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Repliator dynamis have been studied extensively in the �nite dimensionalase:Let A = (aij) be an m�m negative matrix. The typial repliator dynamisequation isu0i(t) = 24 mXj=1 aijuj(t)� mXk=1 mXj=1 akjuk(t)uj(t)35 ui(t); t > 0; i = 1; :::; m;(1)whih symbolially an be also written in the formut = [Au� (u;Au)℄u(where (Au)u is the vetor whose i-th omponent is the produt of the i-thomponents of (Au) and u). The matrix A is alled the payo� matrix whileS = f1; :::; mg is the strategy spae and the vetoru = (u1(t); :::; um(t))> ;is a probability distribution on S, hene we must haveuj(t) � 0; for j = 1; :::; m; and mXj=1uj(t) = 1: (2)It is easy to see that if the onditions (2) are satis�ed for t = 0, then they aresatis�ed for all t � 0 (under the ow (1)).The term in the square brakets in the right hand side of equation (1) is ameasure of the suess of strategy i and it is assumed to be the di�ereneof the payo� of the players playing strategy i from the average payo� of thepopulation. It is then assumed that the logarithmi derivative of ui(t), where uiis the perentage of the population playing i, is equal to this suess measure,i.e. that agents update their strategies proportionally to the suess of thestrategy i. This model was introdued in [7℄ and [8℄ (see also Wikipedia or [3℄where a stohasti version of the model is disussed).In�nite dimensional versions of this evolutionary strategy models have beenproposed, e.g., in [1℄ and [5℄ (see also the ompanion paper [6℄) in onnetionto ertain eonomi examples. However, the abstrat form of the proposedequations does not allow one to obtain insight on the form of solutions. Inorder to make some progress in this diretion, in the reent work [4℄ the authorsrestrited their attention to the ase where the strategy spae S is the set R2



(i.e. the real line) and the payo� operator A is the di�erential operator d2=dx2.Then (1) beomes the evolution lawut = [uxx � (u; uxx)℄u; (3)where (�; �) denotes the usual inner produt in the Hilbert spae L2(R) of thesquared-integrable real-valued funtions de�ned on R. The initial ondition,u(x; 0) is taken to be the density of a probability measure on R.Equation (3) is a nonlinear degenerate paraboli PDE with a nonloal term.In [4℄ the authors onstuted an one-parameter family of self-similar solutionsfor (3), namely solutions u of the formu(t; x) = 1t� g � xt�� :All these similarity solutions are probability densities on R, for every t > 0.It is worth saying that there are situations where strategies orrespond to ge-ographial points and hene it is natural to model the set of strategies by aontinuum. Also, the in�nite-dimensional models lead to interesting mathe-matis (nonlinear, non loal, degenerate paraboli PDE's with rih struture).In the present work we study the d-dimensional ase (with d � 2) where thestrategy spae is S = Rd , while A = �, namely the Laplaian ating on Rd .In this ase the orresponding repliator dynamis problem takes the formut = [�u� (u;�u)℄u; t > 0; x 2 Rd ; (4)withZRd u(0; x)dx = 1 and u(0; x) � 0; for x 2 Rd : (5)Here (�; �) denotes the usual inner produt on the Hilbert spae L2(Rd), i.e.(f; g) = ZRd f(x)g(x)dx:The main result of the artile is the onstrution of an one-parameter familyof self-similar solutions for (4){(5), namely solutions u of the formu(t; x) = 1t� gd � rt�� ; where r = jxj = qx21 + � � �+ x2d: (6)3



All the solutions we obtained are probability densities on Rd , for all t > 0. It israther unusual for a paraboli problem to have an in�nitude of suh solutions,sine they all approah Æ(x), as t! 0+.2 The Equation for gdLet u(t; x) be a solution of (4). By applying integration by parts (i.e. theDivergene Theorem for the vetor �eld uru|also known as Green's 1stidentity) one obtains(u;�u) = ZRd u�u = � ZRd ru � ru = � ZRd jruj2 ;provided thatlimR!1 ZSd�1(R) u �u�n = 0; (7)where Sd�1(R) is the sphere of radius R in Rd , entered at the origin, and nits outward unit normal vetor.Thus, under (7), equation (4) an be written in the equivalent formut = 0B��u+ ZRd jruj21CAu; t > 0; x 2 Rd : (8)Let us introdue the variables = t��r (9)(notie that 0 < s <1). Then u of (6) an be also written asu(t; x) = t��g (s) : (10)It follows thatut = ��t�(�+1)gd (s)� t��g0d (s)�t�(�+1)r = �t�(�+1) [�gd (s) + �sg0d (s)℄ :(11)4



