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Abstract

A collector samples coupons with replacement from a pool contain-
ing g uniform groups of coupons, where “uniform group” means that all
coupons in the group are equally likely to occur (while coupons of differ-
ent groups have different probabilities to occur). For each j = 1, . . . , g let
Tj be the number of trials needed to detect Group j, namely to collect
all Mj coupons belonging to it at least once. We first derive formulas for
the probabilities P{T1 < · · · < Tg} and P{T1 =

∧g
j=1 Tj}. After that,

without severe loss of generality, we restrict ourselves to the case g = 2
and compute the asymptotics of P{T1 < T2} as the number of coupons
grows to infinity in a certain manner. Then, we focus on T := T1 ∨ T2,
i.e. the number of trials needed to collect all coupons of the pool (at least
once), and determine the asymptotics of E[T ] and V [T ], as well as the
limiting distribution of T (appropriately normalized) as the number of
coupons becomes large.

Keywords. Coupon collector problems; urn problems; asymptotics, limiting
distribution, Gumbel distribution.
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1 Introduction of the problem and main results

Coupon collector problems (CCP’s) are a popular class of urn problems due
to their mathematical elegance, as well as their applications in several areas of

∗Available online in Cornell University Library’s online repository.
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science, from computer science and biology to linguistics and the social sciences.
The original problem dates back to De Moivre’s treatise De Mensura Sortis
(1712) and Laplace’s Theorie Analytique des Probabilités (1812). Nevertheless,
new variants of CCP keep arising.
In this paper we study the following CCP version: Suppose we sample coupons
independently with replacement from a mixture of g groups of coupons. The
first group consists of M1 coupons each of which having probability p1 to occur,
the secong group of M2 coupons each of which having probability p2 to occur,
and so on (all numbers Mj , pj , j = 1, . . . , g, are assumed strictly positive). We
call “Group j coupons” the coupons of the j-th group. Notice that under our
assumptions we must have

M1p1 + · · ·+Mgpg = 1. (1)

Thus, for each j = 1, . . . , g the j-th group is a uniform family of Mj coupons,
where the term “uniform” indicates that all coupons of the group have the same
probability pj to occur. For instance, we can visualize Group 1 as a set of M1

cards of color 1 (say red), numbered from 1 to M1, Group 2 as a set of M2 cards
of color 2 (say green), numbered from 1 to M2, and so on, where each card of
color 1 has probability p1 to occur, each card of color 2 has probability p2 to
occur, and so on.
Suppose we keep drawing coupons one at a time. Naturally, one quantity of
interest is the number T of trials (i.e. draws) needed to detect all M1 + · · · +
Mg coupons (at least once). Some “intermediate” quantities having their own
interest are Tj := the number of trials needed to detect all Group j coupons,
j = 1, . . . , g. Clearly, T can be expressed as

T =

g∨
j=1

Tj , (2)

namely the maximum of T1, . . . , Tg.
It is worth mentioning that if we view the coupon sampling process as a sequence
{Cn}n≥1 of independent and identically distributed random variables, where
each Cn takes values in {1, 2, . . . , (M1+ · · ·+Mg)}, namely the set of all existing
coupons, with P{Cn = i1} = p1 for i1 = 1, 2, . . . ,M1, P{Cn = i2} = p2
for i2 = (M1 + 1), (M1 + 2), . . . , (M1 + M2), and so on (so that, {Cn = i} is
identified with the event that the type-i coupon is selected at the n-th trial),
then Tj , j = 1, . . . , g, as well as T are stopping times of the “coupon filtration”

Fn = σ(C1, . . . , Cn), n ≥ 1. (3)

Our first quantities of study are the probabilities P{T1 < · · · < Tg} and P{T1 =
Tmin}, where

Tmin :=

g∧
j=1

Tj , (4)
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namely the minimum of T1, . . . , Tg (thus P{T1 = Tmin} is the probability that
the Group 1 is the first group to be detected in its entirety). Notice that the
equality Tj = Tk is impossible unless, of course, j = k.

Theorem 1.

P{T1 < · · · < Tg} =

K

∫ ∞

0

· · ·
∫ t3

0

e−(pgtg+···+p2t2)
(
1− e−pgtg

)Mg−1 · · ·
(
1− e−p2t2

)M2−1 (
1− e−p1t2

)M1
dt2 · · · dtg,

(5)

where
K = p2p3 · · · pgM2M3 · · ·Mg. (6)

Also,

P{T1 = Tmin} =

K

∫ ∞

0

· · ·
∫ ∞

0

e−(pgtg+···+p2t2)
(
1− e−pgtg

)Mg−1 · · ·
(
1− e−p2t2

)M2−1
[
1− e−p1(t2∧···∧tg)

]M1

dt2 · · · dtg,

(7)

Proof. Following a suggestion of Professor Sheldon M. Ross [6] we prove the
formulas by applying the powerful technique of “Poissonization.”
Let Z(t), t ≥ 0, be a Poisson process with rate λ = 1. We imagine that each
Poisson event associated to this process is a sampled coupon, so that Z(t) is the
number of sampled coupons at time t. Next, for i = 1, . . . , (M1 + · · ·+Mg), let
Zi(t) be the number of type-i coupons collected at time t. Then, the processes
{Zi(t)}t≥0, i = 1, . . . , (M1 + · · ·+Mg), are independent Poisson processes with
rates p1 for i = 1, . . . ,M1, p2 for i = (M1 + 1), . . . , (M1 +M2), ..., and, finally,
pg for i = (M1 + · · · +Mg−1 + 1), . . . , (M1 + · · · +Mg) [7]. Of course, Z(t) =
Z1(t) + · · ·+ ZM1+···+Mg (t).
If Xi, i = 1, . . . , (M1+ · · ·+Mg), denotes the time when the first type-i coupon
is collected, i.e. the time of the first Poisson event of the process Zi(t), then
the variables X1, . . . , XM1+···+Mg are clearly independent (being associated to
independent processes) and exponentially distributed with parameters p1 for
i = 1, . . . ,M1, p2 for i = (M1 + 1), . . . , (M1 +M2) and so on. We now set

T̃1 :=

M1∨
i=1

Xi, T̃2 :=

M1+M2∨
i=M1+1

Xi, . . . , T̃g :=

M1+···+Mg∨
i=M1+···+Mg−1+1

Xi.

(8)
Thus T̃j , j = 1, . . . , g, is the time when all Group j coupons have been detected
(at least once) by the process Z(t) and, hence,

P{T1 < · · · < Tg} = P{T̃1 < · · · < T̃g} and P{T1 = Tmin} = P{T̃1 = T̃min},
(9)

where, of course, T̃min :=
∧g

j=1 T̃j .
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From the independence of the exponential random variablesXi, i = 1, . . . , (M1+
· · ·+Mg), it follows that the variables T̃1, T̃2, . . . , T̃g are also independent and,
furthermore, (8) implies

Fj(t) := P
{
T̃j ≤ t

}
=
(
1− e−pjt

)Mj
, t ≥ 0, j = 1, . . . , g, (10)

and

fj(t) := F ′
j(t) = pjMje

−pjt
(
1− e−pjt

)Mj−1
, t ≥ 0, j = 1, . . . , g. (11)

Therefore,

P{T̃1 < · · · < T̃g} =

∫ ∞

0

· · ·
∫ t3

0

∫ t2

0

fg(tg) · · · f2(t2)f1(t1) dt1dt2 · · · dtg

=

∫ ∞

0

· · ·
∫ t3

0

fg(tg) · · · f2(t2)F1(t2) dt2 · · · dtg

and, in view of (9), (10), (11), and (6) the above formula is equivalent to (5).
Likewise,

P{T̃1 = T̃min} =

∫ ∞

0

· · ·
∫ ∞

0

∫ t2∧···∧tg

0

fg(tg) · · · f2(t2)f1(t1) dt1dt2 · · · dtg

=

∫ ∞

0

· · ·
∫ ∞

0

fg(tg) · · · f2(t2)F1(t2 ∧ · · · ∧ tg) dt2 · · · dtg,

which establishes (7). �
Notice that one consequence of formulas (5), (6), and (7) is that the probabilities
P{T1 < · · · < Tg} and P{T1 = Tmin} depend only on the ratios p2/p1, . . . , pg/p1.

