
SOME BASIC FACTS FROM LINEAR ALGEBRA

N denotes the set of natural numbers 1, 2, 3, . . . ,

R denotes the set of real numbers,

C denotes the set of complex numbers.

1 Vector Spaces

Definition 1. A vector space (or a linear space)X over a field F (the elements
of F are called scalars) is a set of elements called vectors equipped with two
(binary) operations, namely vector addition (the sum of two vectors x,y ∈ X
is denoted by x+y) and scalar multiplication (the scalar product of a scalar
a ∈ F and a vector x ∈ X is usually denoted by ax; the notation xa is rare)
satisfying the following postulates:
1 (Closure). If x,y ∈ X and a ∈ F, then x+ y ∈ X and ax ∈ X.
2 (Associativity for +). (x+ y) + z = x+ (y + z), for all x,y, z in X.
3 (Commutativity for +). x+ y = y + x, for all x,y in X.
4 (Identity for Addition). There is a vector O ∈ X such that x+O = x, for
all x ∈ X.
5 (Additive Inverse). For any x ∈ X there is a vector in X, denoted by −x,
such that x+ (−x) = O.
6 (“Associativity” for Scalar Multiplication). a(bx) = (ab)x, for all x ∈ X,
a, b ∈ F.
7 (Identity for Scalar Multiplication). For any x ∈ X we have that 1x = x.
8 (Distributive Laws). a(x + y) = ax + ay and (a + b)x = ax + bx, for all
x,y ∈ X and a, b ∈ F.

The sum x+ (−y) is denoted by x− y. For a scalar a ̸= 0 we can also write
x/a instead of a−1x.

The proof of the following proposition is left as an exercise:

Proposition 1. Suppose X is a vector space. Then
9 (Cancellation Law). Let x,y, z ∈ X. If x+ y = x+ z, then y = z.
10 (Uniqueness of O and −x). If x+O′ = x, for some x ∈ X, then O′ = O;
if, for some x ∈ X, x+ z = O, then z = −x.
11. 0x = O, for all x ∈ X.
12. (−1)x = −x, for all x ∈ X.
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We notice that Postulate 3 (the commutativity for vector addition) is redun-
dant. Actually the distributive laws and Postulate 7 yield

(1 + 1)(x+ y) = (1 + 1)x+ (1 + 1)y = x+ x+ y + y

and also

(1 + 1)(x+ y) = 1(x+ y) + 1(x+ y) = x+ y + x+ y.

Hence, the cancellation law implies x+ y = y + x (!)

In what follows the field of scalars F will always be either the field of real
numbers R or the field of complex numbers C.

Example 1 (examples of vector spaces). (i) Rn = {(x1, . . . , xn) : xj ∈ R}
over R, and Cn = {(z1, . . . , zn) : zj ∈ C} over C (conventions: R0 = C0 =
{0}, R1 = R, C1 = C). Notice, also, that C is a vector space over R.
(ii) The set of all polynomials p(x) of degree ≤ n with complex coefficients
(convention: deg 0 = −∞). The field of scalars is C.
(iii) The set C[a, b] of all continuous complex-valued functions f(x), x ∈ [a, b].
The field of scalars is C.
Definition 2. A subspace S of a vector space X is a set such that:
(i) S ⊂ X;
(ii) if x,y ∈ S, then ax+ by ∈ S, for all scalars a, b.

Notice that a subspace of a vector space is itself a vector space over the same
field of scalars. Given a vector space X, the spaces X and {O} are the trivial
subspaces of X. Any other subspace of X is a proper subspace.
If {Sα}α∈J is any family of subspaces of a vector space X, then the inter-
section

∩
α∈J Sα is also a subspace of X (convention: an empty intersection

equals X).

Definition 3. Suppose x1, . . . ,xk are vector of X. The set of all linear
combinations c1x1 + · · · + ckxk is called the linear span of x1, . . . ,xk and it
is denoted by ⟨x1, . . . ,xk⟩ (convention: ⟨∅⟩ = {O}).

