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Abstract

We construct an one-parameter family of self-similar solutions for a nonlinear de-
generate multidimensional parabolic equation containing a nonlocal term. All these
solutions are strictly positive and their integral over the whole space is 1. The equa-
tion serves as a replicator dynamics model where the set of strategies is a continuum.
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1 Introduction

The replicator dynamics models are popular models in evolutionary game the-
ory. They have significant applications in economics, population biology, as
well as in other areas of science.
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Replicator dynamics have been studied extensively in the finite dimensional
case:

Let A = (a;;) be an m x m negative matrix. The typical replicator dynamics
equation is

ui(t) = iaijuj(t) — i > aggup(t)u;(t) | wilt), t>0, i=1,..,m(1)

k=1j=1

which symbolically can be also written in the form

u = [Au — (u, Au)]u

(where (Au)u is the vector whose i-th component is the product of the i-th
components of (Au) and u). The matrix A is called the payoff matriz while
S ={1,...,m} is the strategy space and the vector

u = (uy(t), ...,um(t))T ,

is a probability distribution on S, hence we must have

u;(t) >0, forj=1,..m, and > u(t) =1 (2)
7=1

It is easy to see that if the conditions (2) are satisfied for ¢ = 0, then they are
satisfied for all £ > 0 (under the flow (1)).

The term in the square brackets in the right hand side of equation (1) is a
measure of the success of strategy ¢ and it is assumed to be the difference
of the payoff of the players playing strategy ¢ from the average payoff of the
population. It is then assumed that the logarithmic derivative of u;(t), where u;
is the percentage of the population playing 7, is equal to this success measure,
i.e. that agents update their strategies proportionally to the success of the
strategy i. This model was introduced in [7] and [8] (see also Wikipedia or [3]
where a stochastic version of the model is discussed).

Infinite dimensional versions of this evolutionary strategy models have been
proposed, e.g., in [1] and [5] (see also the companion paper [6]) in connection
to certain economic examples. However, the abstract form of the proposed
equations does not allow one to obtain insight on the form of solutions. In
order to make some progress in this direction, in the recent work [4] the authors
restricted their attention to the case where the strategy space S is the set R



(i.e. the real line) and the payoff operator A is the differential operator d?/dz?.
Then (1) becomes the evolution law

Up = [Ugy — (U, Ugy)] 0, (3)

where (-, ) denotes the usual inner product in the Hilbert space Ly(R) of the
squared-integrable real-valued functions defined on R. The initial condition,
u(z,0) is taken to be the density of a probability measure on R.

Equation (3) is a nonlinear degenerate parabolic PDE with a nonlocal term.
In [4] the authors constucted an one-parameter family of self-similar solutions
for (3), namely solutions u of the form

o= a(3).

All these similarity solutions are probability densities on R, for every ¢t > 0.

It is worth saying that there are situations where strategies correspond to ge-
ographical points and hence it is natural to model the set of strategies by a
continuum. Also, the infinite-dimensional models lead to interesting mathe-
matics (nonlinear, non local, degenerate parabolic PDE’s with rich structure).

In the present work we study the d-dimensional case (with d > 2) where the
strategy space is S = R?, while A = A, namely the Laplacian acting on R?.
In this case the corresponding replicator dynamics problem takes the form

u = [Au — (u, Au)]u, t>0, zeRY (4)
with

/u(O,x)dx =1 and  wu(0,2) >0, forze R (5)

Rd

Here (-, ) denotes the usual inner product on the Hilbert space Lo(R?), i.e.

(1.9) = [ f@)gla)de.
R4
The main result of the article is the construction of an one-parameter family

of self-similar solutions for (4)—(5), namely solutions u of the form

1 r
u(t,x) = 2 (t_ﬁ> : where 7 =|z| = /27 + -+ 23 (6)



All the solutions we obtained are probability densities on R?, for all ¢ > 0. It is
rather unusual for a parabolic problem to have an infinitude of such solutions,
since they all approach §(z), as t — 0%,

2 The Equation for g,

Let u(t,x) be a solution of (4). By applying integration by parts (i.e. the
Divergence Theorem for the vector field uVu—also known as Green’s 1st
identity) one obtains

(U,Au):/uAu:—R[VU.VUZ_RZWUQ,

Rd

provided that

lim / N (7)

R—x
Sd—l(R)

where S9=1(R) is the sphere of radius R in R?, centered at the origin, and n
its outward unit normal vector.