Corollary 1. For ℓ = 1, . . . , g we have

P{Tℓ = Tmin} =

(−1)g
Mg∑
kg=1

· · ·
M1∑
k1=1

(−1)k1+···+kg

(
M1

k1

)
· · ·
(
Mg

kg

)
kℓpℓ

k1p1 + · · ·+ kgpg
. (12)

In particular, for g = 2 we have

P{T1 < T2} =

M2∑
k=1

M1∑
j=1

(−1)j+k

(
M1

j

)(
M2

k

)
p1j

p1j + p2k
(13)

and

P{T2 < T1} =

M2∑
k=1

M1∑
j=1

(−1)j+k

(
M1

j

)(
M2

k

)
p2k

p1j + p2k
. (14)

Proof. It is enough to prove (12) only for the case ℓ = 1. For j = 2, . . . , g we
have

pjMje
−pjtj

(
1− e−pjtj

)Mj−1
= −

Mj∑
kj=1

(−1)kj

(
Mj

kj

)
pjkje

−kjpjtj , (15)
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while [
1− e−p1(t2∧···∧tg)

]M1

=

M1∑
k1=0

(−1)k1

(
M1

k1

)
e−k1p1(t2∧···∧tg). (16)

Substituting (15), (16), and (6) in (7) yields

P{T1 = Tmin} =

(−1)g−1

Mg∑
kg=1

· · ·
M2∑
k2=1

M1∑
k1=0

(−1)k1+···+kg

(
Mg

kg

)
· · ·
(
M1

k1

)
I, (17)

where

I :=

∫ ∞

0

· · ·
∫ ∞

0

kgpg · · · k2p2 e−(kgpgtg+···+k2p2t2)e−k1p1(t2∧···∧tg)dt2 · · · dtg.

(18)
A quick look at (18) reveals that

I = E
[
e−k1p1Ymin

]
, (19)

where Ymin is the minimum of the independent exponential random variables
Y2, . . . , Yg with parameters (k2p2), . . . , (kgpg) respectively. Since (as it is well
known) Ymin is exponentially distributed with parameter k2p2 + · · · + kgpg, it
follows from (19) that

I =
k2p2 + · · ·+ kgpg

k1p1 + (k2p2 + · · ·+ kgpg)
(20)

and the substitution of (20) in (17) gives

P{T1 = Tmin} =

(−1)g−1

Mg∑
kg=1

· · ·
M2∑
k2=1

M1∑
k1=0

(−1)k1+···+kg

(
Mg

kg

)
· · ·
(
M1

k1

)
k2p2 + · · ·+ kgpg

k1p1 + k2p2 + · · ·+ kgpg
,

(21)

or, equivalently,

P{T1 = Tmin} =

(−1)g
Mg∑
kg=1

· · ·
M2∑
k2=1

M1∑
k1=0

(−1)k1+···+kg

(
Mg

kg

)
· · ·
(
M1

k1

)
k1p1

k1p1 + k2p2 + · · ·+ kgpg

− (−1)g
Mg∑
kg=1

· · ·
M2∑
k2=1

M1∑
k1=0

(−1)k1+···+kg

(
Mg

kg

)
· · ·
(
M1

k1

)
. (22)

In the first multiple sum of the right-hand side of (22), clearly, the value k1 = 0
of the dummy variable k1 can be omitted since it does not contribute anything
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to the sum. Hence we may as well take k1 to vary from 1 to M1 (instead of 0 to
M1). As for the second multiple sum of the right-hand side of (22), just notice
that it can be factored as Mg∑

kg=1

(−1)kg

(
Mg

kg

) · · ·

[
M2∑
k2=1

(−1)k2

(
Mg

kg

)][ M1∑
k1=0

(−1)k1

(
M1

k1

)]
,

where, obiously, the last factor is equal to 0 (being the binomial expansion of
(1 − 1)M1). Hence the whole multiple sum vanishes, and (22) reduces to (12)
(for ℓ = 1).
Formulas (13) and (14) follow immediately from (12). �
We can number the groups so that p1 < p2 < · · · < pg. Then, our CCP problem
is stochastically bounded between two “extreme” cases where we have only two
groups of coupons: (i) one group consisting of M1 coupons each of which having
probability p1 to occur and another group consisting of M2 + · · ·+Mg coupons
each of which having probability p2 to occur and (ii) one group consisting of
M1 coupons each of which having probability p1 to occur and another group
consisting of M2 + · · · + Mg coupons each of which having probability pg to
occur. Hence, the case g = 2 is quite important since it can, at least, provide
upper and lower estimates for the more general case of an arbitrary number of
groups. With this in mind, let us spell out an immediate corollary of Theorem
1.

Corollary 2. We have

P{T1 < T2} = p2M2

∫ ∞

0

e−p2t
(
1− e−p1t

)M1
(
1− e−p2t

)M2−1
dt. (23)

Also (by substitution x = e−t in the above integral),

P{T1 < T2} = p2M2

∫ 1

0

(1− xp1)
M1 (1− xp2)

M2−1
xp2−1dx

= −
∫ 1

0

(1− xp1)
M1

[
(1− xp2)

M2

]′
dx. (24)

The observation that P{T1 < T2} depends only on the ratio

λ :=
p2
p1

(25)

yields two slightly simplified equivalent versions of (24), namely

P{T1 < T2} = λM2

∫ 1

0

xλ−1 (1− x)
M1
(
1− xλ

)M2−1
dx (26)

and

P{T1 < T2} = M2

∫ 1

0

(
1− x1/λ

)M1

(1− x)
M2−1

dx (27)
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(formula (23) too can be simplified a little by using the fact that P{T1 < T2}
depends only on λ).

In the sequel, we will assume that g = 2, namely that we have only two groups
of coupons. Our goal is to understand the behavior of certain quantities as
λ = p2/p1 stays fixed, while M1 and M2 become large in such a way that

M1 = ν1M and M2 = ν2M, (28)

where ν1 ≥ 1 and ν2 ≥ 1 are fixed integers, while the integer M is allowed to
grow. Notice that, under these assumptions p1 and p2 depend on M . Then,
recalling (1), namely that M1p1 +M2p2 = 1, the quantities

α1 := M1p1 =
ν1

ν1 + λν2
and α2 := M2p2 =

λν2
ν1 + λν2

= 1− α1 (29)

are independent of M too.
In the rest of the paper we study the asymptotic behavior of certain quantities
related to T1 = T1(M), T2 = T2(M), and T = T (M) = T1 ∨ T2, as the integer
M grows large. It is notable that our results determine the order of magnitude
of the corresponding quantities for the case of g groups, for any g > 2.
In Section 2 we derive the asymptotic formula (Theorem 2)

P{T1 < T2} ∼ ν2λΓ(λ)

νλ1
· 1

Mλ−1
, M → ∞,

under the assumption that λ of (25) is > 1 (as usual, the notation f(M) ∼ g(M)
means that f(M)/g(M) → 1 as M → ∞).
Section 3 contains some auxiliary topics including a key example discussed in
Subsection 3.1. These topics are used in Section 4 in order to determine the
asymptotic behavior of the expectation, the variance, as well as the distribution
of T1, T2, and T as M → ∞. Some indicative results of Section 4 are:
(i) A formula for the asymptotics of the expectation of T

E[T ] = (ν1+λν2)M lnM+(ν1+λν2)(γ+ln ν1)M+O
(
M2−λ lnM

)
, M → ∞.

This formula follows immediately from Theorem 6.
(ii) A formula for the asymptotics of the variance of T

V [T ] ∼ π2(ν1 + λν2)
2

6
M2, M → ∞

(this is Corollary 4).
(iii) The limiting distribution of T (appropriately normalized). We have shown
that the random variable

T − (ν1 + λν2)M lnM

(ν1 + λν2)M
− ln ν1

converges in distribution to the standard Gumbel random variable as M → ∞
(Theorem 8).
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The above three results are presented in of Subsection 4.2 and hold under the
assumption that λ > 1.
Finally, for the betterment of the flow of the paper, the derivations of formulas
(63) and (105) are placed in the appendix (Section 5).

2 Asymptotics of P{T1 < T2}
Equation (26) can be written as

P{T1 < T2} = λν2M IM , where IM =

∫ 1

0

xλ−1 (1− x)
ν1M

(
1− xλ

)ν2M−1
dx.

