SOME BASIC FACTS FROM LINEAR ALGEBRA

\mathbb{N}	denotes the set of <u>natural</u> numbers $1, 2, 3, \ldots$
\mathbb{R}	denotes the set of <u>real</u> numbers,
\mathbb{C}	denotes the set of complex numbers.

1 Vector Spaces

Definition 1. A vector space (or a linear space) X over a field \mathfrak{F} (the elements of \mathfrak{F} are called *scalars*) is a set of elements called *vectors* equipped with two (binary) operations, namely vector addition (the sum of two vectors $\mathbf{x}, \mathbf{y} \in X$ is denoted by $\mathbf{x} + \mathbf{y}$) and scalar multiplication (the scalar product of a scalar $a \in \mathfrak{F}$ and a vector $\mathbf{x} \in X$ is usually denoted by ax; the notation xa is rare) satisfying the following postulates:

1 (Closure). If $\mathbf{x}, \mathbf{y} \in X$ and $a \in \mathfrak{F}$, then $\mathbf{x} + \mathbf{y} \in X$ and $a\mathbf{x} \in X$.

2 (Associativity for +). $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$, for all $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in X.

3 (Commutativity for +). $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$, for all \mathbf{x}, \mathbf{y} in X.

4 (Identity for Addition). There is a vector $\mathbf{O} \in X$ such that $\mathbf{x} + \mathbf{O} = \mathbf{x}$, for all $\mathbf{x} \in X$.

5 (Additive Inverse). For any $\mathbf{x} \in X$ there is a vector in X, denoted by $-\mathbf{x}$, such that $\mathbf{x} + (-\mathbf{x}) = \mathbf{O}$.

6 ("Associativity" for Scalar Multiplication). $a(b\mathbf{x}) = (ab)\mathbf{x}$, for all $\mathbf{x} \in X$, $a, b \in \mathfrak{F}$.

7 (Identity for Scalar Multiplication). For any $\mathbf{x} \in X$ we have that $1\mathbf{x} = \mathbf{x}$.

8 (Distributive Laws). $a(\mathbf{x} + \mathbf{y}) = a\mathbf{x} + a\mathbf{y}$ and $(a + b)\mathbf{x} = a\mathbf{x} + b\mathbf{x}$, for all $\mathbf{x}, \mathbf{y} \in X$ and $a, b \in \mathfrak{F}$.

The sum $\mathbf{x} + (-\mathbf{y})$ is denoted by $\mathbf{x} - \mathbf{y}$. For a scalar $a \neq 0$ we can also write \mathbf{x}/a instead of $a^{-1}\mathbf{x}$.

The proof of the following proposition is left as an exercise:

Proposition 1. Suppose X is a vector space. Then

9 (Cancellation Law). Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in X$. If $\mathbf{x} + \mathbf{y} = \mathbf{x} + \mathbf{z}$, then $\mathbf{y} = \mathbf{z}$. 10 (Uniqueness of \mathbf{O} and $-\mathbf{x}$). If $\mathbf{x} + \mathbf{O}' = \mathbf{x}$, for some $\mathbf{x} \in X$, then $\mathbf{O}' = \mathbf{O}$; if, for some $\mathbf{x} \in X$, $\mathbf{x} + \mathbf{z} = \mathbf{O}$, then $\mathbf{z} = -\mathbf{x}$. 11. $0\mathbf{x} = \mathbf{O}$, for all $\mathbf{x} \in X$. 12. $(-1)\mathbf{x} = -\mathbf{x}$, for all $\mathbf{x} \in X$. We notice that Postulate 3 (the commutativity for vector addition) is redundant. Actually the distributive laws and Postulate 7 yield

$$(1+1)(\mathbf{x}+\mathbf{y}) = (1+1)\mathbf{x} + (1+1)\mathbf{y} = \mathbf{x} + \mathbf{x} + \mathbf{y} + \mathbf{y}$$

and also

$$(1+1)(\mathbf{x}+\mathbf{y}) = 1(\mathbf{x}+\mathbf{y}) + 1(\mathbf{x}+\mathbf{y}) = \mathbf{x}+\mathbf{y}+\mathbf{x}+\mathbf{y}.$$

Hence, the cancellation law implies $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}(!)$

In what follows the field of scalars \mathfrak{F} will always be either the field of real numbers \mathbb{R} or the field of complex numbers \mathbb{C} .

Example 1 (examples of vector spaces). (i) $\mathbb{R}^n = \{(x_1, \ldots, x_n) : x_j \in \mathbb{R}\}$ over \mathbb{R} , and $\mathbb{C}^n = \{(z_1, \ldots, z_n) : z_j \in \mathbb{C}\}$ over \mathbb{C} (conventions: $\mathbb{R}^0 = \mathbb{C}^0 = \{0\}, \mathbb{R}^1 = \mathbb{R}, \mathbb{C}^1 = \mathbb{C}$). Notice, also, that \mathbb{C} is a vector space over \mathbb{R} .

(ii) The set of all polynomials p(x) of degree $\leq n$ with complex coefficients (convention: deg $0 = -\infty$). The field of scalars is \mathbb{C} .

