
Similarity Solutions for a MultidimensionalRepli
ator Dynami
s Equation.Vassilis G. Papani
olaou �Department of Mathemati
sNational Te
hni
al University of AthensZografou Campus157 80, Athens, GREECE.e-mail: papani
o � math.ntua.grGeorge SmyrlisDepartment of Mathemati
sTe
hnologi
al Edu
ational Institute of AthensAg. Spyridonos Str.Egaleo 12210, Athens, GREECE.e-mail: gsmyrlis�syros.aegean.grAbstra
tWe 
onstru
t an one-parameter family of self-similar solutions for a nonlinear de-generate multidimensional paraboli
 equation 
ontaining a nonlo
al term. All thesesolutions are stri
tly positive and their integral over the whole spa
e is 1. The equa-tion serves as a repli
ator dynami
s model where the set of strategies is a 
ontinuum.Key words: repli
ator dynami
s problem, self{similar solutions, nonlineardegenerate paraboli
 PDE with a nonlo
al term, Lapla
ian, DominatedConvergen
e Theorem.
1 Introdu
tionThe repli
ator dynami
s models are popular models in evolutionary game the-ory. They have signi�
ant appli
ations in e
onomi
s, population biology, aswell as in other areas of s
ien
e.� Corresponding author.Email address: papani
o � math.ntua.gr ( Vassilis G. Papani
olaou ).Preprint submitted to Elsevier S
ien
e 9 September 2008



Repli
ator dynami
s have been studied extensively in the �nite dimensional
ase:Let A = (aij) be an m�m negative matrix. The typi
al repli
ator dynami
sequation isu0i(t) = 24 mXj=1 aijuj(t)� mXk=1 mXj=1 akjuk(t)uj(t)35 ui(t); t > 0; i = 1; :::; m;(1)whi
h symboli
ally 
an be also written in the formut = [Au� (u;Au)℄u(where (Au)u is the ve
tor whose i-th 
omponent is the produ
t of the i-th
omponents of (Au) and u). The matrix A is 
alled the payo� matrix whileS = f1; :::; mg is the strategy spa
e and the ve
toru = (u1(t); :::; um(t))> ;is a probability distribution on S, hen
e we must haveuj(t) � 0; for j = 1; :::; m; and mXj=1uj(t) = 1: (2)It is easy to see that if the 
onditions (2) are satis�ed for t = 0, then they aresatis�ed for all t � 0 (under the 
ow (1)).The term in the square bra
kets in the right hand side of equation (1) is ameasure of the su

ess of strategy i and it is assumed to be the di�eren
eof the payo� of the players playing strategy i from the average payo� of thepopulation. It is then assumed that the logarithmi
 derivative of ui(t), where uiis the per
entage of the population playing i, is equal to this su

ess measure,i.e. that agents update their strategies proportionally to the su

ess of thestrategy i. This model was introdu
ed in [7℄ and [8℄ (see also Wikipedia or [3℄where a sto
hasti
 version of the model is dis
ussed).In�nite dimensional versions of this evolutionary strategy models have beenproposed, e.g., in [1℄ and [5℄ (see also the 
ompanion paper [6℄) in 
onne
tionto 
ertain e
onomi
 examples. However, the abstra
t form of the proposedequations does not allow one to obtain insight on the form of solutions. Inorder to make some progress in this dire
tion, in the re
ent work [4℄ the authorsrestri
ted their attention to the 
ase where the strategy spa
e S is the set R2