(30)
Thus, the asymptotic behavior of P{T1 < T2} as M → ∞ reduces to the
asymptotic behavior of IM .
For convenience we will assume from now on, without loss of generality, that

λ =
p2
p1

> 1. (31)

Formula (30) yields immediately the following upper bound for IM :

IM <

∫ 1

0

xλ−1 (1− x)
ν1M dx = B(λ, ν1M + 1) =

Γ(λ) Γ(ν1M + 1)

Γ(λ+ ν1M + 1)
, (32)

where B( · , ·) and Γ( ·) denote the Beta and Gamma funtion respectively, while
an immediate consequence of Stirling’s formula is that∫ 1

0

xλ−1 (1− x)
ν1M dx =

Γ(λ) Γ(ν1M + 1)

Γ(λ+ ν1M + 1)
∼ Γ(λ)

νλ1
· 1

Mλ
, M → ∞. (33)

Next, we need to find a satisfactory lower bound for IM . Let 0 < ε < 1− (1/λ),
so that (1/λ) + ε < 1. Then, (30) implies

IM > I♭M :=

∫ M−(1/λ)−ε

0

xλ−1 (1− x)
ν1M

(
1− xλ

)ν2M−1
dx. (34)

For x ∈ [0,M−(1/λ)−ε], we have

0 ≥ (ν2M−1) ln
(
1− xλ

)
≥ (ν2M−1) ln

(
1− 1

M1+λε

)
= − ν2

Mλε
+O

(
1

M1+λε

)
(35)

as M → ∞ (uniformly in x). Hence

1 ≥
(
1− xλ

)ν2M−1 ≥ exp
(
− ν2
Mλε

)[
1 +O

(
1

M1+λε

)]
= 1 +O

(
1

Mλε

)
.

(36)
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Using (36) in (34) yields∫ M−(1/λ)−ε

0

xλ−1 (1− x)
ν1M dx ≥ I♭M ≥

[
1 +O

(
1

Mλε

)]∫ M−(1/λ)−ε

0

xλ−1 (1− x)
ν1M dx

(37)
or

I♭M ∼
∫ M−(1/λ)−ε

0

xλ−1 (1− x)
ν1M dx, M → ∞. (38)

Finally, we notice that the fact that (1/λ) + ε < 1 implies∫ 1

M−(1/λ)−ε

xλ−1 (1− x)
ν1M dx <

(
1− 1

M (1/λ)+ε

)ν1M

= O

(
1

Mr

)
for any r > 0,

(39)
thus, in view of (33), formulas (38) and (39) give

I♭M ∼
∫ 1

0

xλ−1 (1− x)
ν1M dx ∼ Γ(λ)

νλ1
· 1

Mλ
, M → ∞. (40)

Hence, the combination of (32), (33), (34), and (40) yields

IM ∼ Γ(λ)

νλ1
· 1

Mλ
, M → ∞. (41)

Therefore, by applying (41) in (30) we obtain the following result.

Theorem 2. If λ = p2/p1 > 1, then

P{T1 < T2} ∼ ν2λΓ(λ)

νλ1
· 1

Mλ−1
=

ν2Γ(λ+ 1)

νλ1
· 1

Mλ−1
=

ν2
ν1

· Γ(λ+ 1)

Mλ−1
1

(42)

as M → ∞.

Notice that, no matter how big the ratio M2/M1 = ν2/ν1 is, the probability
P{T1 < T2} approaches 0 as M → ∞, as long as λ is bigger than 1 (even
slightly).

3 Auxiliary material

Suppose we sample independently with replacement from a pool of N coupons,
where the probability of the j-th coupon to occur is qj , j = 1, . . . , N (the qn’s are
usually referred as the “coupon probabilities”). Let S = SN denote the number
of trials needed in order to detect all N coupons. Obviously, the possible values
of SN are N,N +1, . . . (it is easy to see that P{SN < ∞} = 1 as long as qj > 0
for all j; actually, from the generating function E

[
z−SN

]
, as computed in [4],

one can easily see that P{SN = k} deays exponentially as k → ∞).

For the purposes of this paper we will need a formula for the expectation E[S
(r)
N ]

for any real r > 0, where

s(r) :=
Γ(s+ r)

Γ(s)
(43)
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is the “natural” extension of the so-called Pochhammer function.
If we denote by Wj the number of trials needed in order to detect the j-th
coupon, then, it is clear that Wj is a geometric random variable with parameter
qj and

SN =
N∨
j=1

Wj .

However, the above formula for SN is not very useful, since the Wj ’s are not
independent. Instead, we can employ again the “Poissonization technique” (see,

e.g., [7]) in order to get an explicit formulas for E[S
(r)
N ].

As in the proof of Thorem 1, we take Z(t), t ≥ 0, to be a Poisson process
with rate λ = 1. We imagine that each Poisson event associated to Z is a
collected coupon, so that Z(t) is the number of detected coupons at time t.
Next, for j = 1, . . . , N , let Zj(t) be the number of times that the j-th coupon
has been detected up to time t. Then, the processes {Zj(t)}t≥0, j = 1, . . . , N ,
are independent Poisson processes with rates qj respectively [7] and, of course,
Z(t) = Z1(t)+· · ·+ZN (t). IfXj , j = 1, . . . , N , denotes the time of the first event
of the process Zj , then X1, . . . , XN are obviously independent (being associated
to independent processes), while their maximum

X =
N∨
j=1

Xj (44)

is the time when all different coupons have been detected at least once.
Now, for each j = 1, . . . , N the random variable Xj is exponentially distributed
with parameter qj , i.e.

P{Xj ≤ t} = 1− e−qjt, t ≥ 0. (45)

It follows from (44) and the independence of the Xj ’s that

P{X ≤ t} =
N∏
j=1

(
1− e−qjt

)
, t ≥ 0. (46)

Next, we observe that SN and X are related as

X =

SN∑
k=1

Uk, (47)

where U1, U2, . . . are the interarrival times of the process Z. It is common
knowledge that the Uj ’s are independent and exponentially distributed random
variables with parameter 1. Hence for any integer m ≥ 1 the sum U1+ · · ·+Um

follows the Erlang distribution with parameters m and 1. Therefore,

E

[
ϕ

(
m∑

k=1

Uk

)]
=

∫ ∞

0

ϕ(ξ)
ξm−1

(m− 1)!
e−ξdξ, (48)
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where ϕ(x) is any (Lebesgue) measurable function on (0,∞) for which the in-
tegral in (48) makes sense (i.e. converges absolutely). Noticing that SN is
independent of the Uj ’s, formulas (47) and (48) imply

E [ϕ(X) |SN ] =

∫ ∞

0

ϕ(ξ)
ξSN−1

(SN − 1)!
e−ξdξ (49)

and, consequently (by taking expectations)

E [ϕ(X)] = E

[∫ ∞

0

ϕ(ξ)
ξSN−1

(SN − 1)!
e−ξdξ

]
. (50)

If we take ϕ(x) = xr for a fixed real number r > 0, then (50) becomes

E [Xr] = E

[∫ ∞

0

ξSN+r−1

(SN − 1)!
e−ξdξ

]
= E

[
Γ(SN + r)

(SN − 1)!

]
= E

[
S
(r)
N

]
. (51)

Finally, by using (46) in (51) we obtain the following result.

Lemma 1. For any real number r > 0 we have

E
[
S
(r)
N

]
= E

[
Γ(SN + r)

Γ(SN )

]
= r

∫ ∞

0

tr−1

1− N∏
j=1

(
1− e−qjt

) dt. (52)

In particular for r = 1 we have

E [SN ] =

∫ ∞

0

1− N∏
j=1

(
1− e−qjt

) dt, (53)

while for r = 2 we have

E
[
S
(2)
N

]
= E [SN (SN + 1)] = 2

∫ ∞

0

t

1− N∏
j=1

(
1− e−qjt

) dt. (54)

Remark 1. Let the random variables Ξ1, . . . ,ΞN be independent and expo-
nentially distributed with parameters q1, . . . , qN respectively. If

Ξmax :=
N∨
j=1

Ξj ,

then formula (52) tells us that for any real number r > 0 we have

E
[
S
(r)
N

]
= E

[
Γ(SN + r)

Γ(SN )

]
= E [ Ξr

max] .

11



Let us also notice that by expanding the product inside the integral in (52) and
integrate the resulting sum term by term we obtain the expression

E
[
S
(r)
N

]
= Γ(r + 1)

∑
J⊂{1,...,,N}

J ̸=∅

(−1)|J|−1(∑
j∈J qj

)r
= Γ(r + 1)

N∑
m=1

(−1)m−1
∑

1≤j1<···<jm≤N

1

(qj1 + · · ·+ qjm)
r , (55)

where |J | denotes the cardinality of J .

