension* of a vector space X , written dim X , is the largest number of linearly independent vectors in *X*, if that number is finite (hence, in particular we have dim $\{O\} = 0$). The dimension of X is said to be infinite $(\dim X = \infty)$ if there exist linearly independent vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$ in *X*, for arbitrarily large *n*.

> dim *< ∞ ←→* Linear Algebra*,* dim = *∞ ←→* Functional Analysis*.*

Example 3. dim $\mathbb{R}^n = n$, dim $\mathbb{C}^n = n$, dim $C[0, 1] = \infty$. Notice that \mathbb{C}^n viewed as a vector space over R has dimension 2*n*. Unless otherwise stated \mathbb{C}^n is considered a vector space over \mathbb{C} .

Definition 6. A set of vectors e_1, \ldots, e_n is said to be a *basis* for *X*, if every vector \bf{x} in \bf{X} can be written uniquely as

$$
\mathbf{x} = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n, \qquad x_j \in \mathfrak{F}.
$$

If the above equation holds, then we say that **x** is represented by the column (vector)

with respect to the basis $\mathbf{e}_1, \ldots, \mathbf{e}_n$.

Remark 1. If *X* has a basis of *n* vectors e_1, \ldots, e_n , then these basis vectors are linearly independent. This is because $\mathbf{O} = 0\mathbf{e}_1 + \cdots + 0\mathbf{e}_n$ uniquely.

The next two theorems follow immediately from the previous discussion.

Theorem 1. If dim $X = n$ and e_1, \ldots, e_n are linearly independent vectors, then $\mathbf{e}_1, \ldots, \mathbf{e}_n$ is a basis.

Theorem 2. If e_1, \ldots, e_n is a basis for *X*, then dim $X = n$.

CAUTION. If dim $X = \infty$, then the notion of a basis of *X* becomes tricky!

Example 4. (i) The vectors

$$
\mathbf{e}_1 = (1, 0, ..., 0), \mathbf{e}_2 = (0, 1, ..., 0), ..., \mathbf{e}_n = (0, 0, ..., 1)
$$

form a basis for both \mathbb{R}^n and \mathbb{C}^n .

(ii) Let X be the vector space of polynomials of degree $\leq n$ (with real or complex coefficients). Then the polynomials

 $1, x, x^2, \ldots, x^n$

form a basis for *X* and hence dim $X = n + 1$.

2 Linear Operators

Definition 7. Let *X* and *Y* be vector spaces over the same field \mathfrak{F} . A *linear operator* \mathcal{L} from *X* to *Y* is a function $\mathcal{L}: X \rightarrow Y$ such that

(i) $\mathcal{L}(\mathbf{u} + \mathbf{v}) = \mathcal{L}\mathbf{u} + \mathcal{L}\mathbf{v}$, for all $\mathbf{u}, \mathbf{v} \in X$ and

(ii) $\mathcal{L}(a\mathbf{u}) = a\mathcal{L}\mathbf{u}$, for all $\mathbf{u} \in X$, $a \in \mathfrak{F}$.

In many cases we have $Y = X$; then we say that $\mathcal L$ is a linear operator (acting) on *X*. An important example is the *identity operator* on *X*, namely the operator *I* which satisfies $I\mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in X$.

Assume $n = \dim X$ and $m = \dim Y$. Let $\mathbf{e}_1, \ldots, \mathbf{e}_n$ be a basis for X and f_1, \ldots, f_m be a basis for *Y*. Suppose

$$
\mathcal{L}\mathbf{e}_1 = a_{11}\mathbf{f}_1 + a_{21}\mathbf{f}_2 + \cdots + a_{m1}\mathbf{f}_m
$$

\n
$$
\mathcal{L}\mathbf{e}_2 = a_{12}\mathbf{f}_1 + a_{22}\mathbf{f}_2 + \cdots + a_{m2}\mathbf{f}_m
$$

