
1. Random Variables

A probability space (abbreviated “p.s.”) (Ω, F, P ) is a measure space such
that

P (Ω) = 1,

i.e. the total measure is 1. The set Ω ( 6= ∅) is the sample space (abbreviated
“s.s.”), the members of the σ-algebra F are the events, and P is the probability
(measure). Although Ω is always in the background, we rarely refer directly to it.
Usually Ω is a huge set, and hence the class of events F cannot contain all subsets
of Ω. However, since F is a σ-algebra, it follows that countable operations of events
are events.

If a property holds for almost every ω (with respect to the measure P ), namely
for all ω ∈ Ω\N , where P (N) = 0, we say that it holds almost surely (abbreviated
“a.s.”, or “P -a.s.”, in the presence of more than one probability measures).

A real-valued function X on Ω,

X : Ω → R,

which is measurable with respect to F (symbolically X ∈ F , meaning that {X ≤ x} def=
{ω ∈ Ω : X(ω) ≤ x} is in F , for all x ∈ R) is called random variable, abbreviated
as “r.v.”. Thus, if X is an r.v. and x ∈ R, then {X ≤ x} is an event. It follows that
{X ∈ B} is an event, for every Borel set B ⊂ R. Sometimes it is necessary to allow
X to be an extended real-valued function, namely X : Ω → R = [−∞,∞], but
this does not really cause any serious complications.

The (probability) distribution function (abbreviated “d.f.”) F of an r.v. X

is defined by

(1) F (x) = P (X ≤ x) , x ∈ R.

Notice that F is increasing, F (−∞) = 0, F (∞) = 1, and F is right continuous,
i.e. F (x+) = F (x), since P is a measure. Thus, X induces a (probability) measure
(abbreviated “p.m.”) νX on the Borel sets of R so that

νX {(−∞, x]} = F (x) = P (X ≤ x) , x ∈ R.

Hence, for every Borel set B ⊂ R we have

νX (B) = P (X ∈ B) .

The defining equation (1) of F can be also written in a Stieltjes integral form

P (X ≤ x) =
∫ x

−∞
dF (ξ), F (−∞) = 0.

If F is absolutely continuous with F ′(x) = f(x), then

P (X ≤ x) =
∫ x

−∞
f(ξ)dξ,

and f is the (probability) density function (abbreviated “p.d.f.”) of X. All
the statistical information (the law) of X, is contained in F (and hence, in f , if it
exists).
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Exercise 1. Consider the probability space (W,B, µ), where the sample space
W is the open interval (0, 1), B is the σ-algebra of the Borel subsets of (0, 1), and
µ is the Lebesgue measure (so that dµ = dx). Given an arbitrary d.f. F (x), find a
r.v. Y on (W,B, µ) which is also an increasing function on (0, 1), such that the d.f.
of Y is F (x). Is Y unique? (Ans. Y (w) = sup{y ∈ R : F (y) ≤ w}).

Exercise 2. For any d.f. F (x) and any a ∈ R+ we have∫ ∞

−∞
[F (x + a)− F (x)] dx = a.

Let X : Ω → R be any function and B the σ-algebra of the Borel subsets of R.
Then the set

(2) σ(X) =
{
X−1(B) : B ∈ B

}
is a σ-algebra of subsets of Ω. In fact, it is the smallest σ-algebra with respect to
which X is measurable; it is called the σ-algebra generated by X. Obviously X

is an r.v. if and only if σ(X) ⊂ F .
If we consider a bunch of r.v.’s, say X1, ..., Xm (equivalently a random vector

X = (X1, ..., Xm) : Ω → Rm) then the individual distributions of every Xj alone
are not enough to determine their statistical properties as a group (i.e. as a random
vector), since we also need to know how they are related (e.g., X1 = the I.Q. of a
person, X2 = the salary of the person, X3 = his/her age, etc.). For this reason, we
consider the joint distribution function of X1, ..., Xm, namely

F (x1, ..., xm) = P (X1 ≤ x1, ..., Xm ≤ xm) , x1, ..., xm ∈ R.