(iii) The set C[a, b] of all continuous complex-valued functions $f(x), x \in [a, b]$. The field of scalars is \mathbb{C} .

Definition 2. A subspace S of a vector space X is a set such that: (i) $S \subset X$;

(ii) if $\mathbf{x}, \mathbf{y} \in S$, then $a\mathbf{x} + b\mathbf{y} \in S$, for all scalars a, b.

Notice that a subspace of a vector space is itself a vector space over the same field of scalars. Given a vector space X, the spaces X and $\{\mathbf{O}\}$ are the *trivial* subspaces of X. Any other subspace of X is a proper subspace.

If $\{S_{\alpha}\}_{\alpha \in J}$ is any family of subspaces of a vector space X, then the intersection $\bigcap_{\alpha \in J} S_{\alpha}$ is also a subspace of X (convention: an empty intersection equals X).

Definition 3. Suppose $\mathbf{x}_1, \ldots, \mathbf{x}_k$ are vector of X. The set of all linear combinations $c_1\mathbf{x}_1 + \cdots + c_k\mathbf{x}_k$ is called the *linear span of* $\mathbf{x}_1, \ldots, \mathbf{x}_k$ and it is denoted by $\langle \mathbf{x}_1, \ldots, \mathbf{x}_k \rangle$ (convention: $\langle \emptyset \rangle = \{\mathbf{O}\}$).

Notice that $\langle \mathbf{x}_1, \ldots, \mathbf{x}_k \rangle$ is a subspace of X; in fact, this is a way of constructing subspaces.

Definition 4. A family of vectors $\{\mathbf{x}_{\alpha}\}_{\alpha \in J}$ in a vector space X is said to be *linearly independent* when each relation of the form

$$c_1 \mathbf{x}_{\alpha_1} + \dots + c_n \mathbf{x}_{\alpha_n} = \mathbf{0}, \qquad \mathbf{x}_{\alpha_j} \in {\mathbf{x}_{\alpha}}_{\alpha \in J}$$

(where the c_i 's are scalars), implies

$$c_1 = \cdots = c_n = 0.$$

If the family $\{\mathbf{x}_{\alpha}\}_{\alpha \in J}$ is not linearly independent, then it is called *linearly dependent*.

If the family $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ is linearly (in)dependent, we say that the vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are linearly (in)dependent.

Notice that if $\mathbf{O} \in {\mathbf{x}_{\alpha}}_{\alpha \in J}$, then ${\mathbf{x}_{\alpha}}_{\alpha \in J}$ is linearly dependent. The family ${\mathbf{x}}$ consisting of just one vector $\mathbf{x} \neq \mathbf{O}$ is linearly independent.

If \mathbf{x}, \mathbf{y} are linearly dependent, then $\mathbf{y} = c\mathbf{x}$, for some scalar c, or $\mathbf{x} = c'\mathbf{y}$, for some scalar c'.

Example 2. In the vector space of continuous functions C[0,1] the set $\{e^x, 1, x, x^2, \ldots, x^n, \ldots\}$, where

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!},$$

is linearly independent.

Definition 5. The dimension of a vector space X, written dim X, is the largest number of linearly independent vectors in X, if that number is finite (hence, in particular we have dim $\{\mathbf{O}\} = 0$). The dimension of X is said to be infinite (dim $X = \infty$) if there exist linearly independent vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$ in X, for arbitrarily large n.

 $\begin{array}{rcl} \dim <\infty & \longleftrightarrow & \text{Linear Algebra,} \\ \dim =\infty & \longleftrightarrow & \text{Functional Analysis.} \end{array}$

Example 3. dim $\mathbb{R}^n = n$, dim $\mathbb{C}^n = n$, dim $C[0,1] = \infty$. Notice that \mathbb{C}^n viewed as a vector space over \mathbb{R} has dimension 2n. Unless otherwise stated \mathbb{C}^n is considered a vector space over \mathbb{C} .

Definition 6. A set of vectors $\mathbf{e}_1, \ldots, \mathbf{e}_n$ is said to be a *basis* for X, if every vector \mathbf{x} in X can be written uniquely as

$$\mathbf{x} = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n, \qquad x_j \in \mathfrak{F}.$$

If the above equation holds, then we say that \mathbf{x} is represented by the column (vector)

with respect to the basis $\mathbf{e}_1, \ldots, \mathbf{e}_n$.

Remark 1. If X has a basis of n vectors $\mathbf{e}_1, \ldots, \mathbf{e}_n$, then these basis vectors are linearly independent. This is because $\mathbf{O} = 0\mathbf{e}_1 + \cdots + 0\mathbf{e}_n$ uniquely.

The next two theorems follow immediately from the previous discussion.

Theorem 1. If dim X = n and $\mathbf{e}_1, \ldots, \mathbf{e}_n$ are linearly independent vectors, then $\mathbf{e}_1, \ldots, \mathbf{e}_n$ is a basis.

Theorem 2. If $\mathbf{e}_1, \ldots, \mathbf{e}_n$ is a basis for X, then dim X = n.

CAUTION. If dim $X = \infty$, then the notion of a basis of X becomes tricky!