(i.e. the real line) and the payo� operator A is the di�erential operator d2=dx2.Then (1) be
omes the evolution lawut = [uxx � (u; uxx)℄u; (3)where (�; �) denotes the usual inner produ
t in the Hilbert spa
e L2(R) of thesquared-integrable real-valued fun
tions de�ned on R. The initial 
ondition,u(x; 0) is taken to be the density of a probability measure on R.Equation (3) is a nonlinear degenerate paraboli
 PDE with a nonlo
al term.In [4℄ the authors 
onstu
ted an one-parameter family of self-similar solutionsfor (3), namely solutions u of the formu(t; x) = 1t� g � xt�� :All these similarity solutions are probability densities on R, for every t > 0.It is worth saying that there are situations where strategies 
orrespond to ge-ographi
al points and hen
e it is natural to model the set of strategies by a
ontinuum. Also, the in�nite-dimensional models lead to interesting mathe-mati
s (nonlinear, non lo
al, degenerate paraboli
 PDE's with ri
h stru
ture).In the present work we study the d-dimensional 
ase (with d � 2) where thestrategy spa
e is S = Rd , while A = �, namely the Lapla
ian a
ting on Rd .In this 
ase the 
orresponding repli
ator dynami
s problem takes the formut = [�u� (u;�u)℄u; t > 0; x 2 Rd ; (4)withZRd u(0; x)dx = 1 and u(0; x) � 0; for x 2 Rd : (5)Here (�; �) denotes the usual inner produ
t on the Hilbert spa
e L2(Rd), i.e.(f; g) = ZRd f(x)g(x)dx:The main result of the arti
le is the 
onstru
tion of an one-parameter familyof self-similar solutions for (4){(5), namely solutions u of the formu(t; x) = 1t� gd � rt�� ; where r = jxj = qx21 + � � �+ x2d: (6)3



All the solutions we obtained are probability densities on Rd , for all t > 0. It israther unusual for a paraboli
 problem to have an in�nitude of su
h solutions,sin
e they all approa
h Æ(x), as t! 0+.2 The Equation for gdLet u(t; x) be a solution of (4). By applying integration by parts (i.e. theDivergen
e Theorem for the ve
tor �eld uru|also known as Green's 1stidentity) one obtains(u;�u) = ZRd u�u = � ZRd ru � ru = � ZRd jruj2 ;provided thatlimR!1 ZSd�1(R) u �u�n = 0; (7)where Sd�1(R) is the sphere of radius R in Rd , 
entered at the origin, and nits outward unit normal ve
tor.Thus, under (7), equation (4) 
an be written in the equivalent formut = 0B��u+ ZRd jruj21CAu; t > 0; x 2 Rd : (8)Let us introdu
e the variables = t��r (9)(noti
e that 0 < s <1). Then u of (6) 
an be also written asu(t; x) = t��g (s) : (10)It follows thatut = ��t�(�+1)gd (s)� t��g0d (s)�t�(�+1)r = �t�(�+1) [�gd (s) + �sg0d (s)℄ :(11)4



Also, sin
e u of (6) is radial in x, we have�u = urr + d� 1r ur;thus�u = t���2�g00d (s) + d� 1r t����g0d (s) = t���2� "g00d (s) + d� 1s g0d (s)# :(12)Next let us fo
us on the nonlo
al term of (8), namely the term RRd jruj2. Aneasy 
al
ulation gives that for radial fun
tions we havejruj2 = u2r:Thus,ZRd jruj2 dx = ZRd u2rdx = ZSd�1 1Z0 u2rrd�1drd�;where Sd�1 is the unit sphere in Rd and � the measure on Sd�1 indu
ed bythe d-dimensional Lebesgue measure. It follows thatZRd jruj2 dx = �d 1Z0 u2rrd�1dr; (13)where �d is the total measure of Sd�1, namely�d = 2�d=2�(d=2)( �(�) denotes, of 
ourse, the Gamma fun
tion). Nowur = t����g0d (s) ;thus (13) yieldsZRd jruj2 dx = t�2��(2�d)�Kd[g℄; (14)5



where we have setKd[gd℄ = �d 1Z0 g0d(s)2sd�1ds: (15)Substituting (10), (11), (12), and (14) in (8 ) gives��gd (s)� �sg0d (s) = t1���2� "g00d (s) + d� 1s g0d (s)# gd (s) + t1�2��(2�d)�Kd[gd℄gd (s) :The only way that the above is a meaningful equation is that it does not
ontain t, thus1� �� 2� = 0 and 1� 2�� (2� d)� = 0;whi
h gives� = dd+ 2 ; � = 1d+ 2 : (16)Finally we noti
e that, under (16), (6) impliesZRd u(t; x)dx = �d 1Z0 1t� gd � rt�� rd�1dr = �d 1Z0 gd (s) sd�1ds;independently of t. Thus, if we set�d 1Z0 gd (s) sd�1ds = 1; (17)thenZRd u(t; x)dx = 1; for all t � 0:The following lemma summarizes what we have done so far.Lemma 1. Let d � 2. Thenu(t; x) = 1t� gd � rt�� 6