Alternatively, the r.v.’s X1, ..., Xm induce a measure ν on the Borel sets of Rm:

ν (B) = P {(X1, ..., Xm) ∈ B}

(it is easy to see that, for any Borel subset B of Rm, {(X1, ..., Xm) ∈ B} is an
event). If there is a (Lebesgue measurable) function f such that

P {(X1, X2, ..., Xm) ∈ B} =
∫

B

f(x1, x2, ..., xm)dx1dx2 · · · dxm,

then f is called the joint (probability) density function (abbreviated as “p.d.f.”)
of X1, X2, ..., Xm. All the statistical information of X1, X2, ..., Xm, is contained in
F (and hence in f , if it exists).

If

F (x1, ..., xm) = F1(x1) · · · Fm(xm), for all x1, ..., xm ∈ R,

where Fj is the d.f. of Xj , j = 1, ...,m, then the r.v.’s X1, ..., Xm are (totally)
independent. In this case, the induced measure ν is a product measure on Rm.
The notion of independence extends to any collection of r.v.’s. The r.v.’s Xi, i ∈ I,
where I is any set of indices, are independent if, for any finite subset J of I, the
r.v.’s Xi, i ∈ J , are independent.
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2. Expected Value

We start with a rather sketchy discussion on how to formulate a general definition
of the mean value of an r.v. X : Ω → R. Of course, the mean value of X, if it can
be defined, it has to be a real number (or ±∞). Some of the symbols often used to
denote it are:

E [X] ,
∫

Ω

XdP,

∫
Ω

X(ω)dP (ω),
∫

Ω

X(ω)P (dω)

(sometimes Ω is omitted under the integral sign). In the literature one can encounter
various other names for the mean value of an r.v. X, such as expectation or
expected value or mean or, sometimes, average (value) of X. In measure
theoretic terms, it is the integral of X (over Ω) with respect to the measure P .

Step 1. Let A be an event (i.e. A ∈ F ) and

X = 1A,

the indicator (or, sometimes, characteristic) function of A, meaning that

X(ω) =
{

1, if ω ∈ A ;
0, if ω /∈ A .

It follows that X is a Bernoulli r.v. and

X =
{

1, with probability P (A) ;
0, with probability 1− P (A) .

Hence, its mean value must be P (A). Therefore

(3) E [1A] =
∫

Ω

1AdP =
∫

A

dP = P (A).

Step 2. An r.v. is called simple if it is a (finite) linear combination of indicator
functions. Thus, if X is simple, then it can be written as

(4) X =
m∑

j=1

cj1Ej
,

where Ej ∈ F and cj ∈ R, for any j = 1, ...,m. Since the expectation (i.e. the
mean value) has to be a linear operation, we can use (3) of Step 1 and set

(5) E[X] =
∫

Ω

XdP =
m∑

j=1

cj

∫
Ω

1Ej
dP =

m∑
j=1

cjP (Ej) .

However, in order for E[X] to be meaningful (well-defined), we need to make sure
that it is independent of the representation of X. That is, if

X =
k∑

j=1

bj1Bj
,

is any other way to express X of (4), then we must have
k∑

j=1

bjP (Bj) =
m∑

j=1

cjP (Ej) .
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We can establish the above equality by induction on m. First one should show
that X of (5) has a (unique) canonical representation

X =
n∑

j=1

aj1Aj
,

where {a1, ..., an} is the range of X (the fact that the range is a finite set requires
proof) and Aj = {X = aj} = {ω ∈ Ω : X(ω) = aj}, j = 1, ..., n (notice that
{A1, ..., An} is a partition of Ω). Then it is not hard to show that

m∑
j=1

cjP (Ej) =
n∑

j=1

ajP (Aj) ,

which in turn implies that E[X] of (5) is well-defined for any simple r.v. X (the
novice is urged to first “play” with the case m = 2, i.e. with X = c11E1 + c21E2).