Thus, under (7), equation (4) can be written in the equivalent form
up = Au+/|Vu\2 u, t>0, zcR. (8)
Rd
Let us introduce the variable
s=t"r (9)

(notice that 0 < s < 00). Then u of (6) can be also written as

u(t,z) =t"%(s). (10)

It follows that

u = —at g, (s) —t gl (s) Bt PYr = —t @ [ag, (s) + Bsgl (5)] .(11)



Also, since u of (6) is radial in x, we have

d—1

Au = Upp + Uy,

thus

o d—1 . o d—1
Au=t g (s) + St P (s) = 0% gl () + g ()] .(12)

Next let us focus on the nonlocal term of (8), namely the term fga [Vu|”. An
easy calculation gives that for radial functions we have

Vul* = u?.

Thus,
/|Vu\2dx = /ufdx = / /ufrd’ldrda,
Rd Rd Sd-1 0

where S%! is the unit sphere in R? and o the measure on S¢°! induced by
the d-dimensional Lebesgue measure. It follows that

/|Vu\2da: = ad/ufrdfldr, (13)
Rd 0

where o, is the total measure of S4~!, namely

27Td/2
O = ———

T(d/2)

( T'(-) denotes, of course, the Gamma function). Now

Uy = t_a_ﬂg:j (3) )

thus (13) yields

[ 190 da = 200 g (14)

Rd



where we have set

Kalga) = 04 / g (s)2s% 1 ds, (15)

Substituting (10), (11), (12), and (14) in (8 ) gives

—agq (s) = Bsgy (s) = t' 707 [gg’ (s) + dTg:i (s)] ga (s) + 22" K g4l ga (s) -

The only way that the above is a meaningful equation is that it does not
contain ¢, thus

l—a-26=0 and 1-2a-(2-d)p=0,

which gives

B=——. (16)

Finally we notice that, under (16), (6) implies

oo 1 oo
/u(t, z)dr = oy / 12 9d <t%> r®ldr = ad/gd (s5) s tds,
0 0

Rd
independently of t. Thus, if we set

o4 / g4 (s) 4 Nds = 1, (17)
0

then

/u(t,x)dx =1, for all t > 0.

Rd

The following lemma summarizes what we have done so far.

Lemma 1. Let d > 2. Then

1 T
U(t,fL‘) = t_agd (t_ﬁ>



satisfies (8) and (5) if and only if

d 5 1
o= —- [ —
d+2’ d+2’
oa [ gals) 5" ts = 1, (18)
0
and
" d—1 s

0 (9) 64 (5) + 00 (9) 64 6) + s (5) + 54 (5) + Kaldga(5) = 0,019)

where

Kalgdl = o4 [ gi(s)*s" ds. (20)

We, therefore, need to show that there exist function(s) gq(s) satisfying (19)
together with (20), and (18). In order to do that we must first consider an
auxiliary problem.

3 The Auxiliary Problem

Consider the problem

g (s)q" (5) + %q(s)q'(s) b () ) =0, 550, (1)

q(0) = A >0, q'(0) =0, (22)

where d > 2 is a natural number and p is a real parameter satisfying
d

We note that the above initial conditions (22) are interpreted in the sense of
limits as s — 0.

Equation (21) can be written in the form

d—1 /( )+ Sq'(S)

S qls m—i—ﬂ/:o, (24)

qll (S) _|_



as long as ¢ (s) # 0. By Proposition Al of the Appendix we have that there
is an € > 0 such that (21)—(22) has a unique solution ¢ (s), for s € [0, £].

Lemma 2. The solution ¢ (s) of (21)-(22) exists for all s > 0 and it is a
strictly positive function which is decreasing on (0, 0c). Moreover,

/q'(s)st < oo, lim q(s)=0
0

and

oo

/q(s)ds < 0.

0

Proof. Let [0,b) (0 < b < o0) be the maximal existence interval of ¢. We shall
show that b = oo.

Suppose on the contrary that 0 < b < oo.

Then, by a well-known theorem in the theory of ordinary differential equations
(see, e.g., [2, Th.4.1, Chapter 1]), we have three alternative cases:

(i) Tim g(s) = oo;

s—b—

(i) lim ¢(s) =0;

s—b—

(iii) lim |¢'(s)] = oo.
s—b™

In order to drop (i)-(iii) we shall need two claims:
Claim 1: If ¢ is positive on some interval (0,s;), 0 < s; < b, then ¢’ remains
negative on (0, s1).