Also, sine u of (6) is radial in x, we have�u = urr + d� 1r ur;thus�u = t���2�g00d (s) + d� 1r t����g0d (s) = t���2� "g00d (s) + d� 1s g0d (s)# :(12)Next let us fous on the nonloal term of (8), namely the term RRd jruj2. Aneasy alulation gives that for radial funtions we havejruj2 = u2r:Thus,ZRd jruj2 dx = ZRd u2rdx = ZSd�1 1Z0 u2rrd�1drd�;where Sd�1 is the unit sphere in Rd and � the measure on Sd�1 indued bythe d-dimensional Lebesgue measure. It follows thatZRd jruj2 dx = �d 1Z0 u2rrd�1dr; (13)where �d is the total measure of Sd�1, namely�d = 2�d=2�(d=2)( �(�) denotes, of ourse, the Gamma funtion). Nowur = t����g0d (s) ;thus (13) yieldsZRd jruj2 dx = t�2��(2�d)�Kd[g℄; (14)5



where we have setKd[gd℄ = �d 1Z0 g0d(s)2sd�1ds: (15)Substituting (10), (11), (12), and (14) in (8 ) gives��gd (s)� �sg0d (s) = t1���2� "g00d (s) + d� 1s g0d (s)# gd (s) + t1�2��(2�d)�Kd[gd℄gd (s) :The only way that the above is a meaningful equation is that it does notontain t, thus1� �� 2� = 0 and 1� 2�� (2� d)� = 0;whih gives� = dd+ 2 ; � = 1d+ 2 : (16)Finally we notie that, under (16), (6) impliesZRd u(t; x)dx = �d 1Z0 1t� gd � rt�� rd�1dr = �d 1Z0 gd (s) sd�1ds;independently of t. Thus, if we set�d 1Z0 gd (s) sd�1ds = 1; (17)thenZRd u(t; x)dx = 1; for all t � 0:The following lemma summarizes what we have done so far.Lemma 1. Let d � 2. Thenu(t; x) = 1t� gd � rt�� 6



satis�es (8) and (5) if and only if� = dd+ 2 ; � = 1d+ 2 ;�d 1Z0 gd (s) sd�1ds = 1; (18)and gd (s) g00d (s) + d� 1s gd (s) g0d (s) + sd+ 2g0d (s) + dd+ 2gd (s) +Kd[gd℄gd (s) = 0;(19)whereKd[gd℄ = �d 1Z0 g0d(s)2sd�1ds: (20)We, therefore, need to show that there exist funtion(s) gd(s) satisfying (19)together with (20), and (18). In order to do that we must �rst onsider anauxiliary problem.3 The Auxiliary ProblemConsider the problemq (s) q00 (s) + d� 1s q(s)q0(s) + sd+ 2q0 (s) + �q (s) = 0; s > 0; (21)q(0) = A > 0; q0(0) = 0; (22)where d � 2 is a natural number and � is a real parameter satisfying� > dd+ 2 : (23)We note that the above initial onditions (22) are interpreted in the sense oflimits as s! 0+.Equation (21) an be written in the formq00 (s) + d� 1s q0(s) + sq0(s)(d+ 2)q(s) + � = 0; (24)7



as long as q (s) 6= 0. By Proposition A1 of the Appendix we have that thereis an " > 0 suh that (21){(22) has a unique solution q (s) ; for s 2 [0; "℄.Lemma 2. The solution q (s) of (21){(22) exists for all s � 0 and it is astritly positive funtion whih is dereasing on (0;1). Moreover,1Z0 q0(s)2ds <1; lims!1 q0(s) = 0and 1Z0 q(s)ds <1:Proof. Let [0; b) (0 < b � 1) be the maximal existene interval of q. We shallshow that b =1.Suppose on the ontrary that 0 < b <1.Then, by a well-known theorem in the theory of ordinary di�erential equations(see, e.g., [2, Th.4.1, Chapter 1℄), we have three alternative ases:(i) lims!b� q(s) =1;(ii) lims!b� q(s) = 0;(iii) lims!b� jq0(s)j =1:In order to drop (i)-(iii) we shall need two laims:Claim 1: If q is positive on some interval (0; s1); 0 < s1 < b; then q0 remainsnegative on (0; s1).If this is not the ase, set s01 = inffs 2 [0; s1) : q0(s) � 0g. Note that s01 > 0.Indeed, by view of (49) (see the Appendix) we have that q00(0) = ��=d < 0;so we may �nd an r 2 (0; b) suh that q0(s) < q0(0) = 0, for s 2 (0; r).Now we have q0(s) < 0, for s 2 (0; s01) and q0(s01) = 0. This implies thatq00(s01) � 0. However, by (24)q00(s01) = �� < 0;a ontradition. 8