Notice that ⟨x1, . . . ,xk⟩ is a subspace of X; in fact, this is a way of construct-
ing subspaces.

Definition 4. A family of vectors {xα}α∈J in a vector space X is said to be
linearly independent when each relation of the form

c1xα1 + · · ·+ cnxαn = O, xαj
∈ {xα}α∈J
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(where the cj’s are scalars), implies

c1 = · · · = cn = 0.

If the family {xα}α∈J is not linearly independent, then it is called linearly
dependent.
If the family {x1, . . . ,xn} is linearly (in)dependent, we say that the vectors
x1, . . . ,xn are linearly (in)dependent.

Notice that if O ∈ {xα}α∈J , then {xα}α∈J is linearly dependent. The family
{x} consisting of just one vector x ̸= O is linearly independent.
If x,y are linearly dependent, then y = cx, for some scalar c, or x = c′y, for
some scalar c′.

Example 2. In the vector space of continuous functions C[0, 1] the set
{ex, 1, x, x2, . . . , xn, . . . }, where

ex =
∞∑
n=0

xn

n!
,

is linearly independent.

Definition 5. The dimension of a vector space X, written dimX, is the
largest number of linearly independent vectors in X, if that number is finite
(hence, in particular we have dim{O} = 0). The dimension of X is said to
be infinite (dimX =∞) if there exist linearly independent vectors x1, . . . ,xn

in X, for arbitrarily large n.

dim <∞ ←→ Linear Algebra,

dim =∞ ←→ Functional Analysis.

Example 3. dimRn = n, dimCn = n, dimC[0, 1] = ∞. Notice that Cn

viewed as a vector space over R has dimension 2n. Unless otherwise stated
Cn is considered a vector space over C.

Definition 6. A set of vectors e1, . . . , en is said to be a basis for X, if every
vector x in X can be written uniquely as

x = x1e1 + · · ·+ xnen, xj ∈ F.
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If the above equation holds, then we say that x is represented by the column
(vector)  x1

...
xn


with respect to the basis e1, . . . , en.

Remark 1. If X has a basis of n vectors e1, . . . , en, then these basis vectors
are linearly independent. This is because O = 0e1 + · · ·+ 0en uniquely.

The next two theorems follow immediately from the previous discussion.

Theorem 1. If dimX = n and e1, . . . , en are linearly independent vectors,
then e1, . . . , en is a basis.

Theorem 2. If e1, . . . , en is a basis for X, then dimX = n.

CAUTION. If dimX =∞, then the notion of a basis of X becomes tricky!

Example 4. (i) The vectors

e1 = (1, 0, ..., 0), e2 = (0, 1, ..., 0), . . . , en = (0, 0, ..., 1)

form a basis for both Rn and Cn.
(ii) Let X be the vector space of polynomials of degree ≤ n (with real or
complex coefficients). Then the polynomials

1, x, x2, . . . , xn

form a basis for X and hence dimX = n+ 1.

2 Linear Operators

Definition 7. Let X and Y be vector spaces over the same field F. A linear
operator L from X to Y is a function L : X → Y such that
(i) L(u+ v) = Lu+ Lv, for all u,v ∈ X and
(ii) L(au) = aLu, for all u ∈ X, a ∈ F.
In many cases we have Y = X; then we say that L is a linear operator
(acting) on X. An important example is the identity operator on X, namely
the operator I which satisfies Ix = x for all x ∈ X.
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Assume n = dimX and m = dimY . Let e1, . . . , en be a basis for X and
f1, . . . , fm be a basis for Y . Suppose

Le1 = a11f1 + a21f2 + · · ·+ am1fm
Le2 = a12f1 + a22f2 + · · ·+ am2fm
...
Le1 = a1nf1 + a2nf2 + · · ·+ amnfm,

then we say that the matrix of L with respect to the bases e1, . . . , en and
f1, . . . , fm is the m× n array

[L]e,f =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .

Thus, if x = x1e1 + · · ·+ xnen, then the action of L on x is described by the
matrix multiplication of [L]e,f by the column x1

...
xn

 .

