Problem. An integer n > 1 is called b-normal if all digits 0,1, ..., (b — 1) appear the same
number of times in the expansion of n with respect to base b (b > 2). We denote by .4; the set
of all b-normal integers. Determine the b’s for which the sum

1
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is finite.

Solution. Let us denote by [,(n) the length of the expansion of n with respect to base b,
namely the number of digits in the expansion (where, of course, the first digit cannot be 0).
Clearly, if n is b-normal, we must have

ly(n) = bk for some integer k > 1.

If v,(bk) is the number of b-normal integers n such that [,(n) = bk, it is not difficult to see
that
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where the second sum has v, (bk) terms. Since every number whose b-base expansion has
length bk is between b%*~! and b%*, we must have
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Thus, in view of (1), the finiteness of S is equivalent to the finiteness of
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By Stirling’s formula (k! ~ k*e=%/27k) we have
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(where f(k) ~ g(k) means that f(k)/g(k) — 1 as k — 00). It follows that S’ (and, therefore,
S) is finite if and only if b > 4. |