If this is not the case, set s} = inf{s € [0,s1) : ¢'(s) > 0}. Note that s} > 0.
Indeed, by view of (49) (see the Appendix) we have that ¢"(0) = —u/d < 0,
so we may find an r € (0,b) such that ¢'(s) < ¢'(0) =0, for s € (0, 7).

Now we have ¢'(s) < 0, for s € (0,s]) and ¢'(s}) = 0. This implies that
¢"(s}) > 0. However, by (24)

q"(s1) = —n <0,

a contradiction.



Claim 2: ¢ is positive and decreasing on [0, b), whereas ¢’ is negative on (0, b).

By Claim 1, it suffices to show that ¢ is positive on [0,b). If this is not true,
let s; be the first positive zero of ¢. Multiplying both sides of (24) with s4~1
and integrating from 0 to s € (0, s1) we get

S S

[er @i -y [ ac — [ ematetas + G o

Integration by parts in the above equation combined with the fact that ¢'(0) =
0 gives
54 d
] T
252 - J

s (s) + & ng(§)dg + L' = 0. (25)

Now observe that since ¢' < 0 (Claim 1) and ¢ > 0, on (0, s1), the function

f = —ﬁlnq has positive derivative on (0,s;) whereas it tends to oo as

s — s; . Hence, Proposition A2 of the Appendix applied to f gives

lim s7!¢' (5) = oo,

S—)Sl

which is impossible, since, as we have seen, ¢’ stays negative in (0, s1).

To proceed, observe that Claim 2 immediately drops case (i), since 0 < ¢(s) <
q(0) = A, for each s € [0,).

Moreover, since (25) holds for all s € (0,b), the Proposition A2 of the Ap-
pendix yields that case (ii) cannot be valid either.

Finally, suppose that case (iii) holds. The fact that ¢’ < 0 (Claim 2) forces

lim ¢'(s) = —c0
s—b~

and hence

li—msﬁb— q"(s) = =00,

which contradicts (24) (recall that ¢(s) > 0 by Claim 2) and also drops case

(ii).



Consequently, solution ¢ (s) of (21)—(22) exists for all s > 0 and it is a strictly
positive and decreasing function on (0, oc)

We continue the proof of Lemma 2 by noticing that lim, . q(s) =1 € (0, A].
Then

[ d(s)ds = lim als) — a(0) = 1 - 4, (26)

hence ¢' € L(0, 00) (since ¢’ is negative).
Suppose

lim, ,..¢'(s) < 0. (27)
Then, in view of (26), (27) there is a sequence s,, — oo such that ¢’ attains a
local minimum at s,, and

lim¢'(sn) = =, for some ¢ > 0. (28)

But since ¢'(s,) is a local minimum we must have ¢"(s,) = 0, hence (24) gives

pd+2)sals)  _ Ap(d+2)
= D(d+2)q(sn) + 57 — Sn

o) =

(recall that ¢ is strictly positive and decreasing on [0, c0) with ¢(0) = A).

Thus lim, ¢'(s,) = 0, contradicting (28) and hence (27). We have, thus, estab-
lished that

lim ¢'(s) = 0. (29)

§—00

This, together with the fact that ¢’ is integrable, implies ¢' € Ly((0,00)), i.e.

/q'(s)st < o0.
0

Finally, integrating both sides of (21) from 1 to s (s > 1) and using integration
by parts we obtain

10



(1= 5) [ )= gl () + a0 (1) + / (@ ()P - LI
d—1 q(¢ sq(s) . q(1)
) -5 / £2 _d+2+d+2'(30)

Recalling again that ¢'(s) < 0 and 0 < ¢(s) < A, we get from (30) that, for
each s > 1,

S S

(1= ) [ at©de < ~aqs) + [ (€))7de +

1

—1 A
d A? 4+

. (31
2 d+2 (31)

Since ¢' € L?(0,0), lim, oo ¢'(5) = 0, and p > d/(d+2) > 1/(d + 2), the last
inequality ensures that ¢ is integrable over [1,00) and thus, over [0, 00).

The proof of the lemma is now complete. O

Lemma 3. Let ¢ (s) be the solution of the problem (21)-(22). Then the fol-
lowing hold:

(i) —/ d]osd Yq(s)ds < oc;
(i) lim s(s) = 0;

(0]
(il / slq/(5)%ds < oc.
0
Proof. First we notice that, since by Lemma 2 ¢’ is negative and le q(s) =0,
S (o)
(iii) follows immediately from (i).

We will use an inductive argument to show that for each n € {1,2,...,d} we
have

(i) —/s"q'(s)ds = n/sn_lq(s)ds < 0o
0 0
and

(it") lim s"¢(s) = 0.