Example 4. (i) The vectors

$$\mathbf{e}_1 = (1, 0, ..., 0), \mathbf{e}_2 = (0, 1, ..., 0), \dots, \mathbf{e}_n = (0, 0, ..., 1)$$

form a basis for both \mathbb{R}^n and \mathbb{C}^n .

(ii) Let X be the vector space of polynomials of degree $\leq n$ (with real or complex coefficients). Then the polynomials

 $1, x, x^2, \ldots, x^n$

form a basis for X and hence $\dim X = n + 1$.

2 Linear Operators

Definition 7. Let X and Y be vector spaces over the same field \mathfrak{F} . A *linear* operator \mathcal{L} from X to Y is a function $\mathcal{L} : X \to Y$ such that

(i) $\mathcal{L}(\mathbf{u} + \mathbf{v}) = \mathcal{L}\mathbf{u} + \mathcal{L}\mathbf{v}$, for all $\mathbf{u}, \mathbf{v} \in X$ and

(ii) $\mathcal{L}(a\mathbf{u}) = a\mathcal{L}\mathbf{u}$, for all $\mathbf{u} \in X$, $a \in \mathfrak{F}$.

In many cases we have Y = X; then we say that \mathcal{L} is a linear operator (acting) on X. An important example is the *identity operator* on X, namely the operator \mathcal{I} which satisfies $\mathcal{I}\mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in X$.

Assume $n = \dim X$ and $m = \dim Y$. Let $\mathbf{e}_1, \ldots, \mathbf{e}_n$ be a basis for X and $\mathbf{f}_1, \ldots, \mathbf{f}_m$ be a basis for Y. Suppose

$$\mathcal{L}\mathbf{e}_1 = a_{11}\mathbf{f}_1 + a_{21}\mathbf{f}_2 + \dots + a_{m1}\mathbf{f}_m \mathcal{L}\mathbf{e}_2 = a_{12}\mathbf{f}_1 + a_{22}\mathbf{f}_2 + \dots + a_{m2}\mathbf{f}_m \vdots \mathcal{L}\mathbf{e}_1 = a_{1n}\mathbf{f}_1 + a_{2n}\mathbf{f}_2 + \dots + a_{mn}\mathbf{f}_m,$$

then we say that the *matrix* of \mathcal{L} with respect to the bases $\mathbf{e}_1, \ldots, \mathbf{e}_n$ and $\mathbf{f}_1, \ldots, \mathbf{f}_m$ is the $m \times n$ array

$$\left[\mathcal{L}\right]_{\mathbf{e},\mathbf{f}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Thus, if $\mathbf{x} = x_1 \mathbf{e}_1 + \cdots + x_n \mathbf{e}_n$, then the action of \mathcal{L} on \mathbf{x} is described by the matrix multiplication of $[\mathcal{L}]_{\mathbf{e},\mathbf{f}}$ by the column

$$\left[\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right]$$

Furthermore, if $\mathcal{M} : Y \to Z$ is another linear operator, and $\mathbf{g}_1, \ldots, \mathbf{g}_p$ is a basis for the vector space Z (hence dim Z = p), then the $p \times n$ matrix of the composition \mathcal{ML} (:= $\mathcal{M} \circ \mathcal{L}$) with respect to the bases $\mathbf{e}_1, \ldots, \mathbf{e}_n$ and $\mathbf{g}_1, \ldots, \mathbf{g}_p$ satisfies

$$\left[\mathcal{ML}\right]_{\mathbf{e},\mathbf{g}} = \left[\mathcal{M}\right]_{\mathbf{f},\mathbf{g}} \left[\mathcal{L}\right]_{\mathbf{e},\mathbf{f}},$$

where the right-hand side is the standard matrix product of the matrices $[\mathcal{M}]_{\mathbf{f},\mathbf{g}}$ and $[\mathcal{L}]_{\mathbf{e},\mathbf{f}}$.

3 Eigenvalues and Eigenvectors

Definition 8. Let \mathcal{L} be a linear operator on a vector space X over \mathbb{C} and $\mathbf{v} \neq \mathbf{O}$ a vector such that

$$\mathcal{L}\mathbf{v} = \lambda \mathbf{v}, \quad \text{where } \lambda \in \mathbb{C}.$$

Then, we say that \mathbf{v} is an eigenvector of \mathcal{L} with eigenvalue λ . In the case of a finite dimensional vector space X, the spectrum $\sigma(\mathcal{L})$ of \mathcal{L} is the set of

eigenvalues of \mathcal{L} . If \mathcal{L} possesses *n* linearly independent eigenvectors, where $n = \dim X$, we say that \mathcal{L} is *diagonalizable*.

Suppose dim X = n and \mathcal{L} has n linearly independent eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$ respectively (these eigenvalues need not be distinct). Then, if we use the eigenvectors of \mathcal{L} as a basis for X, it is very easy to express the action of \mathcal{L} on any vector $\mathbf{x} \in X$:

If
$$\mathbf{x} = x_1 \mathbf{v}_1 + \dots + x_n \mathbf{v}_n$$
, then $\mathcal{L}\mathbf{x} = \lambda_1 x_1 \mathbf{v}_1 + \dots + \lambda_n x_n \mathbf{v}_n$.