\n
$$
\vdots
$$

\n
$$
\mathcal{L}\mathbf{e}_1 = a_{1n}\mathbf{f}_1 + a_{2n}\mathbf{f}_2 + \cdots + a_{mn}\mathbf{f}_m,
$$

then we say that the *matrix* of \mathcal{L} with respect to the bases e_1, \ldots, e_n and $\mathbf{f}_1, \ldots, \mathbf{f}_m$ is the $m \times n$ array

$$
[\mathcal{L}]_{\mathbf{e},\mathbf{f}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.
$$

Thus, if $\mathbf{x} = x_1 \mathbf{e}_1 + \cdots + x_n \mathbf{e}_n$, then the action of $\mathcal L$ on \mathbf{x} is described by the matrix multiplication of $[\mathcal{L}]_{\mathbf{e}, \mathbf{f}}$ by the column

$$
\left[\begin{array}{c}x_1\\ \vdots\\ x_n\end{array}\right].
$$

Furthermore, if $\mathcal{M}: Y \to Z$ is another linear operator, and $\mathbf{g}_1, \ldots, \mathbf{g}_p$ is a basis for the vector space *Z* (hence dim $Z = p$), then the $p \times n$ matrix of the composition $ML := M \circ L$ with respect to the bases e_1, \ldots, e_n and $\mathbf{g}_1, \ldots, \mathbf{g}_p$ satisfies

$$
\left[\mathcal{ML}\right]_{\mathbf{e},\mathbf{g}}=\left[\mathcal{M}\right]_{\mathbf{f},\mathbf{g}}\left[\mathcal{L}\right]_{\mathbf{e},\mathbf{f}},
$$

where the right-hand side is the standard matrix product of the matrices $[\mathcal{M}]_{\mathbf{f},\mathbf{g}}$ and $[\mathcal{L}]_{\mathbf{e},\mathbf{f}}$.

3 Eigenvalues and Eigenvectors

Definition 8. Let \mathcal{L} be a linear operator on a vector space X over \mathbb{C} and $\mathbf{v} \neq \mathbf{O}$ a vector such that

$$
\mathcal{L}\mathbf{v} = \lambda \mathbf{v}, \qquad \text{where} \ \lambda \in \mathbb{C}.
$$

Then, we say that **v** is an *eigenvector of* \mathcal{L} *with eigenvalue* λ . In the case of a finite dimensional vector space X, the *spectrum* $\sigma(\mathcal{L})$ of \mathcal{L} is the set of eigenvalues of \mathcal{L} . If \mathcal{L} possesses *n* linearly independent eigenvectors, where $n = \dim X$, we say that $\mathcal L$ is *diagonalizable*.

Suppose dim $X = n$ and \mathcal{L} has *n* linearly independent eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$ respectively (these eigenvalues need not be distinct). Then, if we use the eigenvectors of $\mathcal L$ as a basis for X , it is very easy to express the action of \mathcal{L} on any vector $\mathbf{x} \in X$:

$$
\text{If } \mathbf{x} = x_1 \mathbf{v}_1 + \dots + x_n \mathbf{v}_n, \quad \text{then } \mathcal{L} \mathbf{x} = \lambda_1 x_1 \mathbf{v}_1 + \dots + \lambda_n x_n \mathbf{v}_n.
$$

Essentially $\mathcal L$ becomes a multiplication operator, which is a huge simplification of the action of \mathcal{L} . Furthermore, if $f(z)$ is any polynomial in z (or even a much more general function, defined on the spectrum of \mathcal{L}), then $f(\mathcal{L})$ is an operator on *X* and its action is described as

$$
f(\mathcal{L})\mathbf{x} = f(\lambda_1)x_1\mathbf{v}_1 + \cdots + f(\lambda_n)x_n\mathbf{v}_n.
$$

It also follows that the matrix of \mathcal{L} with respect to the basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is diagonal:

$$
[\mathcal{L}]_{\mathbf{v}} = \text{diag} [\lambda_1, \dots, \lambda_n] := \left[\begin{array}{cccc} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{array}\right].
$$