Furthermore, if M : Y → Z is another linear operator, and g1, . . . ,gp is a
basis for the vector space Z (hence dimZ = p), then the p × n matrix of
the composition ML (:= M ◦ L) with respect to the bases e1, . . . , en and
g1, . . . ,gp satisfies

[ML]e,g = [M]f ,g [L]e,f ,

where the right-hand side is the standard matrix product of the matrices
[M]f ,g and [L]e,f .

3 Eigenvalues and Eigenvectors

Definition 8. Let L be a linear operator on a vector space X over C and
v ̸= O a vector such that

Lv = λv, where λ ∈ C.

Then, we say that v is an eigenvector of L with eigenvalue λ. In the case
of a finite dimensional vector space X, the spectrum σ(L) of L is the set of
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eigenvalues of L. If L possesses n linearly independent eigenvectors, where
n = dimX, we say that L is diagonalizable.

Suppose dimX = n and L has n linearly independent eigenvectors v1, . . . ,vn

with corresponding eigenvalues λ1, . . . , λn respectively (these eigenvalues need
not be distinct). Then, if we use the eigenvectors of L as a basis for X, it is
very easy to express the action of L on any vector x ∈ X:

If x = x1v1 + · · ·+ xnvn, then Lx = λ1x1v1 + · · ·+ λnxnvn.

Essentially L becomes a multiplication operator, which is a huge simplifica-
tion of the action of L. Furthermore, if f(z) is any polynomial in z (or even
a much more general function, defined on the spectrum of L), then f(L) is
an operator on X and its action is described as

f(L)x = f(λ1)x1v1 + · · ·+ f(λn)xnvn.

It also follows that the matrix of L with respect to the basis v1, . . . ,vn is
diagonal:

[L]v = diag [λ1, . . . , λn] :=


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 .

More generally,

[f(L)]v = diag [f(λ1), . . . , f(λn)] =


f(λ1) 0 · · · 0
0 f(λ2) · · · 0
...

...
. . .

...
0 0 · · · f(λn)

 .

Unfortunately, not all linear operators on an n-th dimensional vector space
are diagonalizable. In other words there are operators which possess less that
n linear independent eigenvectors. In such anomalous cases, we add to set of
the eigenvectors some other vectors, called generalized eigenvectors of level
m (m = 2, 3, . . . ), satisfying

(L − λI)m g = O, (L − λI)m−1 g ̸= O

(λ is necessarily an eigenvalue of L), so that the eigenvectors of L together
with these generalized eigenvectors form a basis for X and the matrix of L
with respect to this basis is in Jordan canonical form. Notice that if L pos-
sesses generalized eigenvectors of level m ≥ 2, associated to some eigenvalue
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λ, then it also possesses generalized eigenvectors of levelsm−1,m−2, . . . , 2, 1,
associated to the same eigenvalue λ, where “generalized eigenvectors of level
1” means pure eigenvector. Needless to say that diagonalizable operators do
not possess generalized eigenvectors.

4 Inner Product Spaces

Definition 9. An inner product (vector) space (or pre-Hilbert space) is a
vector space X equipped with an inner product (· , ·), namely a (binary)
operation from X ×X to F (where, as usual, the field F of scalars is either
R or C) such that
(i) (x,x) ≥ 0 for every x ∈ X and (x,x) = 0 if and only if x = O.
(ii) (x+ y, z) = (x, z) + (y, z) for every x,y, z ∈ X.
(iii) (ax,y) = a(x,y) for every x,y ∈ X and a ∈ F.
(iv) (y,x) = (x,y) for every x,y ∈ X, where (x,y) denotes the complex
conjugate of (x,y) (thus, if F = R, then (y,x) = (x,y)).

Exercise 1. Show that (x,O) = 0 for all x ∈ X.

Theorem 3 (the Schwarz inequality). If x and y are vectors in an inner
product space X, then

|(x,y)| ≤
√

(x,x)
√
(y,y).