Essentially \mathcal{L} becomes a multiplication operator, which is a huge simplification of the action of \mathcal{L} . Furthermore, if f(z) is any polynomial in z (or even a much more general function, defined on the spectrum of \mathcal{L}), then $f(\mathcal{L})$ is an operator on X and its action is described as

$$f(\mathcal{L})\mathbf{x} = f(\lambda_1)x_1\mathbf{v}_1 + \dots + f(\lambda_n)x_n\mathbf{v}_n.$$

It also follows that the matrix of \mathcal{L} with respect to the basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is diagonal:

$$\left[\mathcal{L}\right]_{\mathbf{v}} = \operatorname{diag}\left[\lambda_{1}, \dots, \lambda_{n}\right] := \left[\begin{array}{ccccc} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right].$$

More generally,

$$[f(\mathcal{L})]_{\mathbf{v}} = \operatorname{diag}\left[f(\lambda_1), \dots, f(\lambda_n)\right] = \begin{bmatrix} f(\lambda_1) & 0 & \cdots & 0\\ 0 & f(\lambda_2) & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & f(\lambda_n) \end{bmatrix}.$$

Unfortunately, not all linear operators on an *n*-th dimensional vector space are diagonalizable. In other words there are operators which possess less that n linear independent eigenvectors. In such anomalous cases, we add to set of the eigenvectors some other vectors, called *generalized eigenvectors of level* m (m = 2, 3, ...), satisfying

$$(\mathcal{L} - \lambda \mathcal{I})^m \mathbf{g} = \mathbf{O}, \quad (\mathcal{L} - \lambda \mathcal{I})^{m-1} \mathbf{g} \neq \mathbf{O}$$

 $(\lambda \text{ is necessarily an eigenvalue of } \mathcal{L})$, so that the eigenvectors of \mathcal{L} together with these generalized eigenvectors form a basis for X and the matrix of \mathcal{L} with respect to this basis is in *Jordan canonical form*. Notice that if \mathcal{L} possesses generalized eigenvectors of level $m \geq 2$, associated to some eigenvalue λ , then it also possesses generalized eigenvectors of levels $m-1, m-2, \ldots, 2, 1$, associated to the same eigenvalue λ , where "generalized eigenvectors of level 1" means pure eigenvector. Needless to say that diagonalizable operators do not possess generalized eigenvectors.

4 Inner Product Spaces

Definition 9. An inner product (vector) space (or pre-Hilbert space) is a vector space X equipped with an inner product (\cdot, \cdot) , namely a (binary) operation from $X \times X$ to \mathfrak{F} (where, as usual, the field \mathfrak{F} of scalars is either \mathbb{R} or \mathbb{C}) such that

(i) $(\mathbf{x}, \mathbf{x}) \geq 0$ for every $\mathbf{x} \in X$ and $(\mathbf{x}, \mathbf{x}) = 0$ if and only if $\mathbf{x} = \mathbf{O}$. (ii) $(\mathbf{x} + \mathbf{y}, \mathbf{z}) = (\mathbf{x}, \mathbf{z}) + (\mathbf{y}, \mathbf{z})$ for every $\mathbf{x}, \mathbf{y}, \mathbf{z} \in X$. (iii) $(a\mathbf{x}, \mathbf{y}) = \underline{a}(\mathbf{x}, \mathbf{y})$ for every $\mathbf{x}, \mathbf{y} \in X$ and $a \in \mathfrak{F}$. (iv) $(\mathbf{y}, \mathbf{x}) = \overline{(\mathbf{x}, \mathbf{y})}$ for every $\mathbf{x}, \mathbf{y} \in X$, where $\overline{(\mathbf{x}, \mathbf{y})}$ denotes the complex conjugate of (\mathbf{x}, \mathbf{y}) (thus, if $\mathfrak{F} = \mathbb{R}$, then $(\mathbf{y}, \mathbf{x}) = (\mathbf{x}, \mathbf{y})$).

Exercise 1. Show that $(\mathbf{x}, \mathbf{O}) = 0$ for all $\mathbf{x} \in X$.

Theorem 3 (the Schwarz inequality). If \mathbf{x} and \mathbf{y} are vectors in an inner product space X, then

$$|(\mathbf{x},\mathbf{y})| \leq \sqrt{(\mathbf{x},\mathbf{x})} \sqrt{(\mathbf{y},\mathbf{y})}.$$

For a proof see Remark 3 below.

A consequence of Definition 1 and the Schwarz inequality is that the inner product induces a *norm* on X:

$$\|\mathbf{x}\| := \sqrt{(\mathbf{x}, \mathbf{x})}, \qquad \mathbf{x} \in X.$$
(4.1)

Reminder. A *norm* on a vector space X is a function $\|\cdot\|$ from X to \mathbb{R} which satisfies:

(i) (nonnegativity) $\|\mathbf{x}\| \ge 0$ for every $\mathbf{x} \in X$ and $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{O}$.