More generally,

$$
[f(\mathcal{L})]_{\mathbf{v}} = \text{diag}[f(\lambda_1), \dots, f(\lambda_n)] = \begin{bmatrix} f(\lambda_1) & 0 & \cdots & 0 \\ 0 & f(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f(\lambda_n) \end{bmatrix}.
$$

Unfortunately, not all linear operators on an *n*-th dimensional vector space are diagonalizable. In other words there are operators which possess less that *n* linear independent eigenvectors. In such anomalous cases, we add to set of the eigenvectors some other vectors, called *generalized eigenvectors of level* $m (m = 2, 3, \ldots)$, satisfying

$$
(\mathcal{L} - \lambda \mathcal{I})^m \mathbf{g} = \mathbf{O}, \quad (\mathcal{L} - \lambda \mathcal{I})^{m-1} \mathbf{g} \neq \mathbf{O}
$$

(λ is necessarily an eigenvalue of \mathcal{L}), so that the eigenvectors of \mathcal{L} together with these generalized eigenvectors form a basis for X and the matrix of $\mathcal L$ with respect to this basis is in *Jordan canonical form*. Notice that if *L* possesses generalized eigenvectors of level $m \geq 2$, associated to some eigenvalue

λ, then it also possesses generalized eigenvectors of levels *m−*1*, m−*2*, . . . ,* 2*,* 1, associated to the same eigenvalue λ , where "generalized eigenvectors of level 1" means pure eigenvector. Needless to say that diagonalizable operators do not possess generalized eigenvectors.

4 Inner Product Spaces

Definition 9. An *inner product* (*vector*) *space* (or *pre-Hilbert space*) is a vector space X equipped with an *inner product* (\cdot, \cdot) , namely a (binary) operation from $X \times X$ to $\mathfrak F$ (where, as usual, the field $\mathfrak F$ of scalars is either $\mathbb R$ or $\mathbb C$) such that

(i) $(\mathbf{x}, \mathbf{x}) \geq 0$ for every $\mathbf{x} \in X$ and $(\mathbf{x}, \mathbf{x}) = 0$ if and only if $\mathbf{x} = \mathbf{0}$. (ii) $(\mathbf{x} + \mathbf{y}, \mathbf{z}) = (\mathbf{x}, \mathbf{z}) + (\mathbf{y}, \mathbf{z})$ for every $\mathbf{x}, \mathbf{y}, \mathbf{z} \in X$. (iii) $(a\mathbf{x}, \mathbf{y}) = a(\mathbf{x}, \mathbf{y})$ for every $\mathbf{x}, \mathbf{y} \in X$ and $a \in \mathfrak{F}$. (iv) $(\mathbf{y}, \mathbf{x}) = (\mathbf{x}, \mathbf{y})$ for every $\mathbf{x}, \mathbf{y} \in X$, where (\mathbf{x}, \mathbf{y}) denotes the complex conjugate of (\mathbf{x}, \mathbf{y}) (thus, if $\mathfrak{F} = \mathbb{R}$, then $(\mathbf{y}, \mathbf{x}) = (\mathbf{x}, \mathbf{y})$).

Exercise 1. Show that $(\mathbf{x}, \mathbf{O}) = 0$ for all $\mathbf{x} \in X$.

Theorem 3 (the Schwarz inequality)**.** If **x** and **y** are vectors in an inner product space *X*, then

$$
|(x,y)|\leq \sqrt{(x,x)}\,\sqrt{(y,y)}.
$$

For a proof see Remark 3 below.

A consequence of Definition 1 and the Schwarz inequality is that the inner product induces a *norm* on *X*:

$$
\|\mathbf{x}\| := \sqrt{(\mathbf{x}, \mathbf{x})}, \qquad \mathbf{x} \in X. \tag{4.1}
$$

Reminder. A *norm* on a vector space *X* is a function $\| \cdot \|$ from *X* to R which satisfies:

(i) (nonnegativity) $\|\mathbf{x}\| > 0$ for every $\mathbf{x} \in X$ and $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{O}$.