Step 3. Now if X is an r.v. such that X(ω) ≥ 0, for all ω ∈ Ω, we define

(6) E [X] =
∫

Ω

XdP = supY simple,0 ≤ Y ≤ X

∫
Ω

Y dP.

This definition makes sense even if X : Ω → [0,∞]. If P (X = ∞) > 0, then, of
course, E [X] = ∞. But it can also happen that E [X] = ∞, even if X < ∞ a.s.

Given the r.v. X ≥ 0, with X < ∞ a.s., in order to understand the above
definition (6) a little more, let us introduce the simple r.v.’s

(7) Xn =
n2n∑
k=0

(
k

2n

)
1En,k

,

where, for each n = 1, 2, 3, ..., the En,k’s are the events

En,k =
{

ω ∈ Ω :
k

2n
≤ X(ω) <

k + 1
2n

}
, 0 ≤ k ≤ n2n,

i.e. the En,k’s define a partition Pn of the range of X, up to the level En,k’s . The
reason for using binary fractions (i.e k/2n) as partition points is to guarantee that
Pn+1 is a refinement (and extension) of Pn, and hence

Xn ≤ Xn+1.

Next observe that (5) implies
(8)

E[Xn] =
∫

Ω

XndP =
n2n∑
k=0

(
k

2n

)
P (En,k) =

n2n∑
k=0

(
k

2n

)
P

{
k

2n
≤ X <

k + 1
2n

}
.

Also,

E[Xn] ≤ E[Xn+1],

which implies that

sup
n

E[Xn] = lim
n

E[Xn].

The following theorem gives a more precise way to, actually, define E[X]:
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Theorem 1. Let X ≥ 0 be an r.v. which is finite a.s., and Xn as in (7). Then

E[X] =
∫

Ω

XdP = lim
n

E[Xn] = lim
n

n2n∑
k=0

(
k

2n

)
P

{
k

2n
≤ X <

k + 1
2n

}
,

where E[X] is the expectation of X, as defined by (6).

Notice that, in order to be in agreement with the definition of a simple r.v., we
are not allowed to take the upper limit of the dummy variable k in the sum, in (7),
to be ∞, especially when X is unbounded. Our choice to take 0 ≤ k ≤ n2n does
the job, since n2n/2n = n →∞.

Step 4. Finally, if X : Ω → R (or, more generally, X : Ω → R def= [−∞,∞]) is
an arbitrary r.v., we introduce the r.v.’s

X+(ω) = max {X(ω), 0} and X−(ω) = max {−X(ω), 0} ,

the positive and negative parts of X respectively. Observe that X+(ω) ≥ 0,
X−(ω) ≥ 0 (thus E[X+] and E[X−] are defined) and X can be decomposed as

X(ω) = X+(ω)−X−(ω).

It is therefore natural to define

(9) E[X] = E[X+]− E[X−],

whenever it makes sense. Thus, (i) if E[X+] < ∞ and E[X−] < ∞, then E[X] is a
real number; (ii) if E[X+] = ∞ and E[X−] < ∞, then E[X] = ∞; (iii) if E[X+] <

∞ and E[X−] = ∞, then E[X] = −∞; and, finally, (iv) if E[X+] = E[X−] = ∞,
then E[X] can not be defined. Since

|X(ω)| = X+(ω) + X−(ω),

we have that E[X+] < ∞ and E[X−] < ∞ imply E[|X|] < ∞ and conversely.

Remark. The above steps describe a standard measure theoretic procedure
of defining the integral of a measurable function. Note that, the idea here is to
partition the range of the integrand function rather than its domain, as is done
in order to define the Riemann integral. It turns out that this measure theoretic
definition behaves nicely, especially in the cases where one needs to interchange
integral and limit, as we will see in the theorems to follow.