(ii) (positive homogeneity) $||a\mathbf{x}|| = |a|||\mathbf{x}||$ for every $\mathbf{x} \in X$ and $a \in \mathfrak{F}$.

(iii) (the triangle inequality) $\|\mathbf{x} + \mathbf{y}\| \ge \|\mathbf{x}\| + \|\mathbf{y}\|$ for every $\mathbf{x}, \mathbf{y} \in X$.

A vector space equipped with a norm is called *normed linear space*. If X is a normed linear space, its norm may <u>not</u> come from an inner product (i.e. there may not exist an inner product for which (4.1) is satisfied by the norm

of X). In fact, a norm $\|\cdot\|$ on a vector space X is induced by an inner product if and only if it satisfies the *parallelogram law*:

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$$
 for all $\mathbf{x}, \mathbf{y} \in X$.

In this case, if $\mathfrak{F} = \mathbb{R}$, the inner product is given by the formula

$$2(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x}\|^2 - \|\mathbf{y}\|^2,$$

while if $\mathfrak{F} = \mathbb{C}$, the inner product is given by the so-called *polarization identity*

$$4(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2 - i\left(\|\mathbf{x} + i\mathbf{y}\|^2 - \|\mathbf{x} - i\mathbf{y}\|^2\right).$$

Example 5 (examples of inner products and norms). (i) Let $\mathbf{z} = (z_1, \ldots, z_n)$ and $\mathbf{w} = (w_1, \ldots, w_n)$ be two arbitrary vectors of \mathbb{C}^n . Then, the standard *dot product* $\mathbf{z} \cdot \mathbf{w}$ of \mathbf{z} and \mathbf{w} given by

$$\mathbf{z} \cdot \mathbf{w} := \sum_{j=1}^n z_j \overline{w_j}$$

is an example of an inner product. The induced norm is

$$\|\mathbf{z}\|_2 := \sqrt{\sum_{j=1}^n |z_j|^2}$$

(if $\mathbf{z} \in \mathbb{R}^n$, then the above norm is the length of \mathbf{z}). Other typical examples of norms of \mathbb{C}^n are

$$\|\mathbf{z}\|_p := \left(\sum_{j=1}^n |z_j|^p\right)^{1/p}, \qquad 1 \le p < \infty,$$

and

$$\|\mathbf{z}\|_{\infty} := \max_{1 \le j \le n} |z_j|.$$

Among the above norms, only $\|\cdot\|_2$ is induced by an inner product. (ii) A typical inner product on the space C[a, b] of the continuous complexvalued functions defined on [a, b] is

$$(f,g) = \int_{a}^{b} f(x)\overline{g(x)}dx.$$

The induced norm is

$$|f||_2 := \sqrt{\int_a^b |f(x)|^2 dx}.$$

Other typical examples of norms of C[a, b] are

$$||f||_p := \left[\int_a^b |f(x)|^p dx\right]^{1/p}, \qquad 1 \le p < \infty,$$

and

$$||f||_{\infty} := \sup_{x \in [a,b]} |f(x)| = \max_{x \in [a,b]} |f(x)|.$$

Again, among the above norms, only $\|\cdot\|_2$ is induced by an inner product.

Let us point out that if X is an inner product space, then is (natural) norm is the norm given by (4.1).

In an inner product space over \mathbb{R} , thanks to Schwarz inequality, we can define an *angle* between two (nonzero) vectors: Let $\mathbf{x} \neq \mathbf{O}$ and $\mathbf{y} \neq \mathbf{O}$. Their angle $\theta \in [0, \pi]$ is defined by

$$\cos \theta := \frac{(\mathbf{x}, \mathbf{y})}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

In particular, if $(\mathbf{x}, \mathbf{y}) = 0$, we say that the vectors \mathbf{x} and \mathbf{y} are orthogonal (or perpendicular; sometimes, the notation $\mathbf{x} \perp \mathbf{y}$ is used).

 \star Orthogonality can be also defined in the same way for inner product spaces over \mathbb{C} . Furthermore, the standard convention is that the vector **O** is orthogonal to all vectors.

Definition 10. A collection of vectors $\{\mathbf{e}_{\alpha}\}_{\alpha \in J}$ in an inner product space X is called an *orthonormal* (O-N) set if $(\mathbf{e}_{\alpha}, \mathbf{e}_{\alpha}) = 1$ for all $\alpha \in J$, and $(\mathbf{e}_{\alpha}, \mathbf{e}_{\beta}) = 0$ if $\alpha \neq \beta$. In abbreviated form:

$$(\mathbf{e}_{\alpha}, \mathbf{e}_{\beta}) = \delta_{\alpha\beta}, \quad \text{for all } \alpha, \beta \in J,$$

where $\delta_{\alpha\beta}$ is the *Kronecker delta* which is equal to 1 if $\alpha = \beta$ and 0 if $\alpha \neq \beta$.

Theorem 4. If $\{\mathbf{e}_{\alpha}\}_{\alpha \in J}$ is an orthonormal set, then $\{\mathbf{e}_{\alpha}\}_{\alpha \in J}$ is linear independent.