satis�es (8) and (5) if and only if� = dd+ 2 ; � = 1d+ 2 ;�d 1Z0 gd (s) sd�1ds = 1; (18)and gd (s) g00d (s) + d� 1s gd (s) g0d (s) + sd+ 2g0d (s) + dd+ 2gd (s) +Kd[gd℄gd (s) = 0;(19)whereKd[gd℄ = �d 1Z0 g0d(s)2sd�1ds: (20)We, therefore, need to show that there exist fun
tion(s) gd(s) satisfying (19)together with (20), and (18). In order to do that we must �rst 
onsider anauxiliary problem.3 The Auxiliary ProblemConsider the problemq (s) q00 (s) + d� 1s q(s)q0(s) + sd+ 2q0 (s) + �q (s) = 0; s > 0; (21)q(0) = A > 0; q0(0) = 0; (22)where d � 2 is a natural number and � is a real parameter satisfying� > dd+ 2 : (23)We note that the above initial 
onditions (22) are interpreted in the sense oflimits as s! 0+.Equation (21) 
an be written in the formq00 (s) + d� 1s q0(s) + sq0(s)(d+ 2)q(s) + � = 0; (24)7



as long as q (s) 6= 0. By Proposition A1 of the Appendix we have that thereis an " > 0 su
h that (21){(22) has a unique solution q (s) ; for s 2 [0; "℄.Lemma 2. The solution q (s) of (21){(22) exists for all s � 0 and it is astri
tly positive fun
tion whi
h is de
reasing on (0;1). Moreover,1Z0 q0(s)2ds <1; lims!1 q0(s) = 0and 1Z0 q(s)ds <1:Proof. Let [0; b) (0 < b � 1) be the maximal existen
e interval of q. We shallshow that b =1.Suppose on the 
ontrary that 0 < b <1.Then, by a well-known theorem in the theory of ordinary di�erential equations(see, e.g., [2, Th.4.1, Chapter 1℄), we have three alternative 
ases:(i) lims!b� q(s) =1;(ii) lims!b� q(s) = 0;(iii) lims!b� jq0(s)j =1:In order to drop (i)-(iii) we shall need two 
laims:Claim 1: If q is positive on some interval (0; s1); 0 < s1 < b; then q0 remainsnegative on (0; s1).If this is not the 
ase, set s01 = inffs 2 [0; s1) : q0(s) � 0g. Note that s01 > 0.Indeed, by view of (49) (see the Appendix) we have that q00(0) = ��=d < 0;so we may �nd an r 2 (0; b) su
h that q0(s) < q0(0) = 0, for s 2 (0; r).Now we have q0(s) < 0, for s 2 (0; s01) and q0(s01) = 0. This implies thatq00(s01) � 0. However, by (24)q00(s01) = �� < 0;a 
ontradi
tion. 8



Claim 2: q is positive and de
reasing on [0; b), whereas q0 is negative on (0; b).By Claim 1, it suÆ
es to show that q is positive on [0; b). If this is not true,let s1 be the �rst positive zero of q. Multiplying both sides of (24) with sd�1and integrating from 0 to s 2 (0; s1) we getsZ0 �d�1q00(�)d� + (d� 1) sZ0 �d�2q0(�)d� + 1d+ 2 sZ0 �d[ln q(�)℄0d� + �dsd = 0:Integration by parts in the above equation 
ombined with the fa
t that q0(0) =0 givessd�1q0(s) + sdd+ 2 ln q(s)� dd+ 2 sZ0 �d�1 ln q(�)d� + �dsd = 0: (25)Now observe that sin
e q0 < 0 (Claim 1) and q > 0, on (0; s1), the fun
tionf = � 1d+2 ln q has positive derivative on (0; s1) whereas it tends to 1 ass! s�1 . Hen
e, Proposition A2 of the Appendix applied to f giveslims!s�1 sd�1q0 (s) =1;whi
h is impossible, sin
e, as we have seen, q0 stays negative in (0; s1).To pro
eed, observe that Claim 2 immediately drops 
ase (i), sin
e 0 < q(s) �q(0) = A; for ea
h s 2 [0; b).Moreover, sin
e (25) holds for all s 2 (0; b), the Proposition A2 of the Ap-pendix yields that 
ase (ii) 
annot be valid either.Finally, suppose that 
ase (iii) holds. The fa
t that q0 < 0 (Claim 2) for
eslims!b� q0(s) = �1and hen
elims!b�q00(s) = �1;whi
h 
ontradi
ts (24) (re
all that q(s) > 0 by Claim 2) and also drops 
ase(iii). 9