For a proof see Remark 3 below.

A consequence of Definition 1 and the Schwarz inequality is that the inner
product induces a norm on X:

∥x∥ :=
√
(x,x), x ∈ X. (4.1)

Reminder. A norm on a vector space X is a function ∥ · ∥ from X to R
which satisfies:
(i) (nonnegativity) ∥x∥ ≥ 0 for every x ∈ X and ∥x∥ = 0 if and only if
x = O.
(ii) (positive homogeneity) ∥ax∥ = |a|∥x∥ for every x ∈ X and a ∈ F.
(iii) (the triangle inequality) ∥x+ y∥ ≥ ∥x∥+ ∥y∥ for every x,y ∈ X.
A vector space equipped with a norm is called normed linear space. If X is
a normed linear space, its norm may not come from an inner product (i.e.
there may not exist an inner product for which (4.1) is satisfied by the norm
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of X). In fact, a norm ∥ · ∥ on a vector space X is induced by an inner
product if and only if it satisfies the parallelogram law :

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2 for all x,y ∈ X.

In this case, if F = R, the inner product is given by the formula

2(x,y) = ∥x+ y∥2 − ∥x∥2 − ∥y∥2,

while if F = C, the inner product is given by the so-called polarization
identity

4(x,y) = ∥x+ y∥2 − ∥x− y∥2 − i
(
∥x+ iy∥2 − ∥x− iy∥2

)
.

Example 5 (examples of inner products and norms). (i) Let z = (z1, . . . , zn)
and w = (w1, . . . , wn) be two arbitrary vectors of Cn. Then, the standard
dot product z ·w of z and w given by

z ·w :=
n∑

j=1

zjwj

is an example of an inner product. The induced norm is

∥z∥2 :=

√√√√ n∑
j=1

|zj|2

(if z ∈ Rn, then the above norm is the length of z). Other typical examples
of norms of Cn are

∥z∥p :=

(
n∑

j=1

|zj|p
)1/p

, 1 ≤ p <∞,

and
∥z∥∞ := max

1≤j≤n
|zj|.

Among the above norms, only ∥ · ∥2 is induced by an inner product.
(ii) A typical inner product on the space C[a, b] of the continuous complex-
valued functions defined on [a, b] is

(f, g) =

∫ b

a

f(x)g(x)dx.
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The induced norm is

∥f∥2 :=

√∫ b

a

|f(x)|2dx.

Other typical examples of norms of C[a, b] are

∥f∥p :=
[∫ b

a

|f(x)|pdx
]1/p

, 1 ≤ p <∞,

and
∥f∥∞ := sup

x∈[a,b]
|f(x)| = max

x∈[a,b]
|f(x)|.

Again, among the above norms, only ∥ · ∥2 is induced by an inner product.

Let us point out that if X is an inner product space, then is (natural) norm
is the norm given by (4.1).

In an inner product space over R, thanks to Schwarz inequality, we can define
an angle between two (nonzero) vectors: Let x ̸= O and y ̸= O. Their angle
θ ∈ [0, π] is defined by

cos θ :=
(x,y)

∥x∥∥y∥
.

In particular, if (x,y) = 0, we say that the vectors x and y are orthogonal
(or perpendicular ; sometimes, the notation x ⊥ y is used).
⋆ Orthogonality can be also defined in the same way for inner product spaces
over C. Furthermore, the standard convention is that the vector O is orthog-
onal to all vectors.

Definition 10. A collection of vectors {eα}α∈J in an inner product space
X is called an orthonormal (O-N ) set if (eα, eα) = 1 for all α ∈ J , and
(eα, eβ) = 0 if α ̸= β. In abbreviated form:

(eα, eβ) = δαβ, for all α, β ∈ J,

where δαβ is the Kronecker delta which is equal to 1 if α = β and 0 if α ̸= β.

Theorem 4. If {eα}α∈J is an orthonormal set, then {eα}α∈J is linear inde-
pendent.