Proof. Assume $c_1 \mathbf{e}_{\alpha_1} + \cdots + c_n \mathbf{e}_{\alpha_n} = \mathbf{O}$ and take the inner product of both sides with \mathbf{e}_{α_j} . Then, the orthonormality of $\{\mathbf{e}_{\alpha}\}_{\alpha \in J}$ implies immediately that $c_j = 0$.

***Remark 2.** Let $\mathbf{e}_1, \ldots, \mathbf{e}_n$ be an orthonormal basis of the space X (hence $\dim X = n$). If

$$\mathbf{x} = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n,$$

then $x_j = (\mathbf{x}, \mathbf{e}_j), j = 1, 2, ..., n$. Furthermore, if \mathcal{L} is a linear operator on X and $[\mathcal{L}]_{\mathbf{e}} = [a_{jk}]_{1 \leq j,k \leq n}$ is its $n \times n$ matrix with respect to the O-N basis $\mathbf{e}_1, \ldots, \mathbf{e}_n$, then

$$a_{jk} = (\mathcal{L}\mathbf{e}_k, \mathbf{e}_j), \qquad 1 \leq j, k \leq n.$$

Given the linearly independent vectors $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ in an inner product space X, there is a useful procedure, called *Gram-Schmidt orthogonalization*, for constructing an orthonormal set $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$, such that $\langle \mathbf{x}_1, \ldots, \mathbf{x}_k \rangle = \langle \mathbf{e}_1, \ldots, \mathbf{e}_k \rangle$ for $k = 1, 2, \ldots, n$, namely the vectors $\mathbf{x}_1, \ldots, \mathbf{x}_k$ and $\mathbf{e}_1, \ldots, \mathbf{e}_k$ span the same subspace of X, for all $k = 1, 2, \ldots, n$ (recall Definition 3):

$$\begin{split} \mathbf{w}_1 &:= \mathbf{x}_1, & \mathbf{e}_1 &:= \mathbf{w}_1 / \| \mathbf{w}_1 \|, \\ \mathbf{w}_2 &:= \mathbf{x}_2 - (\mathbf{x}_2, \mathbf{e}_1) \mathbf{e}_1, & \mathbf{e}_2 &:= \mathbf{w}_2 / \| \mathbf{w}_2 \|, \\ &\vdots & \vdots & \vdots \\ \mathbf{w}_n &:= \mathbf{x}_n - \sum_{j=1}^{n-1} (\mathbf{x}_n, \mathbf{e}_j) \mathbf{e}_j, & \mathbf{e}_n &:= \mathbf{w}_n / \| \mathbf{w}_n \|. \end{split}$$

The same procedure works for a countably infinite family of linearly independent vectors $\{\mathbf{x}_j\}_{j\in\mathbb{N}}$, in which case it produces a (countably infinite) orthonormal set $\{\mathbf{e}_j\}_{j\in\mathbb{N}}$, such that $\langle \mathbf{x}_1, \ldots, \mathbf{x}_k \rangle = \langle \mathbf{e}_1, \ldots, \mathbf{e}_k \rangle$ for all $k \in \mathbb{N}$.

Theorem 5 (Pythagorean theorem). Let $\mathbf{e}_1, \ldots, \mathbf{e}_n$ be orthonormal vectors in an inner product space X. Then, for all $\mathbf{x} \in X$,

$$\|\mathbf{x}\|^2 = \sum_{j=1}^n |(\mathbf{x}, \mathbf{e}_j)|^2 + \left\|\mathbf{x} - \sum_{j=1}^n (\mathbf{x}, \mathbf{e}_j)\mathbf{e}_j\right\|^2.$$

In particular we have the inequality (called *Bessel's inequality*)

$$\|\mathbf{x}\|^2 \ge \sum_{j=1}^n |(\mathbf{x}, \mathbf{e}_j)|^2$$
,

which becomes equality if and only if \mathbf{x} lies in the linear span of $\mathbf{e}_1, \ldots, \mathbf{e}_n$.

The idea of the proof is very simple: Notice that, since each \mathbf{e}_j , j = 1, ..., n, is orthogonal to $\mathbf{x} - \sum_{j=1}^{n} (\mathbf{x}, \mathbf{e}_j) \mathbf{e}_j$, we have that the vectors

$$\mathbf{x}_1 := \sum_{j=1}^n (\mathbf{x}, \mathbf{e}_j) \mathbf{e}_j$$
 and $\mathbf{x}_2 := \mathbf{x} - \sum_{j=1}^n (\mathbf{x}, \mathbf{e}_j) \mathbf{e}_j$ are orthogonal.