If E[|X|p] < ∞ for some p > 0, we say that X ∈ Lp(Ω) or, sometimes, in order to
avoid confusion, X ∈ Lp(Ω, F, P ) (notice that Lp(Ω, F, P ) ⊃ Lq(Ω, F, P ), whenever
p < q). If p ≥ 1, then Lp(Ω, F, P ) is a Banach space with norm

‖X‖p = (E[|X|p])1/p

and Lp(Ω, F, P ) becomes a Hilbert space if and only if p = 2. Observe that E[X]
is a real number if and only if X ∈ L1(Ω, F, P ), in which case we say that X is
integrable.

The variance of X is

(10) V [X] def= E
[
(X − µ)2

]
= E[X2]− E[X]2, where µ = E[X]



6

(thus V [X] ≥ 0 and V [X] = 0 if and only if X(ω) = µ a.s.). Notice that, if
X ∈ L2(Ω, F, P ), then V [X] < ∞.

The covariance of two r.v.’s X and Y is

Cov(X, Y ) def= E [(X − µX) (Y − µY )] = E[XY ]− E[X]E[Y ],

where µX = E[X] and µY = E[Y ]. We remind the reader of the (Cauchy-Schwartz-
type) inequality

Cov(X, Y )2 ≤ V [X]V [Y ] .

If A is an event and X an r.v., we define the integral of X over A as

(11) E [X;A] def=
∫

A

XdP = E [X1A] .

In the case where P (A) = 0, we have
∫

A
XdP = 0, even if X = ∞ on A (that is

why sometimes people say that in measure theory 0 · ∞ = 0).

*Exercise 3. Let X : Ω → R be an r.v.. We set Am = {|X| ≤ m}, where m is
a positive real number. If

E [|X|] = ∞,

and p > 1, does it follow that

(12) lim
m→∞

{E [|X|p ;Am]− E [X;Am]p} = ∞

(and, hence that X ∈ Lp(Ω, F, P ) if and only if the limit in (12) is finite)?

Remark. The definition (10) of V [X] assumes that µ = E [X] is a real number
or, equivalently, that E [|X|] < ∞. Alternatively, we could define

Ṽ [X] def= lim
m→∞

{
E

[
X2;Am

]
− E [X;Am]2

}
.

Of course, if E [|X|] < ∞, then Ṽ [X] = V [X]. But, if E [|X|] = ∞ and the above
exercise has an affirmative answer (at least for p = 2), then Ṽ [X] = ∞ in spite of
the fact that V [X] of (10) is not meaningful.

2.1. Basic Properties of the Expectation. We give a list of properties of the
expectation. Sometimes when the statement seems hard, the following approach
helps to write a straightforward proof: First one establishes the statement for the
case where the r.v.’s involved are indicator funcions of events. Then we prove the
statement for simple r.v.’s, and finally we pass to the limit invoking (6) or (8).

P1. If X ≤ Y a.s., then
E[X] ≤ E[Y ],

provided E[X] and E[Y ] exist.

P2 (Linearity). If X, Y are r.v.’s and a, b ∈ R, then

E[aX + bY ] = aE[X] + bE[Y ],

provided the right side is meaningful, namely not ∞−∞ or −∞+∞.

P3 (Additivity over sets). If A,B ∈ F , with P (A ∩B) = 0, then∫
A∪B

XdP =
∫

A

XdP +
∫

B

XdP,
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provided the right side is meaningful (just notice that 1A∪B = 1A + 1B a.s.).

P4. If a, b ∈ R, then

V [aX + b] = a2V [X].

P5. If X, Y ∈ L2(Ω, F, P ) are independent, then

E [XY ] = E[X]E[Y ], equivalently Cov(X, Y ) = 0.

P6. If X, Y ∈ L2(Ω, F, P ), then

V [X + Y ] = V [X] + V [Y ] + 2Cov(X, Y )

(thus, if X, Y are independent, then V [X + Y ] = V [X] + V [Y ]).

P7 (Jensen’s inequality). If ϕ : R → R is a convex function, and X and ϕ(X)
are integrable r.v.’s, then

ϕ (E[X]) ≤ E [ϕ(X)] .

We continue with three important theorems.