Remark 2. Let us first observe that since SN is always a positive integer, the
quantity

Γ(r + SN )

Γ(r) Γ(SN )
(56)

makes sense for every r ∈ C; actually, it is entire in r (the poles of Γ(r + SN )
are cancelled by the zeros of Γ(r)−1). Now, let us look at the function

H(r) :=
1

Γ(r)
E
[
S
(r)
N

]
= E

[
Γ(r + SN )

Γ(r) Γ(SN )

]
=

∞∑
k=N

Γ(k + r)

Γ(r) (k − 1)!
P{SN = k}.

(57)
Since (i) Γ(k+r)/(k−1)! ∼ kr as k → ∞ (see, e.g., formula (69) below) and (ii)
P{SN = k} decays exponentially in k, it follows that the series in (57) converges
uniformly (and absolutely) in r on any compact subset of the complex plane C.
Therefore, H(r) is an entire function and consequently formula (57) implies

that E[S
(r)
N ] is meromorphic in r whose poles are located at −N,−(N +1), . . . .

Although the fact that E[S
(r)
N ] is meromorphic also follows from (55), it is not

obvious from this formula that there are no poles at −1,−2, . . . ,−(N − 1).

Now let us consider the “uniform” case, namely the case where all N coupons
are equally likely to occur, i.e.

qj =
1

N
for j = 1, . . . , N. (58)

In this case formula (52) becomes

E
[
S
(r)
N

]
= r

∫ ∞

0

tr−1

[
1−

(
1− e−t/N

)N
]
dt. (59)

Substituting t = Ns in the above integral gives

E
[
S
(r)
N

]
= Nr

∫ ∞

0

rsr−1
[
1− (1− e−s)N

]
ds. (60)

Next, we integrate by parts and get

E
[
S
(r)
N

]
= Nr+1

∫ ∞

0

sr(1− e−s)N−1e−sds. (61)

12



Then, we make the substitution s = lnN − lnx (so that x = Ne−s) in the
integral of (61) and obtain

E
[
S
(r)
N

]
= Nr lnr N

∫ N

0

(
1− x

N

)N−1
(
1− lnx

lnN

)r

dx. (62)

Starting from (62), it can be shown that, for any given r > 0, the asymptotic

behavior of E[S
(r)
N ] as N → ∞ is

E
[
S
(r)
N

]
= Nr(lnN)r

n∑
k=0

(
r

k

)
(−1)k

lnk N

∫ ∞

0

e−x(lnx)kdx+ o

(
1

lnn N

)
(63)

for every n = 1, 2, . . . . Here,
(
r
k

)
stands for the generalized binomial coefficient

(in the sense that r is not necessarily a positive integer—see formulas (172) and
(173) in Subsection 5.1 of the Appendix).
Intuitively, it is not hard to see why (62) implies (63). However the complete
proof is quite long and for this reason is given in the Subsection 5.1 of the
Appendix.
To further simplify (63), let us first notice that if we differentiate k times the
Gamma function Γ(z) =

∫∞
0

tz−1e−tdt and then set z = 1, we get

Γ(k)(1) =

∫ ∞

0

e−x(lnx)kdx. (64)

Of course, Γ(0)(1) = Γ(1) = 1. As for the derivatives Γ(k)(1), k = 1, 2, . . . , there
are some known expressions and recursions (see, e.g., [2] and the references
therein). For instance,

Γ(1)(1) = −γ, Γ(2)(1) =
π2

6
+ γ2, Γ(3)(1) = −

[
2ζ(3) +

π2

2
γ + γ3

]
, etc.,

(65)
where γ = 0.5772... is the Euler (or Euler-Macheroni) constant and ζ(·) is the
Riemann Zeta function.
Using (64) we can write (63) as

E
[
S
(r)
N

]
= Nr(lnN)r

[
n∑

k=0

(
r

k

)
(−1)k Γ(k)(1)

lnk N
+ o

(
1

lnn N

)]
, N → ∞,

(66)
for every n = 1, 2, . . . . Formula (66) can be written equivalently as an asymp-
totic series (for the definition of the asymptotic series and the associated usage
of the symbol ∼ see, e.g., [1])

E
[
S
(r)
N

]
∼ Nr(lnN)r

∞∑
k=0

(
r

k

)
(−1)k Γ(k)(1)

lnk N
, N → ∞, (67)

for any r > 0 (of course, if r is an integer,
(
r
k

)
= 0 for k > r and the series

becomes a finite sum). In particular, the leading behavior of E[S
(r)
N ] is

E
[
S
(r)
N

]
∼ Nr(lnN)r, N → ∞. (68)

13



Let us also mention that in the case where r is a positive integer there are more

detailed expressions for E[S
(r)
N ] (see, e.g., [4] and the references therein).

Finally, from (68) we can easily obtain an asymptotic formula for E[Sr
N ] as

N → ∞. For a fixed r > 0 Stirling’s formula yields

s(r) =
Γ(s+ r)

Γ(s)
∼ sr, s → ∞. (69)

Since SN ≥ N , formula (70) implies that, for any ε > 0 there is a N0 = N0(ε)
such that

(1− ε)S
(r)
N ≤ Sr

N ≤ (1 + ε)S
(r)
N for any N ≥ N0, (70)

and consequently,

(1− ε)E
[
S
(r)
N

]
≤ E [Sr

N ] ≤ (1 + ε)E
[
S
(r)
N

]
for any N ≥ N0, (71)

i.e., in view of (68),

E [Sr
N ] ∼ E

[
S
(r)
N

]
∼ Nr(lnN)r, N → ∞, (72)

for any r > 0.

3.1 A preliminary example

Suppose our set of coupons is {0, 1, . . . , N} with corresponding probabilities

q0 = θ and qj =
1− θ

N
, j = 1, . . . N, (73)

where θ ∈ (0, 1) is a given number. Let S(θ) = S(θ;N) be the number of trials
needed until all N + 1 coupons are detected (thus S(θ;N) = SN+1 under the
previous notation). Then, (53) gives (in the sequel, the dependence of S(θ) on
N will be suppressed for typographical convenience)

E [S(θ)] =

∫ ∞

0

[
1−

(
1− e−θt

) (
1− e−(1−θ)t/N

)N]
dt

or
E [S(θ)] = J1(N ; θ) + J2(N ; θ), (74)

where

J1(N ; θ) :=

∫ ∞

0

[
1−

(
1− e−(1−θ)t/N

)N]
dt (75)

and

J2(N ; θ) :=

∫ ∞

0

e−θt
(
1− e−(1−θ)t/N

)N
dt. (76)
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The integral J1(N ; θ) of (75) reminds the expectation of SN in the case where
all N coupons are equally likely to occur. This is very easy to see via the
substitution y = 1− e−(1−θ)t/N which yields

J1(N ; θ) =
N

1− θ

∫ 1

0

1− yN

1− y
dy =

N

1− θ

∫ 1

0

N−1∑
j=0

yj

 dy =
N

1− θ

N∑
j=1

1

j
, (77)

or

J1(N ; θ) =
NHN

1− θ
, where HN :=

N∑
j=1

1

j
. (78)

The quantity HN is called the N -th harmonic number and its full asymptotic
expansion, as N → ∞, is well known (see, e.g., [1]):

HN ∼ lnN + γ +
1

2N
+

∞∑
k=1

B2k

2k
· 1

N2k
, (79)

where Bm is the m-th Bernoulli number defined by the formula

z

ez − 1
=

∞∑
m=1

Bm

m!
zm. (80)

Since z(ez − 1)−1 + z/2 is an even function of z, we have that B2k+1 = 0 for all
k ≥ 1.
Next, let us bound the integral J2(N ; θ) of (76). For any fixed ρ > 0 formula
(76) implies

J2(N ; θ) ≤
∫ ρN

0

(
1− e−(1−θ)t/N

)N
dt+

∫ ∞

ρN

e−θtdt

≤ ρN
(
1− e−(1−θ)ρ

)N
+

1

θρN
e−θρN , (81)

Hence, there is an ε1 > 0 such that for any fixed ε ∈ (0, ε1) we have

J2(N ; θ) = O
(
e−εN

)
, N → ∞ (82)