Claim 2: q is positive and dereasing on [0; b), whereas q0 is negative on (0; b).By Claim 1, it suÆes to show that q is positive on [0; b). If this is not true,let s1 be the �rst positive zero of q. Multiplying both sides of (24) with sd�1and integrating from 0 to s 2 (0; s1) we getsZ0 �d�1q00(�)d� + (d� 1) sZ0 �d�2q0(�)d� + 1d+ 2 sZ0 �d[ln q(�)℄0d� + �dsd = 0:Integration by parts in the above equation ombined with the fat that q0(0) =0 givessd�1q0(s) + sdd+ 2 ln q(s)� dd+ 2 sZ0 �d�1 ln q(�)d� + �dsd = 0: (25)Now observe that sine q0 < 0 (Claim 1) and q > 0, on (0; s1), the funtionf = � 1d+2 ln q has positive derivative on (0; s1) whereas it tends to 1 ass! s�1 . Hene, Proposition A2 of the Appendix applied to f giveslims!s�1 sd�1q0 (s) =1;whih is impossible, sine, as we have seen, q0 stays negative in (0; s1).To proeed, observe that Claim 2 immediately drops ase (i), sine 0 < q(s) �q(0) = A; for eah s 2 [0; b).Moreover, sine (25) holds for all s 2 (0; b), the Proposition A2 of the Ap-pendix yields that ase (ii) annot be valid either.Finally, suppose that ase (iii) holds. The fat that q0 < 0 (Claim 2) foreslims!b� q0(s) = �1and henelims!b�q00(s) = �1;whih ontradits (24) (reall that q(s) > 0 by Claim 2) and also drops ase(iii). 9



Consequently, solution q (s) of (21){(22) exists for all s � 0 and it is a stritlypositive and dereasing funtion on (0;1)We ontinue the proof of Lemma 2 by notiing that lims!1 q(s) = l 2 (0; A℄.Then1Z0 q0(s)ds = lims!1 q(s)� q(0) = l � A; (26)hene q0 2 L1(0;1) (sine q0 is negative).Supposelims!1q0(s) < 0: (27)Then, in view of (26), (27) there is a sequene sn !1 suh that q0 attains aloal minimum at sn andlimn q0(sn) = �Æ; for some Æ > 0: (28)But sine q0(sn) is a loal minimum we must have q00(sn) = 0, hene (24) givesjq0 (sn) j = �(d+ 2)snq(sn)(d� 1)(d+ 2)q(sn) + s2n � A�(d+ 2)sn(reall that q is stritly positive and dereasing on [0;1) with q(0) = A).Thus limn q0(sn) = 0, ontraditing (28) and hene (27). We have, thus, estab-lished thatlims!1 q0(s) = 0: (29)This, together with the fat that q0 is integrable, implies q0 2 L2((0;1)), i.e.1Z0 q0(s)2ds <1:Finally, integrating both sides of (21) from 1 to s (s > 1) and using integrationby parts we obtain 10



��� 1d+ 2� sZ1 q(�)d�=�q(s)q0(s) + q(1)q0(1) + sZ1 (q0(�))2d� � d� 12 q(s)2s ++ d� 12 q(1)2 � d� 12 sZ1 q(�)2�2 d� � sq(s)d+ 2 + q(1)d+ 2 : (30)Realling again that q0(s) < 0 and 0 < q(s) � A, we get from (30) that, foreah s > 1,��� 1d+ 2� sZ1 q(�)d� � �Aq0(s) + sZ1 (q0(�))2d� + d� 12 A2 + Ad+ 2 : (31)Sine q0 2 L2(0;1), lims!1 q0(s) = 0, and � > d=(d+2) > 1=(d+2), the lastinequality ensures that q is integrable over [1;1) and thus, over [0;1).The proof of the lemma is now omplete. 2Lemma 3. Let q (s) be the solution of the problem (21){(22). Then the fol-lowing hold:(i) � 1Z0 sdq0(s)ds = d 1Z0 sd�1q(s)ds <1;(ii) lims!1 sdq(s) = 0;(iii) 1Z0 sdq0(s)2ds <1:Proof. First we notie that, sine by Lemma 2 q0 is negative and lims!1 q0(s) = 0,(iii) follows immediately from (i).We will use an indutive argument to show that for eah n 2 f1; 2; : : : ; dg wehave(i0) � 1Z0 snq0(s)ds = n 1Z0 sn�1q(s)ds <1and(ii0) lims!1 snq(s) = 0: 11