Theorem 2 (Fatou’s Lemma). If Xn ≥ 0 a.s., for all n = 1, 2, ..., and Xn → X

a.s., then
E[X] ≤ lim inf E[Xn].

For the proof see [2].

Remark. An alternative form of the theorem is the following: If Xn ≥ 0 a.s.,
for all n = 1, 2, ..., then

E[lim inf Xn] ≤ lim inf E[Xn].

Theorem 3 (the Monotone Convergence Theorem, abbreviated MCT). If Xn ≥
0 a.s., for all n = 1, 2, ..., Xn → X a.s., and Xn ≤ X a.s., then

E[X] = lim
n

E[Xn].

Proof. Theorem 2 implies

(13) E[X] ≤ lim inf E[Xn].

However, Xn ≤ X a.s., implies (see Property P1) that E[Xn] ≤ E[X], for all n,
and hence

(14) lim supE[Xn] ≤ E[X].

The statement follows immediately by combining (13) and (14).

Remark. Most texts state the MCT using the stronger hypothesis that Xn ≤
Xn+1 a.s.

Theorem 4 (the Dominated Convergence Theorem, abbreviated DCT). If Xn →
X a.s., and |Xn| ≤ Y a.s., with E[Y ] < ∞, then

E[X] = lim
n

E[Xn].

Proof. Apply Theorem 2 to Y + Xn and to Y −Xn.

If Y = M a.s. (i.e. a positive constant), then we get the following:
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Corollary (the Bounded Convergence Theorem, abbreviated BCT). If Xn → X

a.s., and |Xn| ≤ M a.s., then

E[X] = lim
n

E[Xn].

The next theorem states that the expectation, as defined above, agrees with the
expectation as defined in the elementary probability courses.

Exercise 4. Show that the above theorems (Theorems 2, 3, 4) remain true if,
instead of a sequence {Xn}n∈N, we have a family {Xt}t∈[0,b) of r.v.’s, such that
limt↗b Xt = X a.s. (here 0 < b ≤ ∞).

Theorem 5. Let g : R → R be a continuous function, and X an r.v., with d.f.
F (x), such that g(X) is integrable (i.e. E[g(X)] is a real number). Then

(15) E[g(X)] =
∫ ∞

−∞
g(x)dF (x),

where the integration in the right side is done in the Riemann-Stieltjes sense. In
particular, if F (x) has a density f(x) = F ′(x), then (15) becomes the familiar

E[g(X)] =
∫ ∞

−∞
g(x)f(x)dx

(notice that, if g(x) = x, we get the formula of elementary probability).

Proof (sketch). For
g(x) = 1(a,b](x)

one can easily check that (15) is true. Then it follows immediately that (15) is also
true if g is a step function, namely it has the form

g(x) =
n∑

j=1

cj1(aj ,bj ](x),

where aj , bj , cj ∈ R, for j = 1, ..., n, while the intervals (a1, b1], ..., (an, bn] are
disjoint. If g(x) ≥ 0 is continuous, we approximate it from below by step functions,
and establish (15) by invoking the MCT (Theorem 3). Finally, the general case
follows by writing

g(x) = g+(x)− g−(x),

as usual.

The theorem can be generalized in two directions: (a) one can consider a g :
R → R which is a Borel function; and (b) one can consider the r.v.’s X1, ..., Xm

and a g : Rm → R. E.g., if X1, ..., Xm have a joint density f , then

E[g(X1, ..., Xm)] =
∫
· · ·

∫
Rm

g(x1, ..., xm)f(x1, ..., xm)dx1 · · · dxm.

Example 1. A Gaussian or normal r.v. X is by definition an r.v. with density

f(x) =
1√

2πσ2
e−(x−µ)2/2σ2

,

where µ and σ are real constants (if σ = 0, then X(ω) = µ a.s.). It turns out that

E[X] = µ and V [X] = σ2 .
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Thus, a normal distribution is completely determined by its expectation and vari-
ance. The normal distribution plays a fundamental role in probability theory.