(ii) (positive homogeneity) $\|a\mathbf{x}\| = |a|\|\mathbf{x}\|$ for every $\mathbf{x} \in X$ and $a \in \mathfrak{F}$.

(iii) (the triangle inequality) $\|\mathbf{x} + \mathbf{y}\| \geq \|\mathbf{x}\| + \|\mathbf{y}\|$ for every $\mathbf{x}, \mathbf{y} \in X$.

A vector space equipped with a norm is called *normed linear space*. If *X* is a normed linear space, its norm may not come from an inner product (i.e. there may not exist an inner product for which (4.1) is satisfied by the norm

of *X*). In fact, a norm *∥ · ∥* on a vector space *X* is induced by an inner product if and only if it satisfies the *parallelogram law*:

$$
\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2 \quad \text{for all } \mathbf{x}, \mathbf{y} \in X.
$$

In this case, if $\mathfrak{F} = \mathbb{R}$, the inner product is given by the formula

$$
2(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x}\|^2 - \|\mathbf{y}\|^2,
$$

while if $\mathfrak{F} = \mathbb{C}$, the inner product is given by the so-called *polarization identity*

$$
4(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} + \mathbf{y}||^{2} - ||\mathbf{x} - \mathbf{y}||^{2} - i(||\mathbf{x} + i\mathbf{y}||^{2} - ||\mathbf{x} - i\mathbf{y}||^{2}).
$$

Example 5 (examples of inner products and norms). (i) Let $\mathbf{z} = (z_1, \ldots, z_n)$ and $\mathbf{w} = (w_1, \ldots, w_n)$ be two arbitrary vectors of \mathbb{C}^n . Then, the standard *dot product* $\mathbf{z} \cdot \mathbf{w}$ of \mathbf{z} and \mathbf{w} given by

$$
\mathbf{z} \cdot \mathbf{w} := \sum_{j=1}^n z_j \overline{w_j}
$$

is an example of an inner product. The induced norm is

$$
\|\mathbf{z}\|_2 := \sqrt{\sum_{j=1}^n |z_j|^2}
$$

(if $z \in \mathbb{R}^n$, then the above norm is the length of **z**). Other typical examples of norms of \mathbb{C}^n are

$$
\|\mathbf{z}\|_{p} := \left(\sum_{j=1}^{n} |z_j|^p\right)^{1/p}, \qquad 1 \le p < \infty,
$$

and

$$
\|\mathbf{z}\|_{\infty} := \max_{1 \leq j \leq n} |z_j|.
$$

Among the above norms, only $\|\cdot\|_2$ is induced by an inner product. (ii) A typical inner product on the space $C[a, b]$ of the continuous complexvalued functions defined on [*a, b*] is

$$
(f,g) = \int_{a}^{b} f(x)\overline{g(x)}dx.
$$

The induced norm is

$$
||f||_2 := \sqrt{\int_a^b |f(x)|^2 dx}.
$$

Other typical examples of norms of *C*[*a, b*] are

$$
||f||_p := \left[\int_a^b |f(x)|^p dx \right]^{1/p}, \qquad 1 \le p < \infty,
$$

and

$$
||f||_{\infty} := \sup_{x \in [a,b]} |f(x)| = \max_{x \in [a,b]} |f(x)|.
$$

Again, among the above norms, only *∥ · ∥*² is induced by an inner product.

Let us point out that if X is an inner product space, then is (natural) norm is the norm given by (4.1).

In an inner product space over R, thanks to Schwarz inequality, we can define an *angle* between two (nonzero) vectors: Let $\mathbf{x} \neq \mathbf{O}$ and $\mathbf{y} \neq \mathbf{O}$. Their angle $\theta \in [0, \pi]$ is defined by

$$
\cos\theta:=\frac{(\mathbf{x},\mathbf{y})}{\|\mathbf{x}\|\|\mathbf{y}\|}.
$$

In particular, if $(\mathbf{x}, \mathbf{y}) = 0$, we say that the vectors **x** and **y** are *orthogonal* (or *perpendicular*; sometimes, the notation $\mathbf{x} \perp \mathbf{y}$ is used).