(ε is a symbol we recycle).
Using (78) and (82) in (74) yields

E [S(θ)] =
NHN

1− θ
+O

(
e−εN

)
, N → ∞ (83)

(let us recall that in the case where all N coupons are equally likely to occur
we have E[SN ] = NHN ).
The full asymptotic expansion of E [S(θ)] can be obtained immediately by ap-
plying (79) in (83). In particular,

E [S(θ)] =
N lnN

1− θ
+

γN

1− θ
+O(1), N → ∞. (84)
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In the same way we can get the asymptotics of the second rising moment
E
[
S(θ)(2)

]
of S(θ). By (54) and (73) we get

E
[
S(θ)(2)

]
= J̃1(N ; θ) + J̃2(N ; θ), (85)

where

J̃1(N ; θ) := 2

∫ ∞

0

t

[
1−

(
1− e−(1−θ)t/N

)N]
dt (86)

and

J̃2(N ; θ) := 2

∫ ∞

0

te−θt
(
1− e−(1−θ)t/N

)N
dt. (87)

The approach we used to bound J2(N ; θ) applies to J̃2(N ; θ) as well and it
implies that there is an ε2 > 0 such that for any fixed ε ∈ (0, ε2) we have

J̃2(N ; θ) = O
(
e−εN

)
, N → ∞. (88)

To calculate J̃1(N ; θ) we substitute s = (1 − θ)t in the integral of (86) and
obtain

J̃1(N ; θ) =
2

(1− θ)2

∫ ∞

0

s

[
1−

(
1− e−s/N

)N]
ds (89)

The integral in the right-hand side of (89) equals E[S
(2)
N ], where SN is the

number of trials needed to collect all coupons in the uniform case where all N
coupons are equally likely to occur. Since r = 2 is a very special value, we
can get more precise results than the ones coming directly from formula (67).
Indeed, it is not hard to show (see, e.g., [3]) that

E
[
S
(2)
N

]
= N2

H2
N +

N∑
j=1

1

j2

 . (90)

Therefore, (89) becomes

J̃1(N ; θ) =
N2

(1− θ)2

H2
N +

N∑
j=1

1

j2

 . (91)

Using (88) and (91) in (85) we finally get

E
[
S(θ)(2)

]
=

N2

(1− θ)2

H2
N +

N∑
j=1

1

j2

+O
(
e−εN

)
, N → ∞, (92)

for sufficiently small ε > 0. The full asymptotic behavior of
∑N

j=1 j
−2 is well

known (see, e.g., [1])

N∑
j=1

1

j2
∼ π2

6
− 1

N
+

1

2N2
−

∞∑
k=1

B2k

N2k+1
, (93)
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hence we can obtain easily the full asymptotic expansion of E
[
S(θ)(2)

]
by using

(79) and (93) in (92).
For the variance of S(θ) we have

V [S(θ)] = E
[
S(θ)(2)

]
− E [S(θ)]− E [S(θ)]

2
, (94)

hence applying (83) and (92) in (94) yields

V [S(θ)] =
N2

(1− θ)2

N∑
j=1

1

j2
− NHN

1− θ
+O

(
e−εN

)
, N → ∞, (95)

for ε > 0 sufficiently small. Again, the full asymptotic expansion of V [S(θ)] can
be obtained immediately with the help of (79) and (93). In particular,

V [S(θ)] =
π2N2

6(1− θ)2

[
1 +O

(
lnN

N

)]
, N → ∞. (96)

In a similar fashion, we can compute the asymptotics of the fractional rising
moments of S(θ). For r > 0, in view of (73), formula (52) becomes

E
[
S(θ)(r)

]
= r

∫ ∞

0

tr−1

[
1−

(
1− e−θt

) (
1− e−(1−θ)t/N

)N]
dt

= r

∫ ∞

0

tr−1

[
1−

(
1− e−(1−θ)t/N

)N]
dt+ r

∫ ∞

0

tr−1e−θt
(
1− e−(1−θ)t/N

)N
dt,

(97)

thus, in the same way we got (82), we can now get

E
[
S(θ)(r)

]
= r

∫ ∞

0

tr−1

[
1−

(
1− e−(1−θ)t/N

)N]
dt+O

(
e−εN

)
, N → ∞,

(98)
for ε > 0 sufficiently small. Next, as usual, we substitute s = (1 − θ)t in the
integral of (98) and obtain

E
[
S(θ)(r)

]
=

1

(1− θ)r

∫ ∞

0

rsr−1

[
1−

(
1− e−s/N

)N]
ds+O

(
e−εN

)
, N → ∞,

(99)

In view of (59), the integral in the right-hand side of (99) equals E[S
(r)
N ], where

SN is the number of trials needed to collect all coupons in the uniform case.
Hence, we can use formula (67) in (99) and conclude that

E
[
S(θ)(r)

]
∼ Nr(lnN)r

(1− θ)r

∞∑
k=0

(
r

k

)
(−1)k Γ(k)(1)

lnk N
, N → ∞, (100)

for any r > 0. In particular,

E
[
S(θ)(r)

]
∼ Nr(lnN)r

(1− θ)r
, N → ∞. (101)
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Furthermore, since S(θ) ≥ N + 1, in the same way we obtained (72), we can
now get

E [S(θ)r] ∼ Nr(lnN)r

(1− θ)r
, N → ∞, (102)

for any r > 0.
Finally, we will give the limiting distribution of S(θ) as N → ∞. The formulas
for the moments and the variance of S(θ) suggest that the law of the random
variable (1− θ)S(θ) must be very close to the law of SN = the number of trials
needed to detect all N coupons in the uniform case where all coupons are equally
likely to occur.
The limiting distribution of SN as N → ∞ has been found in 1961 by Erdős
and Rényi [5]:

SN −N lnN

N

D−→ Y as N → ∞ (103)

(the symbol
D−→ denotes convergence in distribution) where

F (y) = P{Y ≤ y} = exp
(
−e−y

)
, y ∈ R, (104)

namely Y is a standard Gumbel random variable. Therefore, it is not surprising
that

(1− θ)S(θ)−N lnN

N

D−→ Y as N → ∞, (105)

where, again, Y is a standard Gumbel random variable.
Our proof of formula (105) is based on characteristic functions. The details are
given in the Subsection 5.2 of the Appendix.

4 The asymptotic behavior of T1, T2, and T

4.1 The random variables T1 and T2

If we are only interested in the variable T1 = T1(M) alone, namely the number
of trials needed to collect all M1 = ν1M coupons of Group 1, then all the
coupons of Group 2 feel the same to us, and consequently we can assume that
the Group 2 consists of only one coupon having probability M2p2 = α2 to occur
(recall (29)). Under this point of view, the number of trials S = SM1+1 needed
to detect the totality of the M1 + 1 existing coupons (i.e. the M1 coupons of
Group 1 plus the single coupon of Group 2) can be identified with the variable
S(θ) = S(θ;N) studied in Subsection 3.1, where θ = α2 and N = M1 = ν1M .
Although in our notation we will usually suppress the dependence on M for
typographical convenience, we should always keep in mind that both T1 and S
below depend on the integer M .
Obviously, T1 ≤ S and the event {T1 < S} happens if and only if the Group 2
coupon occurs last, namely after detecting all ν1M Group 1 coupons. Therefore,

P{T1 < S} ≤ P{ν1M < S} = (1− α2)
ν1M = αν1M

1 (106)
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(the last equality follows from the fact that, in view of (29), α1 +α2 = 1). This
is a rather crude estimate of the probability of {T1 < S}, but it will be sufficient
for our purpose.
Next, we will estimate the difference S − T1 in the L1 sense. Let us first notice
that,

S − T1 = (S − T1)1{T1<S}. (107)

Then, taking expectations in (107) yields

E [S − T1] = E
[
(S − T1)1{T1<S}

]
= E [S − T1 |T1 < S]P{T1 < S}. (108)

Now, notice that for k = 1, 2, . . . , we have P{S − T1 = k |T1 < S} = αk−1
1 α2.