Proof. Assume c1eα1 + · · · + cneαn = O and take the inner product of both
sides with eαj

. Then, the orthonormality of {eα}α∈J implies immediately
that cj = 0. �
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⋆Remark 2. Let e1, . . . , en be an orthonormal basis of the space X (hence
dimX = n). If

x = x1e1 + · · ·+ xnen,

then xj = (x, ej), j = 1, 2, . . . , n. Furthermore, if L is a linear operator on
X and [L]e = [ajk]1≤ j,k≤n is its n× n matrix with respect to the O-N basis
e1, . . . , en, then

ajk = (Lek, ej), 1 ≤ j, k ≤ n.

Given the linearly independent vectors x1,x2, . . . ,xn in an inner product
space X, there is a useful procedure, called Gram-Schmidt orthogonalization,
for constructing an orthonormal set e1, e2, . . . , en, such that ⟨x1, . . . ,xk⟩ =
⟨e1, . . . , ek⟩ for k = 1, 2, . . . , n, namely the vectors x1, . . . ,xk and e1, . . . , ek
span the same subspace of X, for all k = 1, 2, . . . , n (recall Definition 3):

w1 := x1, e1 := w1/∥w1∥,
w2 := x2 − (x2, e1)e1, e2 := w2/∥w2∥,

...
...

wn := xn −
n−1∑
j=1

(xn, ej)ej, en := wn/∥wn∥.

The same procedure works for a countably infinite family of linearly inde-
pendent vectors {xj}j∈N, in which case it produces a (countably infinite)
orthonormal set {ej}j∈N, such that ⟨x1, . . . ,xk⟩ = ⟨e1, . . . , ek⟩ for all k ∈ N.

Theorem 5 (Pythagorean theorem). Let e1, . . . , en be orthonormal vectors
in an inner product space X. Then, for all x ∈ X,

∥x∥2 =
n∑

j=1

|(x, ej)|2 +

∥∥∥∥∥x−
n∑

j=1

(x, ej)ej

∥∥∥∥∥
2

.

In particular we have the inequality (called Bessel’s inequality)

∥x∥2 ≥
n∑

j=1

|(x, ej)|2 ,

which becomes equality if and only if x lies in the linear span of e1, . . . , en.

The idea of the proof is very simple: Notice that, since each ej, j = 1, . . . , n,
is orthogonal to x−

∑n
j=1(x, ej)ej, we have that the vectors

x1 :=
n∑

j=1

(x, ej)ej and x2 := x−
n∑

j=1

(x, ej)ej are orthogonal.

10



Thus, ∥x∥2 = (x,x) = (x1 + x2,x1 + x2) = (x1,x1) + (x2,x2).

Remark 3. We can use Theorem 5 to prove the Schwarz inequality (see
Theorem 3): Assume y ̸= O (the case y = O is trivial). Set e1 := y/∥y∥, so
that {e1} is an orthonormal set, and apply Bessel’s inequality to any x ∈ X
using {e1} (n = 1):

∥x∥2 ≥ |(x, e1)|2 = |(x,y/∥y∥)|2 =
|(x,y)|2

∥y∥2
,

from which |(x,y)| ≤ ∥x∥∥y∥ follows.

5 Adjoints

Definition 11. Let L be a linear operator on an inner product space X over
C. The adjoint operator L∗ of L is the operator satisfying

(Lx,y) = (x,L∗y) for all x,y ∈ X.

Let e1, . . . , en be an orthonormal basis of X. If A = [L]e = [ajk]1≤ j,k≤n is
the matrix of L with respect to the basis e1, . . . , en, then by the Remark 2
we have that the matrix [L∗]e of L∗ is AH , namely

[L∗]e = AH = [akj]1≤ j,k≤n

(recall that AH := Ā⊤, where A⊤ is the transpose of A).

Proposition 2. The adjoint operator satisfies:
(i) (L∗)∗ = L;
(ii) (L+M)∗ = L∗ +M∗;
(iii) (LM)∗ =M∗L∗.

Example 6. If M = λI, where λ is some complex number and I is the
identity operator, thenM∗ = λ̄I.

