
A PROBABILITY PROBLEM

A big supermarket chain has the following policy: For every m Euros you spend per buy, you
earn one “point” (suppose, e.g., that m = 3; in this case, if you spend 8.45 Euros, you get
two points, if you spend 9.00 Euros, you get three points, while if you spend 2.85 Euros, you
get zero points). After you collect a certain number of points, you can redeem them for a gift
certificate.

What is the actual price β of a point?

General Discussion. The amount X spent per buy can be considered a positive random
variable with a distribution function F (x) and finite mean µX = E[X] > 0. Recall the
well-known formula

µX =

∫ ∞

0

P{X ≥ x}dx =

∫ ∞

0

P{X > x}dx =

∫ ∞

0

[1− F (x)] dx, (1)

which is valid for any nonnegative random variable X .

If F (m−) := limx→m− F (x) = P{X < m} = 1, then it is impossible to earn points and
we may say that in this case β = ∞, which is totally unrealistic and uninteresting. Hence, in
order for our problem to be meaningful we should at least have F (m−) < 1. Actually, from
now on we will make a slightly stronger assumption, namely

F (m) = P{X ≤ m} < 1. (2)

If one visits a store and spends X Euros, the number of points (s)he earns is

Y = ⌊X/m⌋ , (3)

where ⌊x⌋ denotes the greatest integer ≤ x. Thus,

X

m
− 1 < Y ≤ X

m
. (4)

Since Y ≥ 0, formula (4) can be slightly improved:(
X

m
− 1

)+

=
(X −m)+

m
≤ Y ≤ X

m
, (5)

where (x)+ = max{x, 0}. By taking expectations (5) yields

E
[
(X −m)+

]
m

≤ µY ≤ µX

m
, (6)
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where µY = E[Y ]. Since

E
[
(X −m)+

]
=

∫ ∞

0

(x−m)+dF (x) =

∫ ∞

m

(x−m)dF (x) =

∫ ∞

m

P{X > x}dx, (7)

we have, in view of (2),
E
[
(X −m)+

]
> 0. (8)

Let us, also, notice that it follows easily from (7) that

E
[
(X −m)+

]
≥ (µX −m)+ . (9)

Furthermore, equation (3) implies that

µY =
∞∑
k=1

k P{Y = k} =
∞∑
k=1

k P{km ≤ X < (k + 1)m} =
∞∑
k=1

P{X ≥ km}, (10)

where the last equality follows by summation by parts (notice, also, that P{X ≥ km} =
1− F (km−)).

Now, let X1, X2, . . . , Xn be the amounts spent per buy by a random group of consumers. We
assume that these amounts are independent copies of X , namely that {Xk}1≤k≤n is a collection
of independent random variables with common distribution function F (x). For these n buys,
the total amount spent is

X1 +X2 + · · ·+Xn (11)

and the total number of points earned is

Y1 + Y2 + · · ·+ Yn, where Yk = ⌊Xk/m⌋, k = 1, 2, . . . , n. (12)

It is, then, reasonable to infer that the actual value of a point is

β = lim
n

X1 +X2 + · · ·+Xn

Y1 + Y2 + · · ·+ Yn

. (13)

Dividing the numerator and the denominator of the above fraction by n and invoking the Law
of Large Numbers, we obtain from (13) that

β =
µX

µY

. (14)

Remark 1. The limit in (13) exists almost surely. Actually, for the a.s. existence of the limit
it is enough to assume that {Xk}∞k=1 is a sequence of pairwise independent random variables
with common distribution function F (x) (this is Etemadi’s version of the Strong Law of Large
Numbers—see, e.g., [1]).

2



Formulas (6) and (9), applied to (14), give us some bounds for β, namely

m ≤ β ≤ µX

E
[
(X −m)+

] m ≤ µX

(µX −m)+
m =

m(
1− m

µX

)+ . (15)

Of course, the lower bound of β given in (15), namely m ≤ β, is trivial. An equivalent way to
write (15) is

1 ≤ λ ≤ µX

E
[
(X −m)+

] ≤ 1(
1− m

µX

)+ , where we have set λ :=
β

m
. (16)

Thus, if µX is considerably larger that m, then λ is close to 1, i.e. β is close to m.

Remark 2. (a) Suppose we have a whole family (or a sequence) {FK(x)} of distribution
functions satisfying our basic assumptions (i) FK(0) = 0, (ii) FK(m) < 1, and (iii) the
expectation associated to FK(x) is finite, i.e.