Example 2. The r.v.’s X1, X2, ..., Xm are jointly Gaussian or normal if their
joint density is

f(x1, x2, ..., xm) =
1

(2π)m/2√
D

e−
1
2 Q[x−µ],

where µ = (µ1, µ2, ..., µm) is a constant vector, x = (x1, x2, ..., xm), Q[y] is the
positive definite quadratic form

Q[y] =
m∑

i=1

m∑
j=1

bijyiyj , bij = bji,

and D = det (bij).
It turns out that

E[Xj ] = µj and Cov(Xi, Xj) =
Dij

D
,

where Dij is the minor of D corresponding to the entry bij . Thus the joint normal
density is completely determined by E[Xj ] = µj , 1 ≤ j ≤ m, and the covariance
matrix {Cov(Xi, Xj)}1≤i,j≤m which, in fact, is the inverse of the matrix (bij). If
X1, X2, ..., Xm are jointly normal, then any linear combination

Y = c1X1 + c2X2 + · · ·+ cmXm

is a normal random variable (in many cases we can assume without loss of generality
that E[Xj ] = 0, for all j).

Exercise 5. Let X be an r.v. with d.f. F (x). If X ≥ 0 a.s., then

E[X] =
∫ ∞

0

x dF (x) =
∫ ∞

0

[1− F (x)] dx =
∫ ∞

0

P (X > x) dx =
∫ ∞

0

P (X ≥ x) dx.

3. Conditional Expectation

As we will see, in many cases one needs to consider various σ-algebras of events
(i.e. subalgebras of F ). If X is an r.v. and A a σ-algebra (of events), then X is
measurable w.r.t. A, symbolically X ∈ A, if

X−1(B) ∈ A for any Borel set B ⊂ R.

Equivalently, X ∈ A, if there is a dense set S ⊂ R such that {X ≤ x} ∈ A, for
every x ∈ S.

If X : Ω → R is an arbitrary function, then the smaller σ-algebra with respect
to which X is measurable is denoted by σ(X). In other words σ(X) = {A ⊂ Ω :
A = X−1(B), for some Borel set B ⊂ R}, i.e. σ(X) is the σ-algebra generated by
the sets {X ≤ x}, x ∈ R (or just x ∈ S, for some dense set S ⊂ R). Of course, X

is an r.v. if and only if σ(X) ⊂ F .

Theorem 6 (the Doob-Dynkin Lemma). If X : Ω → R and Y : Ω → R are
arbitrary functions, then

Y ∈ σ(X) if and only if Y = g(X),
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where g : R → R is a Borel function (the statement can be extended to higher
dimensions).

For the proof see [1], Sec. 9.1.

Intuitively, the theorem says that Y ∈ σ(X) if X can catch all subtleties of Y .
Suppose now we have a subalgebra A of F and an r.v. X. Then X may not

be measurable with respect to A and it is, therefore, natural to look for a Y ∈ A

which somehow best approximates X. This leads to the following definition:

Definition. Let X be in L1(Ω, F, P ) and A a subalgebra A of F . Then the
r.v. Y is called the conditional expectation of X relative to A, symbolically
Y = E[X |A], if

(i) Y ∈ A;
(ii) for every A ∈ A we have ∫

A

Y dP =
∫

A

XdP.

If A = σ(Z), for some r.v. Z, then we write E[X |Z] instead of E[X |σ (Z)] and
E[X |Z] is called the conditional expectation of X given Z. If X = 1B , for
some event B ∈ F , then, instead of E[1B |A], we sometimes write P [B |A], the
conditional probability of B relative to A.

Of course, Theorem 6 implies that there is a Borel function g : R → R such that
E[X |Z] = g(Z).

Theorem 7. Given X ∈ L1(Ω, F, P ) and a σ-algebra A (of events), the condi-
tional expectation Y = E[X |A] exists and is unique a.s., namely if Y1 and Y2 are
conditional expectation of X relative to A, then Y1 = Y2 a.s.

Proof. For any A ∈ A we define

λ(A) =
∫

A

XdP.