⋆ Orthogonality can be also defined in the same way for inner product spaces over C. Furthermore, the standard convention is that the vector **O** is orthogonal to all vectors.

Definition 10. A collection of vectors $\{e_{\alpha}\}_{{\alpha}\in J}$ in an inner product space *X* is called an *orthonormal* $(O-N)$ *set* if $(e_\alpha, e_\alpha) = 1$ for all $\alpha \in J$, and $(\mathbf{e}_{\alpha}, \mathbf{e}_{\beta}) = 0$ if $\alpha \neq \beta$. In abbreviated form:

$$
(\mathbf{e}_{\alpha}, \mathbf{e}_{\beta}) = \delta_{\alpha\beta}
$$
, for all $\alpha, \beta \in J$,

where $\delta_{\alpha\beta}$ is the *Kronecker delta* which is equal to 1 if $\alpha = \beta$ and 0 if $\alpha \neq \beta$.

Theorem 4. If $\{e_{\alpha}\}_{{\alpha}\in J}$ is an orthonormal set, then $\{e_{\alpha}\}_{{\alpha}\in J}$ is linear independent.

Proof. Assume $c_1 \mathbf{e}_{\alpha_1} + \cdots + c_n \mathbf{e}_{\alpha_n} = \mathbf{O}$ and take the inner product of both sides with \mathbf{e}_{α_j} . Then, the orthonormality of $\{\mathbf{e}_{\alpha}\}_{{\alpha \in J}}$ implies immediately that $c_j = 0$.

 \star **Remark 2.** Let e_1, \ldots, e_n be an orthonormal basis of the space X (hence $\dim X = n$. If

$$
\mathbf{x} = x_1 \mathbf{e}_1 + \cdots + x_n \mathbf{e}_n,
$$

then $x_j = (\mathbf{x}, \mathbf{e}_j)$, $j = 1, 2, \dots, n$. Furthermore, if $\mathcal L$ is a linear operator on *X* and $[\mathcal{L}]_e = [a_{jk}]_{1 \le j,k \le n}$ is its $n \times n$ matrix with respect to the O-N basis $\mathbf{e}_1, \ldots, \mathbf{e}_n$, then

$$
a_{jk} = (\mathcal{L} \mathbf{e}_k, \mathbf{e}_j), \qquad 1 \le j, k \le n.
$$

Given the linearly independent vectors $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ in an inner product space *X*, there is a useful procedure, called *Gram-Schmidt orthogonalization*, for constructing an orthonormal set e_1, e_2, \ldots, e_n , such that $\langle x_1, \ldots, x_k \rangle =$ $\langle \mathbf{e}_1, \ldots, \mathbf{e}_k \rangle$ for $k = 1, 2, \ldots, n$, namely the vectors $\mathbf{x}_1, \ldots, \mathbf{x}_k$ and $\mathbf{e}_1, \ldots, \mathbf{e}_k$ span the same subspace of *X*, for all $k = 1, 2, \ldots, n$ (recall Definition 3):

$$
\mathbf{w}_1 := \mathbf{x}_1, \qquad \mathbf{e}_1 := \mathbf{w}_1 / ||\mathbf{w}_1||, \n\mathbf{w}_2 := \mathbf{x}_2 - (\mathbf{x}_2, \mathbf{e}_1)\mathbf{e}_1, \qquad \mathbf{e}_2 := \mathbf{w}_2 / ||\mathbf{w}_2||, \n\vdots \qquad \vdots \n\mathbf{w}_n := \mathbf{x}_n - \sum_{j=1}^{n-1} (\mathbf{x}_n, \mathbf{e}_j) \mathbf{e}_j, \qquad \mathbf{e}_n := \mathbf{w}_n / ||\mathbf{w}_n||.
$$

The same procedure works for a countably infinite family of linearly independent vectors $\{x_i\}_{i\in\mathbb{N}}$, in which case it produces a (countably infinite) orthonormal set $\{\mathbf e_j\}_{j\in\mathbb N}$, such that $\langle \mathbf x_1,\ldots,\mathbf x_k\rangle = \langle \mathbf e_1,\ldots,\mathbf e_k\rangle$ for all $k\in\mathbb N$.