§—00

11



To begin, observe that (i') and (ii’) are valid for n = 1. Indeed, by Lemma 2
we have

o0

/q(s)ds < o0,

0

whereas we know that ¢ is positive and decreasing. By a standard result of
calculus we infer that lim sq(s) = 0. Also,

o0

—/sq'(s)ds:—hmsq —i—/q :/q s)ds < o0.
0

5—00
0

Next, fixn € {2,...,d} and suppose that (i') and (ii’) hold for k € {1,2,...,n—
1}. We will show that (i') and (ii’) also hold for k = n.

Multiplying both sides of (21) with s"! and integrating from 0 to s we get

[t @de + - 1) [ €200 ©de + / €4/(€)d€ + / £ q(€)dg = 0.

0 0

Integration by parts applied in the above equality gives rise to

S a(s)g () = [ €71 (€)%dg + (A=) / £ q(€)q'(€)dg +

Formula (32) implies that

(- =5) / & lg(6) <~ a6l () + [ €€ — (d-m) [ €O (€1

d+2
0

Exploiting our hypothesis that (i') , (ii’) hold for £ = n — 1 and taking into
account that ¢’ is negative with SILIEO q'(s) = 0, we deduce that

lim 5" 'q(s) =0, /ﬁ”_lq'(§)2d§ < oc.

5—00
0

12



Meanwhile, if n > 3, our hypothesis enables us to apply (i’) for £ = n — 2 and
get

[ €2 (©)1de < ox,
0

thus,

—n/f“ )lq'()1d€ < A(d —n/f“\q £)ld < .

Note that if n = 2, the above inequality still holds. Indeed,

® 2 2 2 x°
. q(s A A
@ ©lae = - tim 5L T4 [iy(e)lac
0 0
The above arguments combined with the facts that lim,_ . ¢'(s) = 0 and

p>d/(d+2)>n/(d+2) yield

o0

/s”flq(s)ds < 00.

0

Now (32) implies that lim s"q(s) = L € R. But, if L # 0, then s"7!q(s) is
asymptotic to L/s, as s — oo, contradicting the fact that s" 'q(s) is inte-
grable. Therefore L = 0, and

o0

—/s”q'(s)ds = — lim s"q(s) + n/s”flq(s)ds = n/s”flq(s)ds < 00.
0 0

§—00
0

We have, therefore, established that (i’) and (ii’) hold for £ = n, where n €
{2,...,d}. This finishes the proof of the lemma. O

Corollary 1. Let ¢ (s) be the solution of the problem (21)—(22). Then

o0

/dll()d‘g_o‘ d+2>075dl

0

13



Proof. For n = d, (32) becomes

S

) - [t {00+ (n- i) [e e =o

Taking the limit, as s — oo, and employing Lemma 3, yields the desired
formula. O

4 The Construction of the Self Similar Solutions

We start with two lemmas.

Lemma 4. Let ¢ (s) be the solution of the problem (21)—(22). Then
14l < my/(d+2)A, (33)

where ||¢'||, denotes the supnorm of ¢’ on [0, 00) and

o0

Al+d/2

/Sd_l‘I(S)ds Z A D)t

0

Proof. Since ¢'(s) < 0 in (0,00), with ¢’(0) = lim,_,o ¢'(s) = 0, it follows that
¢’ attains its absolute minimum at some s,, in (0,00), and hence

19l = —4¢'(5m) = 1’ (5m)]-

Also, ¢"(sm) = 0, thus (24) implies

p(d + 2)8mq(sm)

! e
¢ (5m) = (d—1)(d+ 2)q(sm) + 52,
therefore
d+ 2)A
el < 424 (35)

(since ¢ is positive, decreasing in (0,00), and ¢(0) = A). On the other hand,
since ¢ > 0 and ¢’ < 0, (24) implies

q"(s) = —u, for all s > 0

14



and consequently

q'(s) > —ps, for all s > 0

(recall that ¢'(0) = 0), in particular

19'l 0 = —¢'(5m) < p5m. (36)