It is not hard to see that λ(·) is a signed measure on A and, furthermore, that
λ << P (λ is absolutely continuous with respect to P ) meaning that λ(A) = 0
whenever P (A) = 0. Hence, the Radon-Nikodym Theorem tells us that there exists
a function Y ∈ L1(Ω, A, P ) such that

λ(A) =
∫

A

Y dP

and that this Y (which is called the Radon-Nikodym derivative of λ with respect
to P and denoted by dλ/dP ) is unique a.s. It follows immediately that Y is the
conditional expectation of X relative to A.

Exercise 6. If X ∈ L2(Ω, F, P ) and A is as above, then E[X |A] = ΠX,
where Π is the orthogonal projection of L2(Ω, F, P ) onto L2(Ω, A, P ). We remind
the reader that any X ∈ L2(Ω, F, P ) can be written (uniquely) as X = Y + Y ⊥,
where Y = ΠX ∈ L2(Ω, A, P ) and Y ⊥ is orthogonal to L2(Ω, A, P ) (notice that
L2(Ω, A, P ) is a closed subspace of L2(Ω, F, P )).
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In general, if X ∈ L1(Ω, F, P ), the conditional expectation E[X |A] is the L1-
projection of X on L1(Ω, A, P ).

Example 3. Let X ∈ L1(Ω, F, P ), A0 = {∅,Ω}, and A1 = {∅, A, Ac,Ω}, where
0 < P (A) < 1. Then

E[X |A0] = E[X],

while
E[X |A1] = E [X |A]1A + E [X |Ac]1Ac ,

where

E [X |A] =
E [X1A ]

P (A)
,

namely E [X |A] is the (elementary) conditional expectation of X given the event
A. More generally, if A1, ..., An is a partition of Ω such that 0 < P (Aj) < 1,
j = 1, ..., n, and An = σ(A1, ..., An), then

E[X |An] =
n∑

j=1

E [X |Aj ]1Aj
.

Exercise 7. Let X, Y be r.v.’s possessing a joint p.d.f. f(x, y). In elementary
Probability Theory we had defined the conditional (probability) density f(y |x) of
Y , given X = x, as

f(y |x) =
f(x, y)
fX(x)

,

where

fX(x) =
∫ ∞

−∞
f(x, y)dy

is the (marginal) p.d.f. of X. Using f(y |x) one can define the (elementary) condi-
tional expectation of Y , given X = x, as

E [Y |X = x] =
∫ ∞

−∞
yf(y |x)dy.

Show that
E [Y |X] = g(X),

where g(x) = E [Y |X = x].

3.1. Basic Properties of the Conditional Expectation. We give a list of prop-
erties of the conditional expectation. Sometimes we will omit the obvious “a.s.’s”.

Theorem 8. Let X and Y be r.v.’s, such that X and Y X are integrable. If
Y ∈ A, then

E[Y X |A] = Y E[X |A] a.s.

For the proof see [1]. If X = 1 a.s., then E[X |A] = E[1 |A] = 1 a.s. (why?)
and the theorem implies that

E[Y |A] = Y , whenever Y ∈ A.

Some other properties:
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P1 (Monotonicity). If X ≤ Y a.s., then E[X |A] ≤ E[Y |A], provided E[X] and
E[Y ] exist.

P2 (Linearity). If X, Y are integrable r.v.’s and a, b ∈ R, then

E[aX + bY |A] = aE[X |A] + bE[Y |A].

P3. If X and A are independent, then E[X |A] = E[X ].

Exercise 8 (A Cauchy-Schwartz-type inequality). If X, Y ∈ L2(Ω, F, P ), show
that

E [|XY | |A]2 ≤ E
[
X2 |A

]
E

[
Y 2 |A

]
(Caution!).

Theorem 9 (Jensen’s inequality). If ϕ : R → R is a convex function, and X

and ϕ(X) are integrable r.v.’s, then

ϕ (E [X |A]) ≤ E [ϕ(X) |A] .

For the proof see [1].
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