Theorem 5 (Pythagorean theorem). Let e_1, \ldots, e_n be orthonormal vectors in an inner product space *X*. Then, for all $\mathbf{x} \in X$,

$$
\|\mathbf{x}\|^2 = \sum_{j=1}^n |(\mathbf{x}, \mathbf{e}_j)|^2 + \left\|\mathbf{x} - \sum_{j=1}^n (\mathbf{x}, \mathbf{e}_j) \mathbf{e}_j\right\|^2.
$$

In particular we have the inequality (called *Bessel's inequality*)

$$
\|\mathbf{x}\|^2 \geq \sum_{j=1}^n |(\mathbf{x}, \mathbf{e}_j)|^2,
$$

which becomes equality if and only if **x** lies in the linear span of e_1, \ldots, e_n .

The idea of the proof is very simple: Notice that, since each \mathbf{e}_j , $j = 1, \ldots, n$, is orthogonal to $\mathbf{x} - \sum_{j=1}^{n} (\mathbf{x}, \mathbf{e}_j) \mathbf{e}_j$, we have that the vectors

$$
\mathbf{x}_1 := \sum_{j=1}^n (\mathbf{x}, \mathbf{e}_j) \mathbf{e}_j \quad \text{and} \quad \mathbf{x}_2 := \mathbf{x} - \sum_{j=1}^n (\mathbf{x}, \mathbf{e}_j) \mathbf{e}_j \quad \text{are orthogonal.}
$$

Thus, $||\mathbf{x}||^2 = (\mathbf{x}, \mathbf{x}) = (\mathbf{x}_1 + \mathbf{x}_2, \mathbf{x}_1 + \mathbf{x}_2) = (\mathbf{x}_1, \mathbf{x}_1) + (\mathbf{x}_2, \mathbf{x}_2).$

Remark 3. We can use Theorem 5 to prove the Schwarz inequality (see Theorem 3): Assume $y \neq 0$ (the case $y = 0$ is trivial). Set $e_1 := y / ||y||$, so that $\{e_1\}$ is an orthonormal set, and apply Bessel's inequality to any $\mathbf{x} \in X$ using $\{e_1\}$ $(n = 1)$:

$$
\|{\bf x}\|^2 \geq |({\bf x},{\bf e}_1)|^2 = |({\bf x},{\bf y}/\|{\bf y}\|)|^2 = \frac{|({\bf x},{\bf y})|^2}{\|{\bf y}\|^2},
$$

from which $|(\mathbf{x}, \mathbf{y})| \leq ||\mathbf{x}|| ||\mathbf{y}||$ follows.

5 Adjoints

Definition 11. Let \mathcal{L} be a linear operator on an inner product space X over C. The *adjoint operator L [∗] of L* is the operator satisfying

$$
(\mathcal{L}\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \mathcal{L}^* \mathbf{y})
$$
 for all $\mathbf{x}, \mathbf{y} \in X$.

Let $\mathbf{e}_1, \ldots, \mathbf{e}_n$ be an orthonormal basis of *X*. If $A = [\mathcal{L}]_e = [a_{jk}]_{1 \leq j,k \leq n}$ is the matrix of \mathcal{L} with respect to the basis $\mathbf{e}_1, \ldots, \mathbf{e}_n$, then by the Remark 2 we have that the matrix $[\mathcal{L}^*]_e$ of \mathcal{L}^* is A^H , namely

$$
[\mathcal{L}^*]_{\mathbf{e}} = A^H = [\overline{a_{kj}}]_{1 \le j,k \le n}
$$

(recall that $A^H := \overline{A}^\top$, where A^\top is the *transpose* of *A*).