By combining (35) and (36) we obtain

p(d+2)A }
= UiSm

m

Hﬂuﬁmm{

But, no matter what s,, is, the minimum of (d+ 2)uA/s,, and ps,, (since the
first is decreasing in s,,, while the second is increasing) is always at most M,
where

d+2)uA
M:ﬂ:ll’s'
s

Thus, s = /(d+ 2)A and M = p/(d + 2) A. This establishes (33).
Next, we notice that, since

q(s) > q(0) = ||d']| . s, for all s > 0,

(33) implies that

q(s) > A—p/(d+2)As, for all s > 0,

in particular for

VA
pd+2

0<s<

Thus (since ¢ > 0),

0 VA (u/dT2) VA/(u/dT2)
/sd_lq(S)ds > / s q(s)ds > / 11 <A — m/(d + 2)As> ds
0 0 0
Al+d/2
Cdd+ 1) (p/d+2)d

15



which is (34). O

Lemma 5. If ¢ (s) is the solution of (21)-(22), then

1 p(d+2)%%/A
q(s) < Wexp[ —(d +2)p/d A% exp| d(d + 2) A ] exp l . ,(37)
for all s > 1.
Proof. Let us set
F(s) = —L/SSMIHQ(@ dg (38)
d+2] '
Then (25) can be written as
sF'(s) — dF(s) = ds®'¢(s) + ps®, (39)

which implies

[F(s)]': nod

/
o S + ?q (5).

We, now, pick an s > 1 and integrate both sides of the above equation from 1
to s. This results to

F(s)

:F(l)—i-,ulns—i—d/sqlf—(f)df. (40)

Since ¢’ < 0 on (0, 00),

0> dI/ qg(f)df > dI/q' (&) d§ > dU/q'(S)ds = —dq(0) = —dA,

hence formula (40) implies

F(s)

> pulns+ F(1) — dA.

16



Invoking (38) and (39) gives

F(s) Fs) dq(s) p_ Ilg(s)] d'(s) p
st ds—1 s d d+2 s d’
and the previous inequality becomes
-fj$2]—¢§f—gzﬂms+Fu)—mL
which, combined with (33) implies
-Jjﬁﬁ]ZMMS+FOy+§—ﬁ—g;§é—dA

It follows that

d+2 d+ 2)3/2\/A
_[d+2p pld+2 VA

In[q(s)] < —p(d+2)Ins — (d + 2)F(1) y ;

(d+2)A

or

q(s) < Su(i+2) exp[—(d + 2)F(1)] exp] —(d + 2)pu/d | exp[ d(d + 2) A ] exp| pur/(d + 2)A(d + 2)/

Since ¢ is decreasing in (0, 00), we have (see (38))

d+2

__E_Fuy:!mm@mkglmﬁmp:mA

or

exp[—(d +2)F(1)] < A%

Consequently,

3/2
q(s) < S#(iﬂ) exp| —(d + 2)p/d |A% exp| d(d + 2) A ] exp [ p(d + 25) VA ] ‘

17



Corollary 2. If ¢ (s) satisfies (21)—(22 ), then

Alirgl+ s (s)%ds = 0
0
and
o
Jim s71q/ (5)%ds = cc.

0

Proof. By Lemma 5 we have that for each s > 1,

(42)

/sﬁ“q({f)dﬁ < A% expld(d + 2) A exp| pu(d + 2)3/2\/_]/%
1 1

and hence (as s — o)
fsdlq(s)ds < A%expld(d+ 2) Al exp[ p(d + 2)*/>VA ] 7m .
1 1

Since

o0

ds
/Su(d+2)—d+1 <00
1

(recall that y > d/(d + 2)), we get that

o0

lim [ s%'q(s)ds = 0.

A—0t
1

Also,

18
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Now (34) and (43) in conjunction with Corollary 1 give (41) and (42). O

Corollary 3. Let ¢ (s) satisfy (21)-(22), in particular ¢(0) = A > 0. Then, as
a function of A, the quantity

I(A) = / s1g(s)ds (44)

is continuous in (0, 00).

Proof. Let q(s) = q(s; A) be the (unique) solution of the problem (21)-(22).
By using an argument similar to the one in the proof of Proposition Al of
the Appendix one can verify that ¢ (s; A) is continuous in A, for A > 0. Thus
7(s;A) = s 1q(s; A) too is continuous in A, for A > 0. For fixed A;, Ay,
with 0 < A; < Ay < 00, the estimate (37), the monotonicity of ¢ and the fact
p > d/(d+2) imply that the family {G(-; A) : A € [A;, Ay} is dominated by
the integrable function h(s), s > 0, where

Ad
S(dTi_dHeXp[ d(d+ 2)A2 ]exp[ A/ (d+ 2)A2(d+ 2) ], s> 1.

Hence, the continuity of 7(A) follows by invoking the Dominated Convergence
Theorem. O

We are now ready for our main theorem:.