Consequently, solution q (s) of (21){(22) exists for all s � 0 and it is a stri
tlypositive and de
reasing fun
tion on (0;1)We 
ontinue the proof of Lemma 2 by noti
ing that lims!1 q(s) = l 2 (0; A℄.Then1Z0 q0(s)ds = lims!1 q(s)� q(0) = l � A; (26)hen
e q0 2 L1(0;1) (sin
e q0 is negative).Supposelims!1q0(s) < 0: (27)Then, in view of (26), (27) there is a sequen
e sn !1 su
h that q0 attains alo
al minimum at sn andlimn q0(sn) = �Æ; for some Æ > 0: (28)But sin
e q0(sn) is a lo
al minimum we must have q00(sn) = 0, hen
e (24) givesjq0 (sn) j = �(d+ 2)snq(sn)(d� 1)(d+ 2)q(sn) + s2n � A�(d+ 2)sn(re
all that q is stri
tly positive and de
reasing on [0;1) with q(0) = A).Thus limn q0(sn) = 0, 
ontradi
ting (28) and hen
e (27). We have, thus, estab-lished thatlims!1 q0(s) = 0: (29)This, together with the fa
t that q0 is integrable, implies q0 2 L2((0;1)), i.e.1Z0 q0(s)2ds <1:Finally, integrating both sides of (21) from 1 to s (s > 1) and using integrationby parts we obtain 10



��� 1d+ 2� sZ1 q(�)d�=�q(s)q0(s) + q(1)q0(1) + sZ1 (q0(�))2d� � d� 12 q(s)2s ++ d� 12 q(1)2 � d� 12 sZ1 q(�)2�2 d� � sq(s)d+ 2 + q(1)d+ 2 : (30)Re
alling again that q0(s) < 0 and 0 < q(s) � A, we get from (30) that, forea
h s > 1,��� 1d+ 2� sZ1 q(�)d� � �Aq0(s) + sZ1 (q0(�))2d� + d� 12 A2 + Ad+ 2 : (31)Sin
e q0 2 L2(0;1), lims!1 q0(s) = 0, and � > d=(d+2) > 1=(d+2), the lastinequality ensures that q is integrable over [1;1) and thus, over [0;1).The proof of the lemma is now 
omplete. 2Lemma 3. Let q (s) be the solution of the problem (21){(22). Then the fol-lowing hold:(i) � 1Z0 sdq0(s)ds = d 1Z0 sd�1q(s)ds <1;(ii) lims!1 sdq(s) = 0;(iii) 1Z0 sdq0(s)2ds <1:Proof. First we noti
e that, sin
e by Lemma 2 q0 is negative and lims!1 q0(s) = 0,(iii) follows immediately from (i).We will use an indu
tive argument to show that for ea
h n 2 f1; 2; : : : ; dg wehave(i0) � 1Z0 snq0(s)ds = n 1Z0 sn�1q(s)ds <1and(ii0) lims!1 snq(s) = 0: 11