Proposition 2. The adjoint operator satisfies: (i) $({{\mathcal{L}}^*})^* = {{\mathcal{L}}};$ (ii) $(L + M)^* = L^* + M^*$; (iii) $(\mathcal{LM})^* = \mathcal{M}^*\mathcal{L}^*$.

Example 6. If $\mathcal{M} = \lambda \mathcal{I}$, where λ is some complex number and \mathcal{I} is the identity operator, then $\mathcal{M}^* = \overline{\lambda} \mathcal{I}$.

 \star **Definition 12.** (i) Let \mathcal{L} be a linear operator on an inner product space X over C. If

$$
\mathcal{LL}^*=\mathcal{L}^*\mathcal{L},
$$

i.e. if $\mathcal L$ commutes with its adjoint, then $\mathcal L$ is called *normal operator*. Likewise, if a square matrix *A* satisfies

$$
AA^H = A^H A,
$$

then *A* is called *normal matrix*.

(ii) If $\mathcal{LL}^* = \mathcal{L}^* \mathcal{L} = \mathcal{I}$, then \mathcal{L} is called *unitary operator*. Likewise if a square matrix *A* satisfies $A\overline{A}^H = I_n$, where $I_n = \text{diag}[1, 1, \ldots, 1]$ is the *identity matrix*, $(I_n$ is the matrix of *I* acting on an *n*-dimensional space *X*), then it is called *unitary matrix* (notice that for matrices the equation $\overrightarrow{AA}^H = I_n$ implies also $A^{\tilde{H}}A = I_n$). A unitary matrix with real elements is called *orthogonal*.

(iii) If $\mathcal{L}^* = \mathcal{L}$, then the operator \mathcal{L} is called *self-adjoint*. Likewise if a square matrix *A* satisfies $A^H = A$, then *A* is called *Hermitian matrix*. A Hermitian matrix with real elements is *symmetric*, i.e. it satisfies $A = A^T$.

Of course, unitary operators and self-adjoint operators are special cases of normal operators.

 \star **Theorem 6.** (i) Let \mathcal{L} be a normal operator on a space X. Then

 $(\mathcal{L}^* \mathbf{x}, \mathcal{L}^* \mathbf{y}) = (\mathcal{L} \mathbf{x}, \mathcal{L} \mathbf{y}),$ hence $\|\mathcal{L}^* \mathbf{x}\| = \|\mathcal{L} \mathbf{x}\|$.

(ii) Let U be a unitary operator on a space X. Then

$$
(U\mathbf{x}, U\mathbf{y}) = (\mathbf{x}, \mathbf{y}),
$$
 hence $||U\mathbf{x}|| = ||\mathbf{x}||.$

Proof. (i) Since $(L^*)^* = \mathcal{L}$ and $\mathcal{LL}^* = L^* \mathcal{L}$ we have

$$
(\mathcal{L}^* \mathbf{x}, \mathcal{L}^* \mathbf{y}) = (\mathbf{x}, \mathcal{L} \mathcal{L}^* \mathbf{y}) = (\mathbf{x}, \mathcal{L}^* \mathcal{L} \mathbf{y}) = (\mathcal{L} \mathbf{x}, \mathcal{L} \mathbf{y}).
$$

(ii) Since $\mathcal{U}^*\mathcal{U} = \mathcal{I}$ we have

$$
(\mathcal{U}\mathbf{x},\mathcal{U}\mathbf{y})=(\mathbf{x},\mathcal{U}^*\mathcal{U}\mathbf{y})=(\mathbf{x},\mathbf{y}).
$$