⋆Definition 12. (i) Let L be a linear operator on an inner product space X
over C. If

LL∗ = L∗L,
i.e. if L commutes with its adjoint, then L is called normal operator. Like-
wise, if a square matrix A satisfies

AAH = AHA,
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then A is called normal matrix.
(ii) If LL∗ = L∗L = I, then L is called unitary operator. Likewise if a square
matrix A satisfies AAH = In, where In = diag [1, 1, . . . , 1] is the identity
matrix, (In is the matrix of I acting on an n-dimensional space X), then it
is called unitary matrix (notice that for matrices the equation AAH = In
implies also AHA = In). A unitary matrix with real elements is called
orthogonal.
(iii) If L∗ = L, then the operator L is called self-adjoint. Likewise if a square
matrix A satisfies AH = A, then A is called Hermitian matrix. A Hermitian
matrix with real elements is symmetric, i.e. it satisfies A = A⊤.

Of course, unitary operators and self-adjoint operators are special cases of
normal operators.

⋆Theorem 6. (i) Let L be a normal operator on a space X. Then

(L∗x,L∗y) = (Lx,Ly), hence ∥L∗x∥ = ∥Lx∥ .

(ii) Let U be a unitary operator on a space X. Then

(Ux,Uy) = (x,y), hence ∥Ux∥ = ∥x∥ .

Proof. (i) Since (L∗)∗ = L and LL∗ = L∗L we have

(L∗x,L∗y) = (x,LL∗y) = (x,L∗Ly) = (Lx,Ly).

(ii) Since U∗U = I we have

(Ux,Uy) = (x,U∗Uy) = (x,y).

�

⋆Theorem 7. Let λ ∈ C be an eigenvalue of a normal operator L with
corresponding eigenvector v, namely Lv = λv. Then

L∗v = λ̄v.

Proof. Given that L is normal, Proposition 2(ii) and Example 6 imply that
so is (L − λI). Thus, by Theorem 6(i) we have

∥(L − λI)∗v∥ = ∥(L − λI)v∥ = ∥Lv − λv∥ = ∥O∥ = 0,

Hence, (L−λI)∗v = O. The rest follows by invoking again Proposition 2(ii)
and Example 6. �
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⋆⋆Theorem 8. Let L be a normal operator and assume

Lv = λv, Lw = µw, λ ̸= µ.

Then, (v,w) = 0.

Proof. By Theorem 7 we have L∗w = µ̄w. Hence,

λ(v,w) = (λv,w) = (Lv,w) = (v,L∗w) = (v, µ̄w) = µ(v,w).

Therefore, (v,w) = 0. �

⋆⋆Theorem 9. A normal operator L on a finite dimensional space X is
diagonalizable.

Proof. Suppose L is not diagonalizable. Then, it possess generalized eigen-
vectors. In particular, there is a v ∈ X such that

(L − λI)2 v = O and (L − λI)v ̸= O.

If this is the case, since by Proposition 2(ii) and Example 6 the operator
(L − λI) is normal, Theorem 6(i) implies

0 =
∥∥(L − λI)2 v

∥∥ = ∥(L − λI) (L − λI)v∥ = ∥(L − λI)∗ (L − λI)v∥ .

Thus, (L − λI)∗ (L − λI)v = O and hence

(v, (L − λI)∗ (L − λI)v) = 0

or
((L − λI)v, (L − λI)v) = 0,

i.e. (L − λI)v = O, which contradicts our assumption that v is a gener-
alized eigenvector of level 2. Therefore, L does not possess any generalized
eigenvectors. �

Theorems 7, 8, and 9 applied to a self-adjoint operator yield the following
very important corollary:

⋆ ⋆ ⋆Corollary 1. Let L be a self-adjoint operator on a space X. Then
(i) All eigenvalues of L are real.
(ii) Eigenvectors of L corresponding to different eigenvalues are orthogonal.
(iii) If dimX <∞, then the eigenvectors of L form a basis for X.
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