To begin, observe that (i0) and (ii0) are valid for n = 1. Indeed, by Lemma 2we have1Z0 q(s)ds <1;whereas we know that q is positive and dereasing. By a standard result ofalulus we infer that lims!1 sq(s) = 0. Also,� 1Z0 sq0(s)ds = � lims!1 sq(s) + 1Z0 q(s)ds = 1Z0 q(s)ds <1:Next, �x n 2 f2; : : : ; dg and suppose that (i0) and (ii0) hold for k 2 f1; 2; : : : ; n�1g. We will show that (i0) and (ii0) also hold for k = n.Multiplying both sides of (21) with sn�1 and integrating from 0 to s we getsZ0 �n�1q(�)q00(�)d� + (d� 1) sZ0 �n�2q(�)q0(�)d� + 1d+ 2 sZ0 �nq0(�)d� + � sZ0 �n�1q(�)d� = 0:Integration by parts applied in the above equality gives rise tosn�1q(s)q0(s)� sZ0 �n�1q0(�)2d� + (d� n) sZ0 �n�2q(�)q0(�)d� ++ q(s)d+ 2sn + ��� nd+ 2� sZ0 �n�1q(�)d� = 0: (32)Formula (32) implies that��� nd+ 2� sZ0 �n�1q(�)d� � �sn�1q(s)q0(s) + sZ0 �n�1q0(�)2d� � (d� n) sZ0 �n�2q(�)q0(�)d�:Exploiting our hypothesis that (i0) , (ii0) hold for k = n � 1 and taking intoaount that q0 is negative with lims!1 q0(s) = 0, we dedue thatlims!1 sn�1q(s) = 0; 1Z0 �n�1q0(�)2d� <1:12



Meanwhile, if n � 3, our hypothesis enables us to apply (i0) for k = n� 2 andget 1Z0 �n�2jq0(�)jd� <1;thus,(d� n) 1Z0 �n�2q(�)jq0(�)jd� � A(d� n) 1Z0 �n�2jq0(�)jd� <1:Note that if n = 2, the above inequality still holds. Indeed,1Z0 q(�)jq0(�)jd� = � lims!1 q(s)22 + A22 = A22 < A2 = A 1Z0 jq0(�)jd�:The above arguments ombined with the fats that lims!1 q0(s) = 0 and� > d=(d+ 2) � n=(d+ 2) yield1Z0 sn�1q(s)ds <1:Now (32) implies that lims!1 snq(s) = L 2 R. But, if L 6= 0, then sn�1q(s) isasymptoti to L=s, as s ! 1, ontraditing the fat that sn�1q(s) is inte-grable. Therefore L = 0, and� 1Z0 snq0(s)ds = � lims!1 snq(s) + n 1Z0 sn�1q(s)ds = n 1Z0 sn�1q(s)ds <1:We have, therefore, established that (i0) and (ii0) hold for k = n, where n 2f2; : : : ; dg. This �nishes the proof of the lemma. 2Corollary 1. Let q (s) be the solution of the problem (21){(22). Then1Z0 sd�1q0(s)2ds =  �� dd+ 2! 1Z0 sd�1q(s)ds:13