П

 \star *Theorem 7.* Let $\lambda \in \mathbb{C}$ be an eigenvalue of a <u>normal</u> operator \mathcal{L} with corresponding eigenvector **v**, namely \mathcal{L} **v** = λ **v**. Then

$$
\mathcal{L}^*\mathbf{v}=\bar{\lambda}\mathbf{v}.
$$

Proof. Given that $\mathcal L$ is normal, Proposition 2(ii) and Example 6 imply that so is $(L - \lambda I)$. Thus, by Theorem 6(i) we have

$$
\|(\mathcal{L} - \lambda \mathcal{I})^* \mathbf{v}\| = \|(\mathcal{L} - \lambda \mathcal{I})\mathbf{v}\| = \|\mathcal{L}\mathbf{v} - \lambda \mathbf{v}\| = \|\mathbf{O}\| = 0,
$$

Hence, $(L - \lambda I)^*$ **v** = **O**. The rest follows by invoking again Proposition 2(ii) and Example 6. *⋆⋆***Theorem 8.** Let *L* be a normal operator and assume

$$
\mathcal{L} \mathbf{v} = \lambda \mathbf{v}, \qquad \mathcal{L} \mathbf{w} = \mu \mathbf{w}, \qquad \lambda \neq \mu.
$$

Then, $(\mathbf{v}, \mathbf{w}) = 0$.

Proof. By Theorem 7 we have $\mathcal{L}^* \mathbf{w} = \bar{\mu} \mathbf{w}$. Hence,

$$
\lambda(\mathbf{v},\mathbf{w})=(\lambda\mathbf{v},\mathbf{w})=(\mathcal{L}\mathbf{v},\mathbf{w})=(\mathbf{v},\mathcal{L}^*\mathbf{w})=(\mathbf{v},\bar{\mu}\mathbf{w})=\mu(\mathbf{v},\mathbf{w}).
$$

Therefore, $(\mathbf{v}, \mathbf{w}) = 0$.

 $\star \star$ **Theorem 9.** A normal operator \mathcal{L} on a finite dimensional space X is diagonalizable.

Proof. Suppose \mathcal{L} is not diagonalizable. Then, it possess generalized eigenvectors. In particular, there is a **v** \in *X* such that

$$
(\mathcal{L} - \lambda \mathcal{I})^2 \mathbf{v} = \mathbf{O} \quad \text{and} \quad (\mathcal{L} - \lambda \mathcal{I}) \mathbf{v} \neq \mathbf{O}.
$$

If this is the case, since by Proposition 2(ii) and Example 6 the operator $(L - \lambda I)$ is normal, Theorem 6(i) implies

$$
0 = ||(\mathcal{L} - \lambda \mathcal{I})^2 \mathbf{v}|| = ||(\mathcal{L} - \lambda \mathcal{I})(\mathcal{L} - \lambda \mathcal{I}) \mathbf{v}|| = ||(\mathcal{L} - \lambda \mathcal{I})^* (\mathcal{L} - \lambda \mathcal{I}) \mathbf{v}||.
$$

Thus, $(L - \lambda \mathcal{I})^*$ $(L - \lambda \mathcal{I})$ $\mathbf{v} = \mathbf{O}$ and hence

$$
(\mathbf{v}, (\mathcal{L} - \lambda \mathcal{I})^* (\mathcal{L} - \lambda \mathcal{I}) \mathbf{v}) = 0
$$

or

$$
((\mathcal{L} - \lambda \mathcal{I}) \mathbf{v}, (\mathcal{L} - \lambda \mathcal{I}) \mathbf{v}) = 0,
$$

i.e. $(L - \lambda I)\mathbf{v} = \mathbf{0}$, which contradicts our assumption that **v** is a generalized eigenvector of level 2. Therefore, *L* does not possess any generalized eigenvectors.

Theorems 7, 8, and 9 applied to a self-adjoint operator yield the following very important corollary:

 $\star \star \star$ **Corollary 1.** Let \mathcal{L} be a self-adjoint operator on a space X. Then (i) All eigenvalues of *L* are real.

(ii) Eigenvectors of *L* corresponding to different eigenvalues are orthogonal.

(iii) If dim $X < \infty$, then the eigenvectors of $\mathcal L$ form a basis for X.