Thus, the conditional distribution of S − T1, given {T1 < S}, is geometric with
parameter α2. Therefore, E [S − T1 |T1 < S] = 1/α2 and (108) becomes

E [S]− E [T1] = E [S − T1] =
1

α2
P{T1 < S}. (109)

which, in view of (106), implies that S and T1 get very close in the L1 sense as
M → ∞. As for the asymptotics of E[T1], we can use (83) (with θ = α2 and
N = ν1M) and (106) in (109) and obtain immediately the following result:

Theorem 3. For every sufficiently small ε > 0 we have

E [T1] =
ν1
α1

MHν1M + O
(
e−εM

)
= (ν1+λν2)MHν1M + O

(
e−εM

)
, M → ∞,

(110)
where HN is the N -th harmonic number (see (78)).
Likewise,

E [T2] =
ν2
α2

MHν2M +O
(
e−εM

)
=
(
λ−1ν1+ν2

)
MHν2M +O

(
e−εM

)
, M → ∞.

(111)

For example, in view of (79), formula (110) implies

E [T1] = (ν1+λν2)M lnM +(ν1+λν2)(γ+ ln ν1)M +
α1

2
+O

(
1

M

)
, M → ∞,

(112)
where, recalling (29), we have that α1 = ν1/(ν1 + λν2).
We continue by noticing that in a similar way we can also get easily the asymp-
totics of the second rising moment of T1. With the help of Schwarz’s inequality
(and the fact that S ≥ T1) we have

E
[
S2
]
− E

[
T 2
1

]
= E

[
S2 − T 2

1

]
= E [(S + T1) (S − T1)]

≤ E
[
(S + T1)

2
] 1

2

E
[
(S − T1)

2
] 1

2 ≤ 2E
[
S2
] 1

2 E
[
(S − T1)

2
] 1

2

.

(113)

Now, (107) implies that

(S − T1)
2
= (S − T1)

2
1{T1<S} (114)
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and hence, in the spirit of (108) and (109) we can get

E
[
(S − T1)

2
]
= E

[
(S − T1)

2 |T1 < S
]
P{T1 < S} =

1 + α1

α2
2

P{T1 < S}.

(115)
Using (115) in (113) yields

E
[
S2
]
− E

[
T 2
1

]
≤ 2

√
1 + α1

α2
E
[
S2
] 1

2 P{T1 < S} 1
2 . (116)

Thus, by (92) (with θ = α2 and N = ν1M) and (106) we get that the quantity
in the left-hand side of (116) satisfies

E
[
S2
]
− E

[
T 2
1

]
= O

(
e−εM

)
, M → ∞, (117)

for ε > 0 sufficiently small.
Therefore, by applying (92) (with θ = α2 and N = ν1M) in (117) together with
Theorem 3 and (83) (with θ = α2 and N = ν1M) we obtain the following result:

Theorem 4. For every sufficiently small ε > 0 we have

E [T1(T1 + 1)] =

(
ν1
α1

)2

M2

H2
ν1M +

ν1M∑
j=1

1

j2

+O
(
e−εM

)

= (ν1 + λν2)
2M2

H2
ν1M +

ν1M∑
j=1

1

j2

+O
(
e−εM

)
(118)

as M → ∞. Likewise,

E [T2(T2 + 1)] =

(
ν2
α2

)2

M2

H2
ν2M +

ν2M∑
j=1

1

j2

+O
(
e−εM

)

=
(
λ−1ν1 + ν2

)2
M2

H2
ν2M +

ν2M∑
j=1

1

j2

+O
(
e−εM

)
(119)

as M → ∞.

From Theorems 3 and 4 we get immediately the following

Corollary 3. For every sufficiently small ε > 0 we have

V [T1] =

(
ν1
α1

)2
ν1M∑

j=1

1

j2

M2 − ν1
α1

MHν1M + O
(
e−εM

)

= (ν1 + λν2)
2

ν1M∑
j=1

1

j2

M2 − (ν1 + λν2)MHν1M + O
(
e−εM

)
(120)
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as M → ∞. Likewise,

V [T2] =

(
ν2
α2

)2
ν2M∑

j=1

1

j2

M2 − ν2
α2

MHν2M + O
(
e−εM

)

=
(
λ−1ν1 + ν2

)2ν2M∑
j=1

1

j2

M2 −
(
λ−1ν1 + ν2

)
MHν2M + O

(
e−εM

)
(121)

as M → ∞.

In particular,

V [T1] =
π2(ν1 + λν2)

2

6
M2

[
1 +O

(
lnM

M

)]
, M → ∞. (122)

Let us, also, mention that a similar approach can be use to determine the

asymptotics of E[T
(r)
1 ] and E[T r

1 ]. Indeed, formulas (101) and (102) (for θ = α2

and N = ν1M , as usual) imply

E [T r
1 ] ∼ E

[
T

(r)
1

]
∼ E

[
S(r)

]
∼ (ν1 + λν2)

rMr(lnM)r, M → ∞, r > 0.

(123)
Likewise,

E [T r
2 ] ∼ E

[
T

(r)
2

]
∼
(
λ−1ν1 + ν2

)r
Mr(lnM)r, M → ∞, r > 0. (124)

Finally, for θ = α2 and N = ν1M formula (105) becomes

S − (ν1 + λν2)M (lnM + ln ν1)

(ν1 + λν2)M

D−→ Y as M → ∞ (125)

where Y follows the standard Gumbel distribution displayed in (104). We can
rewrite (125) as

T1 − (ν1 + λν2)M (lnM + ln ν1)

(ν1 + λν2)M
+

S − T1

(ν1 + λν2)M

D−→ Y as M → ∞.

(126)
However, from (106) and (109) we have that S−T1 → 0 in L1 and, therefore in
probability (actually it is easy to see by using (106) and (109) and Chebyshev’s
inequality that, for any δ > 0 we have

∑∞
M=1 P{S − T1 > δ} < ∞, hence

P{S − T1 > δ i.o.} = 0 and the convergence is almost surely). It follows that
S − T1 → 0 in distribution as M → ∞. Therefore,

S − T1

(ν1 + λν2)M

D−→ 0 as M → ∞, (127)

hence by combining (126) and (127) we obtain the following theorem regarding
the limiting distribution of T1 (and T2):
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Theorem 5.

T1 − (ν1 + λν2)M lnM

(ν1 + λν2)M
− ln ν1

D−→ Y as M → ∞ (128)

where
F (y) = P{Y ≤ y} = exp

(
−e−y

)
, y ∈ R, (129)

namely Y is a standard Gumbel random variable.
Likewise,

T2 −
(
λ−1ν1 + ν2

)
M lnM(

λ−1ν1 + ν2
)
M

− ln ν2
D−→ Y as M → ∞. (130)

4.2 The random variable T

We are now ready to determine the asymptotic behavior of the variable T =
T1 ∨ T2 as M → ∞. Without loss of generality, as in Section 2, we will assume
for convenience that

λ =
p2
p1

> 1. (131)

Let us first observe that we can write

T − T1 = T1 ∨ T2 − T1 = (T2 − T1)1{T1<T2}. (132)

Taking expectations in (132) yields

E [T − T1] = E
[
(T2 − T1)1{T1<T2}

]
= E [T2 − T1 |T1 < T2]P{T1 < T2}.

(133)
From the fact that T1 and T2 are stopping times of the coupon filtration (recall
(3)) we get

E [T2 − T1 |T1 < T2] ≤ E [T2] , (134)

thus, using (134) in (133) gives

E [T ]− E [T1] = E [T − T1] ≤ E [T2]P{T1 < T2}. (135)

Therefore, by invoking Theorems 2 and 3 we obtain

Theorem 6.

E[T ] = (ν1 + λν2)MHν1M + O
(
M2−λ lnM

)
, M → ∞, (136)

where, as usual, HN denotes the N -th harmonic number.

Since λ > 1, formula (136) together with (79) imply

E[T ] = (ν1+λν2)M lnM+(ν1+λν2)(γ+ln ν1)M+O
(
M2−λ lnM

)
, M → ∞.

(137)
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From Theorem 6 we see that the larger the λ, the more accurate the asymptotic
formula for E[T ] becomes. The value λ = 2 is somehow critical, since if λ > 2,
then (136) yields

E[T ] = (ν1 + λν2)M lnM + (ν1 + λν2)(γ + ln ν1)M +
ν1 + λν2

2ν1
+ o(1) (138)

as M → ∞.
We continue with the asymptotics of the second rising moment of T . We will

follow the approach used in the previous subsection for E[T
(2)
1 ]. For better

estimates, instead of the Schwarz’s inequality we use here the more general
Hölder inequality (and the fact that T ≤ T1 + T2) to get

E
[
T 2
]
− E

[
T 2
1

]
= E

[
T 2 − T 2

1

]
= E [(T + T1) (T − T1)]

≤ E [(2T1 + T2)
r
]
1
r E [(T − T1)

s
]
1
s , (139)

where
r > 1 and s =

r

r − 1
. (140)

An immediate upper bound of the first factor of the right-hand side of the
inequality in (139) is given by the Minkowski inequality:

E [(2T1 + T2)
r
]
1
r ≤ 2E [T r

1 ]
1
r + E [T r

2 ]
1
r . (141)

Now, (132) implies
(T − T1)

s
= (T − T1)

s
1{T1<T2} (142)

and hence, in the spirit of (134)

E [(T − T1)
s
] = E [(T2 − T1)

s |T1 < T2]P{T1 < T2} ≤ E [T s
2 ] P{T1 < T2}.