Proof. For n = d, (32) beomessd�1q(s)q0(s)� sZ0 �d�1q0(�)2d� + q(s)d+ 2sd +  �� dd+ 2! sZ0 �d�1q(�)d� = 0:Taking the limit, as s ! 1, and employing Lemma 3, yields the desiredformula. 24 The Constrution of the Self Similar SolutionsWe start with two lemmas.Lemma 4. Let q (s) be the solution of the problem (21){(22). Thenkq0k1 � �q(d+ 2)A; (33)where kq0k1 denotes the supnorm of q0 on [0;1) and1Z0 sd�1q(s)ds � A1+d=2d(d+ 1)(�pd+ 2 )d : (34)Proof. Sine q0(s) < 0 in (0;1), with q0(0) = lims!1 q0(s) = 0, it follows thatq0 attains its absolute minimum at some sm in (0;1), and henekq0k1 = �q0(sm) = jq0(sm)j:Also, q00(sm) = 0, thus (24) impliesq0 (sm) = � �(d+ 2)smq(sm)(d� 1)(d+ 2)q(sm) + s2m ;thereforekq0k1 � �(d+ 2)Asm (35)(sine q is positive, dereasing in (0;1), and q(0) = A). On the other hand,sine q > 0 and q0 < 0, (24) impliesq00(s) � ��; for all s � 0 14



and onsequentlyq0(s) � ��s; for all s � 0(reall that q0(0) = 0), in partiularkq0k1 = �q0(sm) � �sm: (36)By ombining (35) and (36) we obtainkq0k1 � min(�(d+ 2)Asm ; �sm) :But, no matter what sm is, the minimum of (d+2)�A=sm and �sm (sine the�rst is dereasing in sm, while the seond is inreasing) is always at most M ,whereM = (d+ 2)�As = �s:Thus, s = q(d+ 2)A and M = �q(d+ 2)A. This establishes (33).Next, we notie that, sineq(s) � q(0)� kq0k1 s; for all s � 0;(33) implies thatq(s) � A� �q(d+ 2)As; for all s � 0;in partiular for0 � s � pA�pd+ 2 :Thus (sine q > 0),1Z0 sd�1q(s)ds � pA=(�pd+2)Z0 sd�1q(s)ds� pA=(�pd+2)Z0 sd�1 �A� �q(d+ 2)As� ds= A1+d=2d(d+ 1)(�pd+ 2 )d ;15



whih is (34). 2Lemma 5. If q (s) is the solution of (21){(22), thenq (s) � 1s�(d+2) exp[ �(d + 2)�=d ℄Ad exp[ d(d+ 2)A ℄ exp " �(d+ 2)3=2pAs # ;(37)for all s � 1.Proof. Let us setF (s) = � dd+ 2 sZ0 �d�1 ln q (�) d�: (38)Then (25) an be written assF 0(s)� dF (s) = dsd�1q0(s) + �sd; (39)whih implies"F (s)sd #0 = �s + ds2 q0(s):We, now, pik an s � 1 and integrate both sides of the above equation from 1to s. This results toF (s)sd = F (1) + � ln s + d sZ1 q0 (�)�2 d�: (40)Sine q0 < 0 on (0;1),0 � d sZ1 q0 (�)�2 d� � d sZ1 q0 (�) d� � d 1Z0 q0(s)ds = �dq(0) = �dA;hene formula (40) impliesF (s)sd � � ln s+ F (1)� dA: 16



Invoking (38) and (39) givesF (s)sd = F 0(s)dsd�1 � q0(s)s � �d = � ln[q(s)℄d+ 2 � q0(s)s � �d ;and the previous inequality beomes� ln[q(s)℄d+ 2 � q0(s)s � �d � � ln s+ F (1)� dA;whih, ombined with (33) implies� ln[q(s)℄d+ 2 � � ln s+ F (1) + �d � �q(d+ 2)As � dA:It follows thatln[q(s)℄ � ��(d+ 2) ln s� (d+ 2)F (1)� (d+ 2)�d + �(d+ 2)3=2pAs + d(d+ 2)Aor q(s) � 1s�(d+2) exp[�(d+ 2)F (1)℄ exp[ �(d+ 2)�=d ℄ exp[ d(d+ 2)A ℄ exp[ �q(d+ 2)A(d+ 2)=s ℄ :Sine q is dereasing in (0;1), we have (see (38))�d+ 2d F (1) = 1Z0 ln[q(s)℄ds � ln[q(0)℄ = lnAor exp[�(d + 2)F (1)℄ � Ad:Consequently,q(s) � 1s�(d+2) exp[ �(d+ 2)�=d ℄Ad exp[ d(d+ 2)A ℄ exp " �(d+ 2)3=2pAs # :217