To begin, observe that (i0) and (ii0) are valid for n = 1. Indeed, by Lemma 2we have1Z0 q(s)ds <1;whereas we know that q is positive and de
reasing. By a standard result of
al
ulus we infer that lims!1 sq(s) = 0. Also,� 1Z0 sq0(s)ds = � lims!1 sq(s) + 1Z0 q(s)ds = 1Z0 q(s)ds <1:Next, �x n 2 f2; : : : ; dg and suppose that (i0) and (ii0) hold for k 2 f1; 2; : : : ; n�1g. We will show that (i0) and (ii0) also hold for k = n.Multiplying both sides of (21) with sn�1 and integrating from 0 to s we getsZ0 �n�1q(�)q00(�)d� + (d� 1) sZ0 �n�2q(�)q0(�)d� + 1d+ 2 sZ0 �nq0(�)d� + � sZ0 �n�1q(�)d� = 0:Integration by parts applied in the above equality gives rise tosn�1q(s)q0(s)� sZ0 �n�1q0(�)2d� + (d� n) sZ0 �n�2q(�)q0(�)d� ++ q(s)d+ 2sn + ��� nd+ 2� sZ0 �n�1q(�)d� = 0: (32)Formula (32) implies that��� nd+ 2� sZ0 �n�1q(�)d� � �sn�1q(s)q0(s) + sZ0 �n�1q0(�)2d� � (d� n) sZ0 �n�2q(�)q0(�)d�:Exploiting our hypothesis that (i0) , (ii0) hold for k = n � 1 and taking intoa

ount that q0 is negative with lims!1 q0(s) = 0, we dedu
e thatlims!1 sn�1q(s) = 0; 1Z0 �n�1q0(�)2d� <1:12



Meanwhile, if n � 3, our hypothesis enables us to apply (i0) for k = n� 2 andget 1Z0 �n�2jq0(�)jd� <1;thus,(d� n) 1Z0 �n�2q(�)jq0(�)jd� � A(d� n) 1Z0 �n�2jq0(�)jd� <1:Note that if n = 2, the above inequality still holds. Indeed,1Z0 q(�)jq0(�)jd� = � lims!1 q(s)22 + A22 = A22 < A2 = A 1Z0 jq0(�)jd�:The above arguments 
ombined with the fa
ts that lims!1 q0(s) = 0 and� > d=(d+ 2) � n=(d+ 2) yield1Z0 sn�1q(s)ds <1:Now (32) implies that lims!1 snq(s) = L 2 R. But, if L 6= 0, then sn�1q(s) isasymptoti
 to L=s, as s ! 1, 
ontradi
ting the fa
t that sn�1q(s) is inte-grable. Therefore L = 0, and� 1Z0 snq0(s)ds = � lims!1 snq(s) + n 1Z0 sn�1q(s)ds = n 1Z0 sn�1q(s)ds <1:We have, therefore, established that (i0) and (ii0) hold for k = n, where n 2f2; : : : ; dg. This �nishes the proof of the lemma. 2Corollary 1. Let q (s) be the solution of the problem (21){(22). Then1Z0 sd�1q0(s)2ds =  �� dd+ 2! 1Z0 sd�1q(s)ds:13



Proof. For n = d, (32) be
omessd�1q(s)q0(s)� sZ0 �d�1q0(�)2d� + q(s)d+ 2sd +  �� dd+ 2! sZ0 �d�1q(�)d� = 0:Taking the limit, as s ! 1, and employing Lemma 3, yields the desiredformula. 24 The Constru
tion of the Self Similar SolutionsWe start with two lemmas.Lemma 4. Let q (s) be the solution of the problem (21){(22). Thenkq0k1 � �q(d+ 2)A; (33)where kq0k1 denotes the supnorm of q0 on [0;1) and1Z0 sd�1q(s)ds � A1+d=2d(d+ 1)(�pd+ 2 )d : (34)Proof. Sin
e q0(s) < 0 in (0;1), with q0(0) = lims!1 q0(s) = 0, it follows thatq0 attains its absolute minimum at some sm in (0;1), and hen
ekq0k1 = �q0(sm) = jq0(sm)j:Also, q00(sm) = 0, thus (24) impliesq0 (sm) = � �(d+ 2)smq(sm)(d� 1)(d+ 2)q(sm) + s2m ;thereforekq0k1 � �(d+ 2)Asm (35)(sin
e q is positive, de
reasing in (0;1), and q(0) = A). On the other hand,sin
e q > 0 and q0 < 0, (24) impliesq00(s) � ��; for all s � 0 14