(143)
Using (141) and (143) in (139) yields

E
[
T 2
]
− E

[
T 2
1

]
≤
(
2E [T r

1 ]
1
r + E [T r

2 ]
1
r

)
E [T s

2 ]
1
s P{T1 < T2}

1
s . (144)

Thus, by using (123), (124), and the result of Theorem 2 in (144) we obtain

E
[
T 2
]
− E

[
T 2
1

]
= O

(
M2−(λ−1)/s ln2 M

)
, M → ∞. (145)

If we had used the Schwarz’s inequality, then we would have been forced to take
r = s = 2. By using Hölder inequality, we are free to choose r as large as we
wish and, consequently, in view of (140), we can take s arbitrarily close to 1.
Thus, formula (145) is valid for any s > 1 and we can write it as

E
[
T 2
]
= E

[
T 2
1

]
+O

(
M3−λ+ε

)
, M → ∞, (146)

for any ε > 0. Hence, by Theorems 3 and 6 formula (146) becomes

E
[
T (2)

]
= E

[
T

(2)
1

]
+O

(
M3−λ+ε

)
, M → ∞. (147)
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Therefore, by using Theorem 4 in (147) we obtain the following result:

Theorem 7. For every ε > 0 we have

E
[
T (2)

]
= (ν1 + λν2)

2M2

H2
ν1M +

ν1M∑
j=1

1

j2

+O
(
M3−λ+ε

)
, M → ∞.

(148)

Notice that, since λ > 1 and ε can be taken arbitrarily close to 0, the exponent
3 − λ + ε in the error term can be always assumed to be less than 2 (hence
formula (147) is meaningful for any λ > 1). In particular, from (148) we can
immediately deduce that

E
[
T 2
]
∼ E

[
T (2)

]
∼ (ν1 + λν2)

2M2 ln2 M, M → ∞ (149)

and, furthermore, in a similar manner we can show that for any r > 0 we have

E [T r] ∼ E
[
T (r)

]
∼ (ν1 + λν2)

rMr lnr M, M → ∞. (150)

From Theorems 6 and 7 we get the following corollary.

Corollary 4.

V [T ] ∼ π2(ν1 + λν2)
2

6
M2, M → ∞. (151)

Finally, let us determine the limiting distribution of T as M → ∞. Formula
(128) can be written as[

T − (ν1 + λν2)M lnM

(ν1 + λν2)M
− ln ν1

]
− T − T1

(ν1 + λν2)M

D−→ Y, M → ∞, (152)

where Y is a standard Gumbel random variable. Moreover, by using (42) and
(110) in (135) we get

E

[
T − T1

(ν1 + λν2)M

]
= O

(
lnM

Mλ−1

)
, M → ∞. (153)

Since λ > 1, formula (153) implies that, as M → ∞,

T − T1

(ν1 + λν2)M
→ 0 in the L1 sense. (154)

Hence the above convergence is also in probability and, consequently, in distri-
bution. Therefore, by using (154) in (152) we obtain immediately the limiting
distribution of the random variable T as M → ∞:

Theorem 8. Let T be the number of trials required to detect all Group 1 and
Group 2 coupons. Then,

T − (ν1 + λν2)M lnM

(ν1 + λν2)M
− ln ν1

D−→ Y as M → ∞,

where Y is a standard Gumbel random variable.
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5 APPENDIX

5.1 Proof of formula (63)

Let α ∈ (0, 1). For typographical convenience we set

U(N ;α) := eln
α N (155)

(so that for any constant β > 0 we have lnβ N << U(N ;α) << Nβ as N → ∞)
and then we write (62) as

E
[
S
(r)
N

]
= Nr lnr N [I1(N) + I2(N)] , (156)

where

I1(N) :=

∫ U(N ;α)

0

(
1− x

N

)N−1
(
1− lnx

lnN

)r

dx (157)

and

I2(N) :=

∫ N

U(N ;α)

(
1− x

N

)N−1
(
1− lnx

lnN

)r

dx. (158)

We will first estimate I2(N) as N → ∞.

0 < I2(N) <

(
1− U(N ;α)

N

)N−1 ∫ N

U(N ;α)

(
1− lnx

lnN

)r

dx

< N

[(
1− U(N ;α)

N

) N−1
U(N;α)

]U(N ;α)

∼ Ne−U(N ;α). (159)

In particular (159) implies

I2(N) = o

(
1

Nκ

)
for any κ > 0. (160)

To estimate I1(N) we first notice that for 0 ≤ x ≤ U(N ;α) = eln
α N we have

(N−1) ln
(
1− x

N

)
= −(N−1)

[
x

N
+O

(
x2

N2

)]
= −x+o

(
1

Nθ

)
for any θ ∈ (0, 1).

(161)
Exponentiating (161) yields(

1− x

N

)N−1

= e−x

[
1 + o

(
1

Nθ

)]
for any θ ∈ (0, 1). (162)

We, then, substitute (162) in (157) and obtain

I1(N) =

∫ U(N ;α)

0

e−x

(
1− lnx

lnN

)r

dx+ o

(
1

Nθ

)∫ U(N ;α)

0

e−x

(
1− lnx

lnN

)r

dx.

(163)
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Now,∫ U(N ;α)

0

e−x

(
1− lnx

lnN

)r

dx ≤
∫ 1

0

e−x

(
1− lnx

lnN

)r

dx+

∫ U(N ;α)

1

e−xdx = O(1)

(164)
as N → ∞. Thus, by using (164) in (163) we arrive at

I1(N) =

∫ U(N ;α)

0

e−x

(
1− lnx

lnN

)r

dx + o

(
1

Nθ

)
for any θ ∈ (0, 1).

(165)
Since lnx → −∞ as x → 0+, we need to estimate the “bottom tail” of the
integral in (165). We have

0 <

∫ U(N ;α)−1

0

e−x

(
1− lnx

lnN

)r

dx <

(
2r

lnr N
+

2r

eln
α N

)∫ U(N ;α)−1

0

(− lnx)rdx

(166)
(recall that U(N ;α)−1 = e− lnα N , where 0 < α < 1). Integration by parts gives∫ U(N ;α)−1

0

(− lnx)rdx = e− lnα N (lnN)rα [1 + o(1)], (167)

hence, by using (167) in (166) we obtain∫ U(N ;α)−1

0

e−x

(
1− lnx

lnN

)r

dx = o
(
e− lnα N

)
. (168)

In view of (168), formula (165) implies

I1(N) =

∫ U(N ;α)

U(N ;α)−1

e−x

(
1− lnx

lnN

)r

dx + o
(
e− lnα N

)
. (169)

Finally, by substituting (160) and (169) in (156) we get

E
[
S
(r)
N

]
= Nr(lnN)rJ(N ;α), (170)

where

J(N ;α) :=

∫ U(N ;α)

U(N ;α)−1

e−x

(
1− lnx

lnN

)r

dx + o
(
e− lnα N

)
(171)

as N → ∞.
Before we continue let us recall that, for any given r > 0, the function h(y) :=
(1− y)r has the Taylor series expansion

h(y) = (1− y)r =

∞∑
k=0

(−1)k
(
r

k

)
yk, y ∈ [−1, 1], (172)

where(
r

0

)
= 1 and

(
r

k

)
=

r(r − 1) · · · (r − k + 1)

k!
for k = 1, 2, . . . . (173)
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Thus, if n ≥ 1 is a fixed integer, then

h(y) = (1− y)r =
n∑

k=0

(−1)k
(
r

k

)
yk +

h(n+1)(ξ)

(n+ 1)!
yn+1, (174)

where ξ lies between 0 and y.
Going back to formula (171) we see that due to the limits of integration the
dummy variable x satisfies

