A Question

1 Introductory material

Let $\Omega = \mathbb{N} = \{1, 2, ...\}$ (the set of natural numbers). For each $n \ge 1$ and $j \in \{1, 2, 3, ..., 2^n\}$ we consider the subsets of \mathbb{N}

$$E_n(j) := \{ j + k \, 2^n \, : \, k = 1, 2, \ldots \}.$$
(1.1)

In other words, for each n the set $E_n(j)$ is the equivalence class $[j] \pmod{2^n}$ (i.e. $x, y \in E_n(j)$ if and only if $x \equiv y \pmod{2^n}$). In particular, for each n the sets $E_n(j), j = 1, 2, \ldots, 2^n$, form a partition of \mathbb{N} .

Next, for each $n \ge 1$ we consider the algebra \mathcal{F}_n generated by the sets $E_n(j)$, $j = 1, 2, \ldots, 2^n$. Clearly, \mathcal{F}_n contains 2^{2^n} sets, hence, being finite, it is also a σ -algebra and we can write

$$\mathcal{F}_n := \sigma(E_n(j), \ j = 1, 2, \dots, 2^n).$$
 (1.2)

Furthermore,

$$\mathcal{F}_n \subset \mathcal{F}_{n+1} \qquad \text{for all} \quad n \ge 1.$$
 (1.3)

We continue by considering the probability spaces

$$(\Omega, \mathcal{F}_n, P_n), \qquad n = 1, 2, \dots, \tag{1.4}$$

where, for each $n \ge 1$ the probability measure P_n is defined by the formula

$$P_n\{E_n(j)\} := 2^{-n}, \qquad j = 1, 2, \dots, 2^n.$$
 (1.5)

It is easy to see that P_n is the restriction of P_{n+1} on \mathcal{F}_n , symbolically

$$P_{n+1}|_{\mathcal{F}_n} = P_n, \qquad \text{for all} \quad n \ge 1. \tag{1.6}$$

Let us now set

$$\mathcal{A} := \bigcup_{n=1}^{\infty} \mathcal{F}_n. \tag{1.7}$$

Clearly, \mathcal{A} is a (countably infinite) algebra of subsets of \mathbb{N} , while the σ algebra $\sigma(\mathcal{A})$ generated by \mathcal{A} is $2^{\mathbb{N}}$, namely the power set of \mathbb{N} (i.e. the class of all subsets of \mathbb{N}). We define a set function $P : \mathcal{A} \to [0, 1]$ as follows. Let $A \in \mathcal{A}$. Then, by (1.7) we have that $A \in \mathcal{F}_n$ for some n. We set

$$P(A) := P_n(A) \tag{1.8}$$

and it is clear by (1.6) that this definition is independent of n, hence P is well defined. Furthermore, it is clear that P is finitely additive on \mathcal{A} .

However, P cannot be extended to a probability measure \overline{P} on $\sigma(\mathcal{A})$, since, if such an extension existed, then from the equation

$$\{j\} = \bigcap_{n=j}^{\infty} E_n(j) \tag{1.9}$$

we would have that $\bar{P}(\{j\}) = \lim_{n} \bar{P}\{E_n(j)\} = \lim_{n} P_n\{E_n(j)\} = \lim_{n} 2^{-n} = 0$ for all singletons $\{j\}$, and this (together with the countable additivity of \bar{P}) is in contradiction with the fact that $\bar{P}(\mathbb{N}) = P(\mathbb{N}) = 1$.

It follows that P must violate the hypothesis of the well-known Caratheodory Extension Theorem (also known as Caratheodory-Hahn Extension Theorem or Caratheodory-Hahn-Kolmogorov Extension Theorem). Hence, there are disjoint sets A_1, A_2, \ldots in \mathcal{A} such that

$$A := \bigcup_{m=1}^{\infty} A_m \in \mathcal{A} \tag{1.10}$$

and

$$\sum_{m=1}^{\infty} P(A_m) < P(A). \tag{1.11}$$

Question. Can you construct a specific collection of disjoint sets $A_1, A_2, ...$ in \mathcal{A} satisfying (1.10) and (1.11)?

A complete answer to the above question has been given by Chris Bowen.