Corollary 2. If q (s) satis�es (21){(22 ), thenlimA!0+ 1Z0 sd�1q0(s)2ds = 0 (41)and limA!1 1Z0 sd�1q0(s)2ds =1: (42)Proof. By Lemma 5 we have that for eah s � 1,sZ1 �d�1q(�)d� � Ad exp[d(d+ 2)A℄ exp[ �(d+ 2)3=2pA ℄ sZ1 d���(d+2)�d+1and hene (as s!1)1Z1 sd�1q(s)ds � Ad exp[d(d+ 2)A℄ exp[ �(d+ 2)3=2pA ℄ 1Z1 dss�(d+2)�d+1 :Sine1Z1 dss�(d+2)�d+1 <1(reall that � > d=(d+ 2)), we get thatlimA!0+ 1Z1 sd�1q(s)ds = 0:Also, 1Z0 sd�1q(s)ds � q(0) = A;thus limA!0+ 1Z0 sd�1q(s)ds = 0: (43)18



Now (34) and (43) in onjuntion with Corollary 1 give (41) and (42). 2Corollary 3. Let q (s) satisfy (21){(22), in partiular q(0) = A > 0. Then, asa funtion of A, the quantityI(A) = 1Z0 sd�1q(s)ds (44)is ontinuous in (0;1).Proof. Let q (s) = q (s;A) be the (unique) solution of the problem (21){(22).By using an argument similar to the one in the proof of Proposition A1 ofthe Appendix one an verify that q (s;A) is ontinuous in A, for A > 0. Thusq(s;A) = sd�1q(s;A) too is ontinuous in A, for A > 0. For �xed A1; A2,with 0 < A1 < A2 <1, the estimate (37), the monotoniity of q and the fat� > d=(d+ 2) imply that the family fq (� ;A) : A 2 [A1; A2℄g is dominated bythe integrable funtion h(s); s � 0, whereh(s) = 8>>>>><>>>>>:A2; 0 � s � 1;Ad2s(d+2)��d+1 exp[ d(d+ 2)A2 ℄ exp[ �q(d+ 2)A2(d+ 2) ℄; s > 1:Hene, the ontinuity of I(A) follows by invoking the Dominated ConvergeneTheorem. 2We are now ready for our main theorem.Theorem 1. For eah number � 2 (0;1) there is a self-similar solution of(4) and (5), namely a funtion gd(s) satisfying (19) together with (15), (17),suh thatK[gd℄ = �:Proof. Let us onsider again the (unique) solution q (s) = q (s;A) of the prob-lem (21){(22) with � = �+ d=(d+ 2), that isq (s) q00 (s) + d� 1s q(s)q0(s) + sd+ 2q0 (s) + dd+ 2q(s) + �q (s) = 0; s � 0;q(0) = A > 0; q0(0) = 0; 19



and setQ(A) = �d 1Z0 sd�1q0(s;A)2ds: (45)Then by Corollary 1,Q(A) = �d� 1Z0 sd�1q(s;A)ds;hene Corollary 3 tells us that Q(A) is ontinuous on (0;1). Furthermore,(41) and (42) of Corollary 2 readlimA!0+Q(A) = 0 and limA!1Q(A) =1:Thus Q(A) takes every value between 0 and 1. In partiular there is anA = A� suh thatQ(A�) = �:Set gd(s) = q(s;A�):ThenKd[gd℄ = �d 1Z0 sd�1(g0d(s))2ds = Q(A�) = �;thus gd(s) satis�es (20), (19). Furthermore, by Corollary 1,�d 1Z0 sd�1gd (s) ds = �d 1Z0 sd�1q (s;A�) ds = �d� 1Z0 q0(s;A�)2ds = 1�Q(A�) = 1;hene gd(s) also satis�es (18). 2Remarks. (a) As we have already pointed out, it is rather surprising thatthere is an in�nitude of self-similar solutions.(b) Estimate (37) and the fat that q0(s) ! 0, as s ! 1, imply that oursimilarity solutions satisfy (7). Hene they also satisfy (4).20