− lnα N

lnN
≤ lnx

lnN
≤ lnα N

lnN
. (175)

Hence, if we set y = ln x
lnN in (174), then the quantity h(n+1)(ξ)

(n+1)! is bounded and
we get (

1− lnx

lnN

)r

=
n∑

k=0

(−1)k
(
r

k

)(
lnx

lnN

)k

+O

(
lnα(n+1) N

lnn+1 N

)
(176)

uniformly in x, as long as the range of values of x is given by (175).
It follows from (176) that if (for our given n) we choose an α so that

0 < α <
1

n+ 1
, (177)

then (
1− lnx

lnN

)r

=
n∑

k=0

(−1)k
(
r

k

)(
lnx

lnN

)k

+ o

(
1

lnn N

)
(178)

again uniformly in x, within the range of values given by (175). Thus, we can
substitute (178) in (171) and get

J(N ;α) =
n∑

k=0

(
r

k

)
(−1)k

lnk N

∫ U(N ;α)

U(N ;α)−1

e−x(lnx)kdx+ o

(
1

lnn N

)
(179)

as N → ∞.
Next, we observe that in the same way we derived (168) we can also get∫ U(N ;α)−1

0

e−x(lnx)kdx = o
(
e− lnα N lnk N

)
. (180)

Also, it is easy to see that∫ ∞

U(N ;α)

e−x(lnx)kdx = O
(
e−U(N ;α)(lnN)αk

)
(181)

(recall that U(N ;α) = eln
α N ). Therefore, by using (180) and (181) in (179) we

obtain

J(N ;α) =
n∑

k=0

(
r

k

)
(−1)k

lnk N

∫ ∞

0

e−x(lnx)kdx+ o

(
1

lnn N

)
, N → ∞, (182)

and, finally, by substituting (182) in (170) we arrive at (63). �
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5.2 Proof of formula (105)

We start by introducing the generating functions

G(z) := E
[
z−S(θ)

]
= 1−(z−1)

∫ ∞

0

e−(z−1)t

[
1−

(
1− e−θt

) (
1− e−(1−θ)t/N

)N]
dt.

(183)
Notice that if

ℜ{z} > 1− 1− θ

N
, (184)

the integral appearing in (183) is absolutely convergent.
We will derive formula (105) via characteristic functions. Let us fix a ξ ∈ R and
set

ζ := e−iξ. (185)

Then, in view of (183), the characteristic function of [(1− θ)S(θ)−N lnN ]/N
is

ϕN (ξ) = E
[
ζ − (1−θ)S(θ)−N lnN

N

]
= ζ lnNE

[(
ζ

(1−θ)
N

)−S(θ)
]
= ζ lnNG

(
ζ

(1−θ)
N

)
.

(186)
Now,

ζ
(1−θ)

N = e−
i(1−θ)ξ

N = 1− i(1− θ)ξ

N
+O

(
1

N2

)
, N → ∞. (187)

In particular z = ζ(1−θ)/N satisfies (184) for all N sufficiently large.
Next, by using (183) and (187) in (186) we get

ζ − lnNϕN (ξ) = 1 +

[
i(1− θ)ξ

N
+O

(
1

N2

)] [
χ1(N) + χ2(N)

]
, (188)

where

χ1(N) :=

∫ ∞

0

e
−
(
ζ

(1−θ)
N −1

)
t
[
1−

(
1− e−(1−θ)t/N

)N]
dt (189)

and

χ2(N) :=

∫ ∞

0

e
−
(
ζ

(1−θ)
N −1

)
t
e−θt

(
1− e−(1−θ)t/N

)N
dt. (190)

Regarding χ2(N), in the same way we got formula (82) from (81) we can obtain

χ2(N) = O
(
e−εN

)
, N → ∞, (191)

for any sufficiently small ε > 0.
Now, using (187) in (189) yields

χ1(N) =

∫ ∞

0

e[i(1−θ)ξ+O(N−1)] t/N

[
1−

(
1− e−(1−θ)t/N

)N]
dt (192)
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or, after the substitution s = (1− θ)t/N in the above integral

χ1(N) =
N

1− θ

∫ ∞

0

e[iξ+O(N−1)] s
[
1−

(
1− e−s

)N]
ds. (193)

Therefore, by substituting (191) and (193) in (188) we obtain

ζ − lnNϕN (ξ) = 1 +

[
iξ +O

(
1

N

)]∫ ∞

0

e[iξ+O(N−1)] s
[
1−

(
1− e−s

)N]
ds

= 1 + iξ

∫ ∞

0

eiξs
[
1−

(
1− e−s

)N]
ds+O

(
1

N

)
(194)

as N → ∞.
Let AN be a (real) quantity which grows to ∞ with N so that

N

eAN
= o

(
1

N

)
as N → ∞ (195)

(we do not need to be more specific about AN ). Noticing that by (185) we have
ζ − lnN = N iξ, we rewrite (194) as

N iξϕN (ξ) = 1 +K1(N) +K2(N) +O

(
1

N

)
, (196)

where

K1(N) :=

∫ AN

0

iξ eiξs
[
1−

(
1− e−s

)N]
ds (197)

and

K2(N) :=

∫ ∞

AN

iξ eiξs
[
1−

(
1− e−s

)N]
ds. (198)

Applying integration by parts in (197) yields

K1(N) = eiξAN

[
1 +

(
1− e−AN

)N]− 1 +N

∫ AN

0

eiξs
(
1− e−s

)N−1
e−sds,

(199)
which, in view of (195), implies

K1(N) = eiξAN − 1 +N

∫ AN

0

eiξs
(
1− e−s

)N−1
e−sds+ o

(
1

N

)
. (200)

Next, by substituting s = lnN − lnx in the integral appearing in the right-hand
side of (200) we obtain

K1(N) = eiξAN − 1 +N iξ

∫ N

Ne−AN

x−iξ
(
1− x

N

)N−1

dx+ o

(
1

N

)
. (201)

We, then, use (201) in (196) and get

N iξϕN (ξ) = eiANξ +N iξ

∫ N

Ne−AN

x−iξ
(
1− x

N

)N−1

dx+K2(N) +O

(
1

N

)
.

(202)
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Let us, now, turn our attention to the integral K2(N) of formula (198).
Assume first that ξ > 0. We complexify the dummy variable s by setting
z = s + iτ and for N (temporarily) fixed we choose R > AN and consider the
close contour CR formed by (i) the interval [AN , R] of the (real) s-axis, (ii) the
circular arc Reiθ, 0 ≤ θ ≤ arccos(AN/R), and (iii) the line segment AN + iτ ,
0 ≤ τ ≤

√
R2 −A2

N . Then, Cauchy’s Theorem implies∮
CR

iξ eiξz
[
1−

(
1− e−z

)N]
dz = 0 for every R > AN . (203)

Next (keeping N fixed), we take limits in (203) as R → ∞. It is a standard
exercise in contour integration to show that the integral on the circular piece of
CR, namely on the arc Reiθ, 0 ≤ θ ≤ arccos(AN/R), vanishes. Hence, in view
of (198), formula (203) implies

K2(N) = −eiξAN

∫ ∞

0

ξ e−ξτ
[
1−

(
1− e−AN e−iτ

)N]
dτ. (204)

Now, we can allow N to grow large. Thus, in view of (195), formula (204) yields

K2(N) = −eiξAN + o

(
1

N

)
(205)

and, hence, by substituting (205) in (202) we obtain

ϕN (ξ) =

∫ N

Ne−AN

x−iξ
(
1− x

N

)N−1

dx+O

(
1

N

)
. (206)

Formula (206) was obtained under the assumption that ξ > 0. However, if ξ < 0,
then the same approach works if we choose the contour CR to be the symmetric
of the previous one with respect to the (real) s-axis. Therefore, formula (206)
is valid for all ξ ∈ R \ {0}, while for ξ = 0 formulas (185) and (186) imply
immediately that

ϕN (0) = 1 for all N. (207)

Finally, as in the previous subsection (see, e.g., (157) and (162)), formulas (206)
and (207) imply

lim
N→∞

ϕN (ξ) =

∫ ∞

0

x−iξe−xdx = Γ(1− iξ) pointwise for ξ ∈ R, (208)

where Γ(1 − iξ) is recognized as the characteristic function of the standard
Gumbel distribution. �
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[5] P. Erdős and A. Rényi, On a classical problem of probability theory, Mag-
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