
Problem. Let m ≥ 2 be an integer. Consider the polynomial

P (z) = (m− 1)zm+1 − (m + 1)zm + (m + 1)z − (m− 1).

Show that all roots of P (z) lie on the unit circle.

Solution. Notice that P (z) can be written in the form

P (z) = m[(zm + 1)(z − 1)− (1/m)(zm − 1)(z + 1)].

Hence, the following proposition answers our problem immediately:

Proposition. Let m ≥ 2 be an integer and λ ∈ (−∞, 1/m]. Then, all zeros of the polynomial

p(z) = p(z; λ) = (zm + 1)(z − 1)− λ(zm − 1)(z + 1) (1)

lie on the unit circle Γ = {z ∈ C : |z| = 1}.

Proof of the Proposition. We start with two observations.

Observation 1: The polynomial p of (1) can be also written as

p(z) = (1− λ)zm+1 − (1 + λ)zm + (1 + λ)z − (1− λ). (2)

From (2) it follows that, if p(r) = 0, for some r ∈ C, then

p(r) = p(1/r) = p(1/r) = 0.

Hence, the zeros of p occur in quadruplets, unless they lie on Γ.

Observation 2: For λ = 0, the polynomial p(z; λ) of (1) becomes

p(z; 0) = (zm + 1)(z − 1),

which, obviously, has m + 1 simple zeros on Γ.

Suppose now that λ starts moving away from 0 in a continuous manner. Then, the zeros of p
start moving continuously. Due to the Observations 1 and 2, initially the zeros stay on Γ. As
λ is moving, a zero r of p, in order to escape Γ it must first become a multiple zero of p on Γ.
Thus, to establish the proposition, it suffices to show that p does not have multiple zeros on Γ,
for λ ∈ (−∞, 1/m). We will prove this by contradiction.

Let λ ∈ (−∞, 1/m) and assume that r is a multiple zero of p, with |r| = 1. Then

p(r) = (1− λ)rm+1 − (1 + λ)rm + (1 + λ)r − (1− λ) = 0 (3)
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and
p′(r) = (m + 1)(1− λ)rm −m(1 + λ)rm−1 + (1 + λ) = 0. (4)

We will exploit the fact that most coefficients of p are 0. Multiplying (3) by (m + 1), (4) by r
and subtracting the two resulting equations yields

rm = mr − (m + 1)(1− λ)

1 + λ
(5)

(alternatively, (5) comes from (4) by observing that p′(1/r) = 0, since |r| = 1 and hence
1/r = r). Next, we replace rm in equation (3) by its value given in (5). The result is

m(1− λ2)r2 − 2(m− 2λ + mλ2)r + m(1− λ2) = 0. (6)

The discriminant of the quadratic equation (6) is

∆ = −16λ(m− λ)(1−mλ).

If λ < 0, then ∆ > 0 and one can easily see that r of (6) cannot lie on Γ. Thus, we only need

to examine the case λ ∈ (0, 1/m).

By squaring both of its sides, (5) implies

(1 + λ)2r2m = m2(1 + λ)2r2 − 2m(m + 1)(1− λ2)r + (m + 1)2(1− λ)2. (7)

On the other hand, (6) gives

r2 =
2(m− 2λ + mλ2)

m(1− λ2)
r − 1.

Substituting r2, as given by the above formula, in (7) gives (after some straightforward ma-
nipulations)

(1+λ)2(1−λ)r2m = 2m(1+λ)(2mλ−λ2−1)r +(1−λ)(1−λ−2mλ)(1−λ+2m). (8)

We continue by rewriting (5) as

r = (1/m)rm +
(m + 1)(1− λ)

m(1 + λ)

and substituting this expression for r in (8). This leads us to the equation

(1− λ2)r2m − 2(2mλ− λ2 − 1)rm + (1− λ2) = 0. (9)

From equations (6) and (9) it is not hard to get a contradiction. For example, (6) and (9) imply
respectively

r − 1 =
2λ(mλ− 1)± 2iE

m(1− λ2)
(10)
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and

rm − 1 =
2(mλ− 1)± 2iE

1− λ2
, (11)

where
E :=

√
λ(m− λ)(1−mλ) > 0,

since λ ∈ (0, 1/m). Then (10) and (11) imply

∣∣∣∣
rm − 1

r − 1

∣∣∣∣ = m

∣∣∣∣
(mλ− 1)± iE

λ(mλ− 1)± iE

∣∣∣∣ = m

√
(mλ− 1)2 + E2

λ2(mλ− 1)2 + E2
> m, (12)

where the inequality follows from the fact that, since 0 < λ < 1/m < 1, the numerator in the
square root in (12) is larger than the denominator. However, the assumption |r| = 1 implies
(thanks to the triangle inequality for the absolute value)

∣∣∣∣
rm − 1

r − 1

∣∣∣∣ =
∣∣rm−1 + rm−2 + · · ·+ r + 1

∣∣ ≤ m,

which contradicts (12). ¥

Remark. The polynomial P (z) = p(z; 1/m) has a triple root at z = 1. A consequence of the
above proof is that, if r 6= 1 is a root of P (z), then it is a simple root (and, of course, lies on
the unit circle).

Comment. The polynomial P (z) arises in the study of the so-called transmission eigenvalues
in the spherically symmetric case. The property that the roots of P (z) lie on the unit circle
is equivalent to the fact that, if the index of refraction equals an integer m ≥ 2, then all
transmission eigenvalues are real.
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