Thus, $\|\mathbf{x}\|^2 = (\mathbf{x}, \mathbf{x}) = (\mathbf{x}_1 + \mathbf{x}_2, \mathbf{x}_1 + \mathbf{x}_2) = (\mathbf{x}_1, \mathbf{x}_1) + (\mathbf{x}_2, \mathbf{x}_2).$

Remark 3. We can use Theorem 5 to prove the Schwarz inequality (see Theorem 3): Assume $\mathbf{y} \neq \mathbf{O}$ (the case $\mathbf{y} = \mathbf{O}$ is trivial). Set $\mathbf{e}_1 := \mathbf{y}/||\mathbf{y}||$, so that $\{\mathbf{e}_1\}$ is an orthonormal set, and apply Bessel's inequality to any $\mathbf{x} \in X$ using $\{\mathbf{e}_1\}$ (n = 1):

$$\|\mathbf{x}\|^2 \ge |(\mathbf{x}, \mathbf{e}_1)|^2 = |(\mathbf{x}, \mathbf{y}/\|\mathbf{y}\|)|^2 = \frac{|(\mathbf{x}, \mathbf{y})|^2}{\|\mathbf{y}\|^2},$$

from which $|(\mathbf{x}, \mathbf{y})| \leq ||\mathbf{x}|| ||\mathbf{y}||$ follows.

5 Adjoints

Definition 11. Let \mathcal{L} be a linear operator on an inner product space X over \mathbb{C} . The *adjoint operator* \mathcal{L}^* of \mathcal{L} is the operator satisfying

$$(\mathcal{L}\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \mathcal{L}^*\mathbf{y})$$
 for all $\mathbf{x}, \mathbf{y} \in X$.

Let $\mathbf{e}_1, \ldots, \mathbf{e}_n$ be an orthonormal basis of X. If $A = [\mathcal{L}]_{\mathbf{e}} = [a_{jk}]_{1 \leq j,k \leq n}$ is the matrix of \mathcal{L} with respect to the basis $\mathbf{e}_1, \ldots, \mathbf{e}_n$, then by the Remark 2 we have that the matrix $[\mathcal{L}^*]_{\mathbf{e}}$ of \mathcal{L}^* is A^H , namely

$$\left[\mathcal{L}^*\right]_{\mathbf{e}} = A^H = \left[\overline{a_{kj}}\right]_{1 \le j,k \le n}$$

(recall that $A^H := \overline{A}^{\top}$, where A^{\top} is the *transpose* of A).

Proposition 2. The adjoint operator satisfies: (i) $(\mathcal{L}^*)^* = \mathcal{L}$; (ii) $(\mathcal{L} + \mathcal{M})^* = \mathcal{L}^* + \mathcal{M}^*$; (iii) $(\mathcal{L}\mathcal{M})^* = \mathcal{M}^*\mathcal{L}^*$.

Example 6. If $\mathcal{M} = \lambda \mathcal{I}$, where λ is some complex number and \mathcal{I} is the identity operator, then $\mathcal{M}^* = \overline{\lambda} \mathcal{I}$.

***Definition 12.** (i) Let \mathcal{L} be a linear operator on an inner product space X over \mathbb{C} . If

$$\mathcal{LL}^{*} = \mathcal{L}^{*}\mathcal{L},$$

i.e. if \mathcal{L} commutes with its adjoint, then \mathcal{L} is called *normal operator*. Likewise, if a square matrix A satisfies

$$AA^H = A^H A,$$

then A is called *normal matrix*.

(ii) If $\mathcal{LL}^* = \mathcal{L}^*\mathcal{L} = \mathcal{I}$, then \mathcal{L} is called *unitary operator*. Likewise if a square matrix A satisfies $AA^H = I_n$, where $I_n = \text{diag}[1, 1, ..., 1]$ is the *identity matrix*, (I_n is the matrix of \mathcal{I} acting on an *n*-dimensional space X), then it is called *unitary matrix* (notice that for matrices the equation $AA^H = I_n$ implies also $A^HA = I_n$). A unitary matrix with real elements is called *orthogonal*.

(iii) If $\mathcal{L}^* = \mathcal{L}$, then the operator \mathcal{L} is called *self-adjoint*. Likewise if a square matrix A satisfies $A^H = A$, then A is called *Hermitian matrix*. A Hermitian matrix with real elements is *symmetric*, i.e. it satisfies $A = A^{\top}$.

Of course, unitary operators and self-adjoint operators are special cases of normal operators.

***Theorem 6.** (i) Let \mathcal{L} be a normal operator on a space X. Then

 $(\mathcal{L}^* \mathbf{x}, \mathcal{L}^* \mathbf{y}) = (\mathcal{L} \mathbf{x}, \mathcal{L} \mathbf{y}), \quad \text{hence} \quad \|\mathcal{L}^* \mathbf{x}\| = \|\mathcal{L} \mathbf{x}\|.$

(ii) Let \mathcal{U} be a unitary operator on a space X. Then

$$(\mathcal{U}\mathbf{x}, \mathcal{U}\mathbf{y}) = (\mathbf{x}, \mathbf{y}), \quad \text{hence} \quad \|\mathcal{U}\mathbf{x}\| = \|\mathbf{x}\|.$$

Proof. (i) Since $(\mathcal{L}^*)^* = \mathcal{L}$ and $\mathcal{LL}^* = \mathcal{L}^*\mathcal{L}$ we have

$$(\mathcal{L}^*\mathbf{x}, \mathcal{L}^*\mathbf{y}) = (\mathbf{x}, \mathcal{L}\mathcal{L}^*\mathbf{y}) = (\mathbf{x}, \mathcal{L}^*\mathcal{L}\mathbf{y}) = (\mathcal{L}\mathbf{x}, \mathcal{L}\mathbf{y}).$$