Aknowledgments. (i) The work was partially supported by a �.E.B.E.Grant of the National Tehnial University of Athens. (ii) This work wasmotivated by ideas and suggestions o�ered to us by Prof. N. Alikakos.APPENDIXProposition A1. There is an " > 0 suh that (21){(22) has a unique solutionq (s) ; for s 2 [0; "℄.Proof. By multiplying both sides of (24) by sd�1, then integrating from 0 tos > 0, and using the initial ondition q0(0) = 0 one gets the equivalent problemsd�1q0(s) + 1d+ 2 sZ0 � dq0(�)q(�) d� + �dsd = 0; q(0) = A:Setting p = q0 we obtain the systemp(s) = � 1(d+ 2)sd�1 sZ0 � dp(�)q(�) d� � �ds ; (46)q(s) = sZ0 p(�)d� + A; (47)whih, of ourse, is also equivalent to (21){(22).We intend to prove that for some " > 0, the above system possesses a uniquesolution (p(s); q(s)), for s 2 [0; "℄.Fix an " > 0 and onsider the linear spae C[0; "℄ of all real-valued ontinuousfuntions de�ned on the interval [0; "℄. Of ourse, C[0; "℄ is a Banah spaeunder the supnorm jj � jj1. Furthermore, C[0; "℄ � C[0; "℄ is also a Banahspae with normjj(u; v)jj = jjujj1 + jjvjj1: (48)Now let us setY" = f(q; p) 2 C[0; "℄� C[0; "℄ : jjq � Ajj1 � A=2 ; jjpjj1 � 1 g:Obviously, Y" is a losed subset of C[0; "℄� C[0; "℄ and thus, it is a ompletemetri spae with respet to the metri indued by the norm (48).21



To proeed, de�ne the mapping �" : Y" ! C[0; "℄� C[0; "℄ by�"[q; p℄(s) = 0� sZ0 p(�)d� + A; � 1(d + 2)sd�1 sZ0 � dp(�)q(�) d� � �ds;1A :It is straightforward to hek that by taking " suÆiently small, the mapping�" an be made a ontration from Y" into itself. Therefore �" admits a unique�xed point whih is the unique solution to the system (46){(47) on the interval[0; "℄. 2Remark: Di�erentiating both sides of (46) with respet to s > 0 and thentaking the limit as s! 0+ we get (reall that p = q0)lims!0+ q00(s) = lims!0+ p0(s) = ��=d :Heneq00(0) = ��=d : (49)Proposition A2. Let f be a di�erentiable funtion de�ned on the interval(0; b), for some b > 0, withf 0(x) > 0; x 2 (0; b); and limx!b� f(x) =1:Then for eah d � 1,limx!b� 24xdf(x) � d xZ0 �d�1f(�)d�35 =1:Proof. Let a 2 (0; b). SetF (x) = xdf(x) � d xZ0 �d�1f(�)d� � ad[f(x)� f(a)℄; x 2 (0; b):Then F 0(x) = (xd�ad)f 0(x), x 2 (0; b), and sine f 0 > 0 on (0; b), the funtionF attains its (global) minimum on (0; b) at x = a. Thus for eah x 2 (0; b),F (x) � F (a) = adf(a)� d aZ0 �d�1f(�)d� = aZ0 �df 0(�)d� � 022



(where the last equality follows by integration by parts).Thereforexdf(x) � d xZ0 �d�1f(�)d� � ad[f(x)� f(a)℄; x 2 (0; b);and the right-hand side of the above inequality tends to 1, as x! b�. 2Referenes[1℄ Bomze, I., Dynamial aspets of evolutionary stability, Monaish. Mathematik110 (1990), 189{206.[2℄ Coddington, E. A. and Levinson, N. : Theory of Ordinary Di�erential Equations,Robert E. Krieger Publishing Company, Malabar, Florida, 1987.[3℄ Imhof, L. A., The long-run behavior of the stohasti repliator dynamis, Ann.Appl. Probab. 15, no. 1B (2005), 1019{1045.[4℄ Kravvaritis, D., Papaniolaou, V. G., and Yannaopoulos, A., SimilaritySolutions for a Repliator Dynamis Equation, Indiana Univ. Math. Journal57, no. 4 (2008).[5℄ Oehssler, J. and Riedel, F., Evolutionary dynamis on in�nite strategy spaes,Eonomi Theory 17 (2001), 141{162.[6℄ Oehssler, J. and Riedel, F., On the dynami foundation of evolutionary stabilityin ontinuous models, Journal of Eonomi Theory 107 (2002), 223{252.[7℄ Smith, J. Maynard: Evolution and the Theory of Games, Cambridge UniversityPress, Cambridge, UK, 1982.[8℄ Taylor, P. D. and Jonker, L. B., Evolutionary Stable Strategies and GameDynamis, Mathematial Biosienes 40 (1978), 145{156.
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