Problem. Let m > 2 be an integer. Consider the polynomial
P(z)=(m—12""—(m+1)2"+ (m+ 1)z — (m—1).

Show that all roots of P(z) lie on the unit circle.

Solution. Notice that P(z) can be written in the form
Pz)=m[E"+1)(z—1)— (1/m)(z" = 1)(z+ 1)].

Hence, the following proposition answers our problem immediately:

Proposition. Let m > 2 be an integer and A € (—oo, 1/m]. Then, all zeros of the polynomial
p(z) =p(A) = (" +1)(z = 1) = AG" = 1)(z +1) (1)

lie on the unit circle I' = {z € C : |2z| = 1}.

Proof of the Proposition. We start with two observations.

Observation 1: The polynomial p of (1) can be also written as
p(z) = (1 =N)z" — (1+X)2" 4+ (14 Nz — (1= N). )
From (2) it follows that, if p(r) = 0, for some r € C, then
p(r) = p(1/r) = p(1/7) = 0.

Hence, the zeros of p occur in quadruplets, unless they lie on I'.

Observation 2: For A = 0, the polynomial p(z; ) of (1) becomes
p(z0) = (" +1)(z = 1),

which, obviously, has m + 1 simple zeros on I'.

Suppose now that \ starts moving away from 0 in a continuous manner. Then, the zeros of p
start moving continuously. Due to the Observations 1 and 2, initially the zeros stay on I'. As
A is moving, a zero r of p, in order to escape [ it must first become a multiple zero of p on I'.
Thus, to establish the proposition, it suffices to show that p does not have multiple zeros on I,
for A € (—o0, 1/m). We will prove this by contradiction.

Let A € (—o0,1/m) and assume that r is a multiple zero of p, with || = 1. Then
p(r) =1 =X — (L + N+ (1+Nr—(1—=X) =0 3)
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and
Pr)=m+1)1=Nr"™ —m(1+X)r™t+ (1+ ) =0. 4)
We will exploit the fact that most coefficients of p are 0. Multiplying (3) by (m + 1), (4) by r
and subtracting the two resulting equations yields
(m+1)(1—=X)

r'" =mr — T 5

(alternatively, (5) comes from (4) by observing that p'(1/r) = 0, since |r| = 1 and hence
1/r = 7). Next, we replace 7™ in equation (3) by its value given in (5). The result is

m(1 — A)r? — 2(m — 22X + mA?)r +m(1 — \?) = 0. (6)
The discriminant of the quadratic equation (6) is
A = —16A(m — A)(1 —m\).
If A < 0, then A > 0 and one can easily see that r of (6) cannot lie on I". Thus, we only need

to examine the case A € (0,1/m).

By squaring both of its sides, (5) implies
(1+ 022 =m2(1+ X2 = 2m(m + 1)(1 — A)r + (m + 1)%(1 — \)*. (7
On the other hand, (6) gives

_ 2
702:2(m 2/\+m/\)70_1'
m(1 — A?)

Substituting 72, as given by the above formula, in (7) gives (after some straightforward ma-
nipulations)

(T4+A)* (1 =N =2m(1+X)(2mA =X = 1)r+ (1= A)(1 =X —2mA)(1 = A+2m). (8)
We continue by rewriting (5) as

(m+1)(1—\)
m(l+\)

r=(1/m)r"™ +

and substituting this expression for r in (8). This leads us to the equation

(1= AHr?™ —2(2mA — A2 — 1)r'™ + (1 — \?) = 0. ©)

From equations (6) and (9) it is not hard to get a contradiction. For example, (6) and (9) imply

respectively

2A(mA — 1) £ 2E
m(1— \?)

(10)

r—1=
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and
2(mA —1) £ 2FE

tol= 11
r 1 _ )\2 ) ( )
where
E = /Am —X)(1—m\) >0,
since A € (0,1/m). Then (10) and (11) imply
rmo_q (mA—1)+iF (mA —1)2 4 E2
B = 12

where the inequality follows from the fact that, since 0 < A < 1/m < 1, the numerator in the
square root in (12) is larger than the denominator. However, the assumption |r| = 1 implies
(thanks to the triangle inequality for the absolute value)

rm—1
r—1

‘:Mm*+w”4+~-+w+ugnu
which contradicts (12). |

Remark. The polynomial P(z) = p(z;1/m) has a triple root at z = 1. A consequence of the
above proof is that, if  # 1 is a root of P(z), then it is a simple root (and, of course, lies on
the unit circle).

Comment. The polynomial P(z) arises in the study of the so-called transmission eigenvalues
in the spherically symmetric case. The property that the roots of P(z) lie on the unit circle
is equivalent to the fact that, if the index of refraction equals an integer m > 2, then all
transmission eigenvalues are real.