and 
onsequentlyq0(s) � ��s; for all s � 0(re
all that q0(0) = 0), in parti
ularkq0k1 = �q0(sm) � �sm: (36)By 
ombining (35) and (36) we obtainkq0k1 � min(�(d+ 2)Asm ; �sm) :But, no matter what sm is, the minimum of (d+2)�A=sm and �sm (sin
e the�rst is de
reasing in sm, while the se
ond is in
reasing) is always at most M ,whereM = (d+ 2)�As = �s:Thus, s = q(d+ 2)A and M = �q(d+ 2)A. This establishes (33).Next, we noti
e that, sin
eq(s) � q(0)� kq0k1 s; for all s � 0;(33) implies thatq(s) � A� �q(d+ 2)As; for all s � 0;in parti
ular for0 � s � pA�pd+ 2 :Thus (sin
e q > 0),1Z0 sd�1q(s)ds � pA=(�pd+2)Z0 sd�1q(s)ds� pA=(�pd+2)Z0 sd�1 �A� �q(d+ 2)As� ds= A1+d=2d(d+ 1)(�pd+ 2 )d ;15



whi
h is (34). 2Lemma 5. If q (s) is the solution of (21){(22), thenq (s) � 1s�(d+2) exp[ �(d + 2)�=d ℄Ad exp[ d(d+ 2)A ℄ exp " �(d+ 2)3=2pAs # ;(37)for all s � 1.Proof. Let us setF (s) = � dd+ 2 sZ0 �d�1 ln q (�) d�: (38)Then (25) 
an be written assF 0(s)� dF (s) = dsd�1q0(s) + �sd; (39)whi
h implies"F (s)sd #0 = �s + ds2 q0(s):We, now, pi
k an s � 1 and integrate both sides of the above equation from 1to s. This results toF (s)sd = F (1) + � ln s + d sZ1 q0 (�)�2 d�: (40)Sin
e q0 < 0 on (0;1),0 � d sZ1 q0 (�)�2 d� � d sZ1 q0 (�) d� � d 1Z0 q0(s)ds = �dq(0) = �dA;hen
e formula (40) impliesF (s)sd � � ln s+ F (1)� dA: 16



Invoking (38) and (39) givesF (s)sd = F 0(s)dsd�1 � q0(s)s � �d = � ln[q(s)℄d+ 2 � q0(s)s � �d ;and the previous inequality be
omes� ln[q(s)℄d+ 2 � q0(s)s � �d � � ln s+ F (1)� dA;whi
h, 
ombined with (33) implies� ln[q(s)℄d+ 2 � � ln s+ F (1) + �d � �q(d+ 2)As � dA:It follows thatln[q(s)℄ � ��(d+ 2) ln s� (d+ 2)F (1)� (d+ 2)�d + �(d+ 2)3=2pAs + d(d+ 2)Aor q(s) � 1s�(d+2) exp[�(d+ 2)F (1)℄ exp[ �(d+ 2)�=d ℄ exp[ d(d+ 2)A ℄ exp[ �q(d+ 2)A(d+ 2)=s ℄ :Sin
e q is de
reasing in (0;1), we have (see (38))�d+ 2d F (1) = 1Z0 ln[q(s)℄ds � ln[q(0)℄ = lnAor exp[�(d + 2)F (1)℄ � Ad:Consequently,q(s) � 1s�(d+2) exp[ �(d+ 2)�=d ℄Ad exp[ d(d+ 2)A ℄ exp " �(d+ 2)3=2pAs # :217



Corollary 2. If q (s) satis�es (21){(22 ), thenlimA!0+ 1Z0 sd�1q0(s)2ds = 0 (41)and limA!1 1Z0 sd�1q0(s)2ds =1: (42)Proof. By Lemma 5 we have that for ea
h s � 1,sZ1 �d�1q(�)d� � Ad exp[d(d+ 2)A℄ exp[ �(d+ 2)3=2pA ℄ sZ1 d���(d+2)�d+1and hen
e (as s!1)1Z1 sd�1q(s)ds � Ad exp[d(d+ 2)A℄ exp[ �(d+ 2)3=2pA ℄ 1Z1 dss�(d+2)�d+1 :Sin
e1Z1 dss�(d+2)�d+1 <1(re
all that � > d=(d+ 2)), we get thatlimA!0+ 1Z1 sd�1q(s)ds = 0:Also, 1Z0 sd�1q(s)ds � q(0) = A;thus limA!0+ 1Z0 sd�1q(s)ds = 0: (43)18