∫∞
0

[1− FK(x)] dx < ∞. Under this setup,
formula (16) implies that

if lim
K→∞

µX = ∞, then lim
K→∞

λ = 1. (17)

(b) In the case where our family {FK(x)} is such that limK→∞ FK(m
−) = limK→∞ P{X <

m} = 1, one might expect that λ → ∞ (i.e. β → ∞). However, it is easy to find examples
where λ stays finite. Actually, we can even have limK→∞ µX = ∞, which by (17) will imply
that λ → 1. For example, for each K choose FK(x) so that P{X < m} = 1 − (2/K) and
P{X > K2} = 1/K. Then, it is obvious that limK→∞ P{X < m} = 1, while µX ≥ K and
hence limK→∞ µX = ∞ (thus, (17) implies limK→∞ λ = 1). In fact, even if, limK→∞ µX = 0
(which is, clearly, stronger than limK→∞ P{X < m} = 1), we have that the limit of λ, if it
exists, can take any value ≥ 1 (including ∞). To see an example let us for convenience take
m = 1:

If FK(x) = (1−K−1)1[K−2, 1+K−2)(x) + 1[1+K−2,∞)(x), then lim
K→∞

λ = 1

(where 1I(x) denotes the indicator function of the interval I), while

if FK(x) = (1−K−2)1[K−1, 1+K−1)(x) + 1[1+K−1,∞)(x), then lim
K→∞

λ = ∞.

The Gamma Case. In order to get a more precise estimate for β, we need to have more
information regarding the distribution of X . For instance, a plausible assumption is that X
follows a Gamma distribution with parameters a > 0 and p > 0, namely that its probability
density function is

f(x) =
1

Γ(p)
(ax)p−1ae−ax, x > 0 (18)
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(of course, f(x) = 0 for x < 0), where Γ(·) is the Gamma function. Recall that, since p > 0,
we have

Γ(p) =

∫ ∞

0

ξp−1e−ξdξ (19)

and that if X has the Gamma density f(x) given by (18), then

µX =
p

a
. (20)

Therefore, in view of (14), in order to determine the price β we have to calculate µY . Using
(18) in (10) yields

µY =
1

Γ(p)

∞∑
k=1

k

∫ (k+1)m

km

(ax)p−1ae−axdx =
1

Γ(p)

∞∑
k=1

k

∫ (k+1)am

kam

ξp−1e−ξdξ (21)

or

µY =
1

Γ(p)

∞∑
k=1

∫ ∞

kam

ξp−1e−ξdξ. (22)

By substituting (20) and (22) in (14) we obtain

β =
pΓ(p)

a
∑∞

k=1

∫∞
kam

ξp−1e−ξdξ
=

Γ(p+ 1)

a
∑∞

k=1

∫∞
kam

ξp−1e−ξdξ
, (23)

which in terms of the ratio λ introduce in (16) becomes

λ(a, p) := λ =
β

m
=

Γ(p+ 1)

am
∑∞

k=1

∫∞
kam

ξp−1e−ξdξ
. (24)

Observe that (17) tells us that

µX → ∞ implies λ(a, p) → 1 (25)

and, in particular, in view of (20),

lim
a→0+

λ(a, p) = 1 and lim
p→∞

λ(a, p) = 1. (26)

It is remarkable that the above limits are not so obvious from (24).

Looking at formula (24) it seems that, unless we have specific numerical values for the param-
eters m, a, and p, it is not clear how to extract a precise estimate for the ratio λ(a, p). For this
reason, the qualitative behavior of λ(a, p) has some interest.

Conjecture. The function λ(a, p) of (24) is (i) strictly increasing in a and (ii) strictly decreas-
ing in p. Furthermore,

lim
a→∞

λ(a, p) = ∞ and lim
p→0+

λ(a, p) = ∞. (27)
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In an attempt to obtain a formula for λ(a, p) which is more explicit than (24), let us suppose
that X follows an Erlang distribution, namely

p = n ∈ N := {1, 2, . . .}. (28)

Then (24) becomes

λ(a, n) =
n!

am
∑∞

k=1

∫∞
kam

ξn−1e−ξdξ
=

n

am
∑∞

k=1 Fn(kam)
, (29)

where we have set
Fn(x) :=

1

(n− 1)!

∫ ∞

x

ξn−1e−ξdξ, . (30)

We claim that

Fn(x) = Sn(x)e
−x, where Sn(x) :=

n−1∑
l=0

xl

l!
. (31)

For n = 1 formula (31) is clearly true. To justify (31) for n ≥ 2 we first observe that the
definition (30) of Fn(x) implies

F ′
n(x) = − xn−1

(n− 1)!
e−x and Fn(0) = 1. (32)

Now, from the definition (31) of Sn(x) we have

S ′
n(x) = Sn−1(x) and Sn(0) = 1. (33)

Therefore, Fn(x) and Sn(x)e
−x agree at x = 0 and by applying (33) and the definition of

Sn(x) we get

[
Sn(x)e

−x
]′
= S ′

n(x)e
−x − Sn(x)e

−x = Sn−1(x)e
−x − Sn(x)e

−x = − xn−1

(n− 1)!
e−x. (34)

