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Abstract. Consider a (star-like) graph with n edges meeting at one node and a Brownian Motion on this graph with a Kirchhoff condition at the node. We compute exit probabilities and certain other probabilistic quantities regarding exit and occupation times. This mathematical model can be applied to random propagation of information in networks.
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and the so-called ‘Kirchhoff condition’ 
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It is well-known that 
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 defines a (unique) self-adjoint operator on the space
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The process 
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 does a standard Brownian motion on each of the semiaxes and, when it hits 
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 (see, e.g., [3]). For notational clarity it is helpful to use the coordinate 
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 In this article we study certain issues regarding exit (or hitting) times and occupational times of 
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. Our results extend certain classsical results for the standard Brownian motion on 
[image: image32.wmf]¡

 (e.g. the continuous gambler’s ruin problem—see, e.g., [1]) which actually corresponds to the case 
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). Possible applications may include random flow of information in simple networks.
2 Exit Times and Exit Probabilities (Explicit Calculations)
On each semiaxis 
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(thus 
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[image: image43.wmf]n

line segments of lengths 
[image: image44.wmf]1

,...,

n

bb
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If 
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where 
[image: image58.wmf]l

 is a complex parameter and 
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together with the boundary conditions
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The solution 
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 of the above problem has the Feynman-Kac representation (see, e.g., [2] or [4]) 
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where 
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Let us calculate the solution 
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 of the problem (5)–(9). First assume 
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To determine the constants 
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By (7) we have 
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and hence (13) becomes
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for 
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Let us also analyze the somehow exceptional case  
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and the boundary conditions are again (6), (7), (8), and (9). By formula (10) we can see

immediately that the solution 
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 has the probabilistic interpretation 
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To satisfy (17), (8), and (9) we must take  
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On the other hand, from (7) we get 
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and hence (19) becomes 
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We summarize the above results in the following theorem: 

Theorem 1. For 
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Remark. If we set 
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