Now (34) and (43) in 
onjun
tion with Corollary 1 give (41) and (42). 2Corollary 3. Let q (s) satisfy (21){(22), in parti
ular q(0) = A > 0. Then, asa fun
tion of A, the quantityI(A) = 1Z0 sd�1q(s)ds (44)is 
ontinuous in (0;1).Proof. Let q (s) = q (s;A) be the (unique) solution of the problem (21){(22).By using an argument similar to the one in the proof of Proposition A1 ofthe Appendix one 
an verify that q (s;A) is 
ontinuous in A, for A > 0. Thusq(s;A) = sd�1q(s;A) too is 
ontinuous in A, for A > 0. For �xed A1; A2,with 0 < A1 < A2 <1, the estimate (37), the monotoni
ity of q and the fa
t� > d=(d+ 2) imply that the family fq (� ;A) : A 2 [A1; A2℄g is dominated bythe integrable fun
tion h(s); s � 0, whereh(s) = 8>>>>><>>>>>:A2; 0 � s � 1;Ad2s(d+2)��d+1 exp[ d(d+ 2)A2 ℄ exp[ �q(d+ 2)A2(d+ 2) ℄; s > 1:Hen
e, the 
ontinuity of I(A) follows by invoking the Dominated Convergen
eTheorem. 2We are now ready for our main theorem.Theorem 1. For ea
h number � 2 (0;1) there is a self-similar solution of(4) and (5), namely a fun
tion gd(s) satisfying (19) together with (15), (17),su
h thatK[gd℄ = �:Proof. Let us 
onsider again the (unique) solution q (s) = q (s;A) of the prob-lem (21){(22) with � = �+ d=(d+ 2), that isq (s) q00 (s) + d� 1s q(s)q0(s) + sd+ 2q0 (s) + dd+ 2q(s) + �q (s) = 0; s � 0;q(0) = A > 0; q0(0) = 0; 19



and setQ(A) = �d 1Z0 sd�1q0(s;A)2ds: (45)Then by Corollary 1,Q(A) = �d� 1Z0 sd�1q(s;A)ds;hen
e Corollary 3 tells us that Q(A) is 
ontinuous on (0;1). Furthermore,(41) and (42) of Corollary 2 readlimA!0+Q(A) = 0 and limA!1Q(A) =1:Thus Q(A) takes every value between 0 and 1. In parti
ular there is anA = A� su
h thatQ(A�) = �:Set gd(s) = q(s;A�):ThenKd[gd℄ = �d 1Z0 sd�1(g0d(s))2ds = Q(A�) = �;thus gd(s) satis�es (20), (19). Furthermore, by Corollary 1,�d 1Z0 sd�1gd (s) ds = �d 1Z0 sd�1q (s;A�) ds = �d� 1Z0 q0(s;A�)2ds = 1�Q(A�) = 1;hen
e gd(s) also satis�es (18). 2Remarks. (a) As we have already pointed out, it is rather surprising thatthere is an in�nitude of self-similar solutions.(b) Estimate (37) and the fa
t that q0(s) ! 0, as s ! 1, imply that oursimilarity solutions satisfy (7). Hen
e they also satisfy (4).20
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h that (21){(22) has a unique solutionq (s) ; for s 2 [0; "℄.Proof. By multiplying both sides of (24) by sd�1, then integrating from 0 tos > 0, and using the initial 
ondition q0(0) = 0 one gets the equivalent problemsd�1q0(s) + 1d+ 2 sZ0 � dq0(�)q(�) d� + �dsd = 0; q(0) = A:Setting p = q0 we obtain the systemp(s) = � 1(d+ 2)sd�1 sZ0 � dp(�)q(�) d� � �ds ; (46)q(s) = sZ0 p(�)d� + A; (47)whi
h, of 
ourse, is also equivalent to (21){(22).We intend to prove that for some " > 0, the above system possesses a uniquesolution (p(s); q(s)), for s 2 [0; "℄.Fix an " > 0 and 
onsider the linear spa
e C[0; "℄ of all real-valued 
ontinuousfun
tions de�ned on the interval [0; "℄. Of 
ourse, C[0; "℄ is a Bana
h spa
eunder the supnorm jj � jj1. Furthermore, C[0; "℄ � C[0; "℄ is also a Bana
hspa
e with normjj(u; v)jj = jjujj1 + jjvjj1: (48)Now let us setY" = f(q; p) 2 C[0; "℄� C[0; "℄ : jjq � Ajj1 � A=2 ; jjpjj1 � 1 g:Obviously, Y" is a 
losed subset of C[0; "℄� C[0; "℄ and thus, it is a 
ompletemetri
 spa
e with respe
t to the metri
 indu
ed by the norm (48).21