By comparing (34) with (32) we get the validity of (31). Using now (31) in (29) yields

λ(a, n) =
n

am
∑∞

k=1 Sn(kam)e−kam
=

n

am
∑∞

k=1

∑n−1
l=0

(kam)l

l!
e−kam

(35)

or, by interchanging the order of summation in the denominator of the last expression

λ(a, n) =
n

am
∑n−1

l=0
(am)l

l!
Tl(am)

, (36)

where we have set

Tl(x) :=
∞∑
k=1

kle−kx, x > 0, l = 0, 1, 2, . . . (37)
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(incidentally, Tl(x) of (37) makes sense for any complex number l, actually it is entire in l;
also, for any real l, Tl(x) is strictly decreasing in x on (0,∞), with Tl(∞) = 0; finally, if
l ≥ −1, then Tl(0

+) = ∞, while if l < −1, then Tl(0) = ζ(−l)). From (37) we have

T0(x) =
∞∑
k=1

e−kx =
e−x

1− e−x
=

1

ex − 1
(38)

and
Tl+1(x) = −T ′

l (x). (39)

Therefore,
Tl(x) = (−1)lT

(l)
0 (x) (40)

and equation (36) can be written as

λ(a, n) =
n

am
∑n−1

l=0
(−am)l

l!
T

(l)
0 (am)

. (41)

However, from (41), unless we specify n it is still not clear how λ varies with m, a, and n.

There is something peculiar in formula (41). If we consider the Taylor polynomial

Qn(x;x0) :=
n−1∑
l=0

(x− x0)
l

l!
T

(l)
0 (x0) (42)

associated to T0(x), then the sum appearing in the denominator of (41) is Qn(0; am), while
T0(0

±) = ±∞.

Finally, let us notice that by straightforward induction we can show

T
(l)
0 (x) = (−1)l

ql(e
x)

(ex − 1)l+1
, l = 0, 1, . . . , (43)

where q0(z) ≡ 1 and

ql+1(z) = (l + 1)zql(z)− z(z − 1)q′l(z) l = 0, 1, . . . . (44)

It is easy to see that ql(z) is a monic polynomial of degree l with ql(0) = 0 and q′l(0) = 1
for all l ≥ 1. Furthermore, the coefficients of ql(z)/z are strictly positive for all l ≥ 1 (also,
ql(1) = l! and q′l(1) = (l + 1)!/2 for all l ≥ 1). In particular, we have

q1(z) = z, q2(z) = z2 + z, q3(z) = z3 +4z2 + z, q4(z) = z4 +13z3 +9z2 + z.
(45)

Example 1. Suppose n = 1, so that X is exponentially distributed with parameter a. Then
(41) yields

λ(a, 1) =
eam − 1

am
= 1 + am

∞∑
n=0

(am)n

(n+ 2)!
. (46)
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Notice that λ(a, 1) is an increasing function of a. Furthermore, λ(a, 1) → ∞ as a → ∞
(equivalently as µX → 0), while λ(a, 1) → 1 as a → 0 (equivalently as µX → ∞), as
expected.

Example 2. Suppose n = 2, so that X is Erlang with parameters a and 2. Then (41) yields

λ(a, 2) =
2

1 + am
1−e−am

· e
am − 1

am
=

2λ(a, 1)

1 + am
1−e−am

. (47)

Since x
1−e−x is strictly increasing for x > 0 (and, hence, > 1), it follows from (47) that

λ(a, 2) < λ(a, 1) and, furthermore, that λ(a, 2) is strictly increasing in a and approaches ∞
as a → ∞ (equivalently as µX → 0), while λ(a, 2) → 1 as a → 0 (equivalently as µX → ∞),
as expected.

Example 3. Suppose n = 3, so that X is Erlang with parameters a and 3. Then (41) yields

λ(a, 3) =
3

1 + am
1−e−am

[
1 + am

1−e−am · 1+e−am

2

] · eam − 1

am
=

3λ(a, 1)

1 + am
1−e−am

[
1 + am

1−e−am · 1+e−am

2

] .
(48)

Since x
1−e−x · 1+e−x

2
is strictly increasing for x > 0 (and, hence, > 1), it follows from (47)

and (48) that λ(a, 3) < λ(a, 2) and, furthermore, that λ(a, 3) is strictly increasing in a and
approaches ∞ as a → ∞ (equivalently as µX → 0), while λ(a, 3) → 1 as a → 0 (equivalently
as µX → ∞), as expected.

References

[1] R. Durrett, Probability: Theory and Examples, Third Edition, Duxbury Advanced Series,
Brooks/Cole—Thomson Learning. Belmont, CA, USA, 2005.

7