Theorem 1. For each number xk € (0,00) there is a self-similar solution of
(4) and (5), namely a function g,(s) satisfying (19) together with (15), (17),
such that

Kl[g4) = k.

Proof. Let us consider again the (unique) solution ¢ (s) = ¢ (s; A) of the prob-
lem (21)-(22) with =k + d/(d + 2), that is

d—1 S
S d+2

()4~ q(s) 4 rg(s) =0, s3>0,

q(s)q" (s) + d+ 2

q(0)=4>0,  ¢(0)=0,

19



and set

o0

Q(A) = ad/sd_lq'(s;A)st. (45)

0

Then by Corollary 1,

o0

QA) = adﬁ/sd_lq(s;A)ds,

0

hence Corollary 3 tells us that Q(A) is continuous on (0,00). Furthermore,
(41) and (42) of Corollary 2 read

lim Q(A) =0 and lim Q(A) = oc.

A—0+F A—o0

Thus Q(A) takes every value between 0 and oo. In particular there is an
A = A, such that

Q(AH) =K
Set

g9a(s) = q(s; Ay)
Then

0

hence g4(s) also satisfies (18). O

Remarks. (a) As we have already pointed out, it is rather surprising that
there is an infinitude of self-similar solutions.

(b) Estimate (37) and the fact that ¢'(s) — 0, as s — oo, imply that our
similarity solutions satisfy (7). Hence they also satisfy (4).

20
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APPENDIX

Proposition A1l. There is an € > 0 such that (21)—(22) has a unique solution
q(s), for s € [0,¢].

Proof. By multiplying both sides of (24) by s?~!, then integrating from 0 to
s > 0, and using the initial condition ¢’(0) = 0 one gets the equivalent problem

1 7% () 7
d-1_1 d Ped — A
S q(s)+d+20/ 207) T—|—dS 0, q(0)

Setting p = ¢' we obtain the system

S

B 1 Tp(7) 1
p(s) = = (d+2)si1 0/ (1) ar =35 (46)
a(s) = [ p(r)ydr + 4, (47)

0

which, of course, is also equivalent to (21)—(22).

We intend to prove that for some £ > 0, the above system possesses a unique
solution (p(s), q(s)), for s € [0,¢].

Fix an ¢ > 0 and consider the linear space C[0, ] of all real-valued continuous
functions defined on the interval [0,¢]. Of course, C[0,¢] is a Banach space
under the supnorm || - ||. Furthermore, C[0,¢] x C[0,¢] is also a Banach
space with norm

[ (w, 0)[] = Hulloo + |[v]]cc- (48)

Now let us set

Ve ={(q,p) € Cl0,e] x C0,¢] : [|[g = Alloo < A/2, [Iplloc <1 }.

Obviously, Y. is a closed subset of C[0,¢] x C0,¢] and thus, it is a complete
metric space with respect to the metric induced by the norm (48).
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To proceed, define the mapping @, : Y. — C[0,¢| x C[0,¢] by

1 P ord

; ()
Oefq. pl(s) = (()/P(T)C” L I 0/ o Es’) '

It is straightforward to check that by taking e sufficiently small, the mapping
®, can be made a contraction from Y into itself. Therefore ®, admits a unique
fixed point which is the unique solution to the system (46)—(47) on the interval
[0: 5]' O

Remark: Differentiating both sides of (46) with respect to s > 0 and then
taking the limit as s — 07 we get (recall that p = ¢')

li "(s) = li '"(s) = —u/d .
Jim, o'(5) = Jim, #(5) = =/
Hence

q"(0) = —p/d. (49)

Proposition A2. Let f be a differentiable function defined on the interval
(0,b), for some b > 0, with

fl(x) >0, 2€(0,b), and  lim f(z) = oo,

T—b~

Then for each d > 1,

z—b—

lim [xdf(w) ~df {fd‘lf(ﬁ)dé“] = .

Proof. Let a € (0,b). Set

F(e) =a'f() — d [ € f(€)de — a’lf() - fla)l. @€ (0,D),

Then F'(z) = (z¢—a?) f'(z), z € (0,b), and since f' > 0 on (0, b), the function
F attains its (global) minimum on (0,b) at = a. Thus for each z € (0, ),

F(@) 2 F(a) = af(a) = d [ €' f(e)de = [ €'/ ()de > 0
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(where the last equality follows by integration by parts).

Therefore

wif(@) — d [ €7 1(©)de > (@) - (@), 7€ (0,D),
0
and the right-hand side of the above inequality tends to oo, as x — b™. O
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