To pro
eed, de�ne the mapping �" : Y" ! C[0; "℄� C[0; "℄ by�"[q; p℄(s) = 0� sZ0 p(�)d� + A; � 1(d + 2)sd�1 sZ0 � dp(�)q(�) d� � �ds;1A :It is straightforward to 
he
k that by taking " suÆ
iently small, the mapping�" 
an be made a 
ontra
tion from Y" into itself. Therefore �" admits a unique�xed point whi
h is the unique solution to the system (46){(47) on the interval[0; "℄. 2Remark: Di�erentiating both sides of (46) with respe
t to s > 0 and thentaking the limit as s! 0+ we get (re
all that p = q0)lims!0+ q00(s) = lims!0+ p0(s) = ��=d :Hen
eq00(0) = ��=d : (49)Proposition A2. Let f be a di�erentiable fun
tion de�ned on the interval(0; b), for some b > 0, withf 0(x) > 0; x 2 (0; b); and limx!b� f(x) =1:Then for ea
h d � 1,limx!b� 24xdf(x) � d xZ0 �d�1f(�)d�35 =1:Proof. Let a 2 (0; b). SetF (x) = xdf(x) � d xZ0 �d�1f(�)d� � ad[f(x)� f(a)℄; x 2 (0; b):Then F 0(x) = (xd�ad)f 0(x), x 2 (0; b), and sin
e f 0 > 0 on (0; b), the fun
tionF attains its (global) minimum on (0; b) at x = a. Thus for ea
h x 2 (0; b),F (x) � F (a) = adf(a)� d aZ0 �d�1f(�)d� = aZ0 �df 0(�)d� � 022



(where the last equality follows by integration by parts).Thereforexdf(x) � d xZ0 �d�1f(�)d� � ad[f(x)� f(a)℄; x 2 (0; b);and the right-hand side of the above inequality tends to 1, as x! b�. 2Referen
es[1℄ Bomze, I., Dynami
al aspe
ts of evolutionary stability, Monaish. Mathematik110 (1990), 189{206.[2℄ Coddington, E. A. and Levinson, N. : Theory of Ordinary Di�erential Equations,Robert E. Krieger Publishing Company, Malabar, Florida, 1987.[3℄ Imhof, L. A., The long-run behavior of the sto
hasti
 repli
ator dynami
s, Ann.Appl. Probab. 15, no. 1B (2005), 1019{1045.[4℄ Kravvaritis, D., Papani
olaou, V. G., and Yanna
opoulos, A., SimilaritySolutions for a Repli
ator Dynami
s Equation, Indiana Univ. Math. Journal57, no. 4 (2008).[5℄ Oe
hssler, J. and Riedel, F., Evolutionary dynami
s on in�nite strategy spa
es,E
onomi
 Theory 17 (2001), 141{162.[6℄ Oe
hssler, J. and Riedel, F., On the dynami
 foundation of evolutionary stabilityin 
ontinuous models, Journal of E
onomi
 Theory 107 (2002), 223{252.[7℄ Smith, J. Maynard: Evolution and the Theory of Games, Cambridge UniversityPress, Cambridge, UK, 1982.[8℄ Taylor, P. D. and Jonker, L. B., Evolutionary Stable Strategies and GameDynami
s, Mathemati
al Bios
ien
es 40 (1978), 145{156.

23