(ii) Since $\mathcal{U}^*\mathcal{U} = \mathcal{I}$ we have

$$(\mathcal{U}\mathbf{x}, \mathcal{U}\mathbf{y}) = (\mathbf{x}, \mathcal{U}^*\mathcal{U}\mathbf{y}) = (\mathbf{x}, \mathbf{y}).$$

*Theorem 7. Let $\lambda \in \mathbb{C}$ be an eigenvalue of a <u>normal</u> operator \mathcal{L} with corresponding eigenvector \mathbf{v} , namely $\mathcal{L}\mathbf{v} = \lambda \mathbf{v}$. Then

$$\mathcal{L}^* \mathbf{v} = \overline{\lambda} \mathbf{v}.$$

Proof. Given that \mathcal{L} is normal, Proposition 2(ii) and Example 6 imply that so is $(\mathcal{L} - \lambda \mathcal{I})$. Thus, by Theorem 6(i) we have

$$\|(\mathcal{L} - \lambda \mathcal{I})^* \mathbf{v}\| = \|(\mathcal{L} - \lambda \mathcal{I})\mathbf{v}\| = \|\mathcal{L}\mathbf{v} - \lambda \mathbf{v}\| = \|\mathbf{O}\| = 0,$$

Hence, $(\mathcal{L} - \lambda \mathcal{I})^* \mathbf{v} = \mathbf{O}$. The rest follows by invoking again Proposition 2(ii) and Example 6.

****Theorem 8.** Let \mathcal{L} be a <u>normal</u> operator and assume

$$\mathcal{L}\mathbf{v} = \lambda \mathbf{v}, \qquad \mathcal{L}\mathbf{w} = \mu \mathbf{w}, \qquad \lambda \neq \mu.$$

Then, $(\mathbf{v}, \mathbf{w}) = 0$.

Proof. By Theorem 7 we have $\mathcal{L}^* \mathbf{w} = \bar{\mu} \mathbf{w}$. Hence,

$$\lambda(\mathbf{v}, \mathbf{w}) = (\lambda \mathbf{v}, \mathbf{w}) = (\mathcal{L}\mathbf{v}, \mathbf{w}) = (\mathbf{v}, \mathcal{L}^*\mathbf{w}) = (\mathbf{v}, \bar{\mu}\mathbf{w}) = \mu(\mathbf{v}, \mathbf{w}).$$

Therefore, $(\mathbf{v}, \mathbf{w}) = 0$.

****Theorem 9.** A normal operator \mathcal{L} on a <u>finite dimensional</u> space X is diagonalizable.

Proof. Suppose \mathcal{L} is not diagonalizable. Then, it possess generalized eigenvectors. In particular, there is a $\mathbf{v} \in X$ such that

$$(\mathcal{L} - \lambda \mathcal{I})^2 \mathbf{v} = \mathbf{O}$$
 and $(\mathcal{L} - \lambda \mathcal{I}) \mathbf{v} \neq \mathbf{O}$.

If this is the case, since by Proposition 2(ii) and Example 6 the operator $(\mathcal{L} - \lambda \mathcal{I})$ is normal, Theorem 6(i) implies

$$0 = \left\| \left(\mathcal{L} - \lambda \mathcal{I} \right)^2 \mathbf{v} \right\| = \left\| \left(\mathcal{L} - \lambda \mathcal{I} \right) \left(\mathcal{L} - \lambda \mathcal{I} \right) \mathbf{v} \right\| = \left\| \left(\mathcal{L} - \lambda \mathcal{I} \right)^* \left(\mathcal{L} - \lambda \mathcal{I} \right) \mathbf{v} \right\|.$$

Thus, $(\mathcal{L} - \lambda \mathcal{I})^* (\mathcal{L} - \lambda \mathcal{I}) \mathbf{v} = \mathbf{O}$ and hence

$$(\mathbf{v}, (\mathcal{L} - \lambda \mathcal{I})^* (\mathcal{L} - \lambda \mathcal{I}) \mathbf{v}) = 0$$

or

$$\left(\left(\mathcal{L}-\lambda\mathcal{I}\right)\mathbf{v},\left(\mathcal{L}-\lambda\mathcal{I}\right)\mathbf{v}\right)=0,$$

i.e. $(\mathcal{L} - \lambda \mathcal{I}) \mathbf{v} = \mathbf{O}$, which contradicts our assumption that \mathbf{v} is a generalized eigenvector of level 2. Therefore, \mathcal{L} does not possess any generalized eigenvectors.

Theorems 7, 8, and 9 applied to a self-adjoint operator yield the following very important corollary:

* * *Corollary 1. Let \mathcal{L} be a self-adjoint operator on a space X. Then (i) All eigenvalues of \mathcal{L} are real.

(ii) Eigenvectors of \mathcal{L} corresponding to different eigenvalues are orthogonal.

(iii) If dim $X < \infty$, then the eigenvectors of \mathcal{L} form a basis for X.