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Abstract

The Floquet (direct spectral) theory of the periodic Euler-Bernoulli equation
has been developed by the author in [19], [21], and [20]. Here we begin a systematic
study of the inverse periodic spectral theory, in the spirit of the corresponding
theory of the second-order operator, namely the Hill’s operator.

Our main result is that, if there are no pseudogaps (equivalently, if the Bloch-
Floquet variety is reducible in a certain sense), then the Euler-Bernoulli operator
is the square of a second-order (Hill-type) operator. This result had been conjec-
tured by the author, in his earlier works.
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multipoint eigenvalue problem, inverse periodic spectral theory.
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1 Introduction

The term “periodic Euler-Bernoulli equation” refers to the eigenvalue prob-
lem

[a(x)u′′(x)]
′′

= λρ(x)u(x), −∞ < x < ∞, (1)
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where a(x) and ρ(x) are strictly positive and periodic with a common period
b, satisfying the smoothness conditions a ∈ C2 (R) and ρ ∈ C (R). Further-
more, without loss of generality, a(x) and ρ(x) are normalized so that

∫ b

0

[
ρ(x)

a(x)

]1/4

dx = b. (2)

One advantage of this normalization is that the asymptotics of certain quan-
tities, as |λ| → ∞, become simpler, and this is the only reason that (2) is
used in the present work.

The Floquet theory, i.e. the direct spectral theory, of (1) has been de-
veloped by the author in [19], [21], and [20] (in chronological order). There
are theoretical as well as practical reasons for studying (1). The spectral
theory of (1) is richer (analytically as well as algebraically) than its second-
order counterpart (namely the Hill’s equation). All the main second-order
properties continue to hold, while new interesting (we can say surprising)
phenomena arise which are nonexistent in the second-order case. In fact, we
believe that (1) is a good “representative” of higher-order periodic spectral
problems, hence the full understanding of (1) will give insight to the general
higher-order case.

On the practical side, we notice that a typical application of (1) is that
it models the transverse vibrations of a thin straight beam with periodic
characteristics (see, e.g., [24] or [10]) and elastic structures consisting of
many thin elements arranged periodically are quite common [16].

Recently there has been an increasing interest in higher order periodic
eigenvalue problems (e.g. [1], [2]) and one expects that they will appear
often in applied mathematics and mathematical physics as models of the
physical world.

The present work initiates a systematic investigation of the inverse pe-
riodic spectral theory of (1). The goal is a theory in the spirit of [6] or [5]
(see also [4], [7], [14], [15], [26]).

In Section 2 we review some facts and notions from our previous works,
including the concept of the pseudospectrum, or ψ-spectrum, introduced in
[21]. The section also contains some observations never published before.

In Section 3 we begin a systematic analysis of the periodic inverse spectral
problem. The formulas of Section 3 are used in the next section (Section 4)
in order to prove the main result of this work:

Theorem. If all pseudogaps of (1) are degenerate, then the Euler-
Bernoulli operator is a perfect square of a second-order Hill-type operator,
namely the product a(x)ρ(x) is constant.

This statement appeared as a conjecture in our previous works [21] and
[20] (and even [19] in a latent way).
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2 Review of the Floquet/Spectral Theory

We start by recalling some general facts about (1) and some results estab-
lished in [19], [21], and [20] (other references for Floquet or periodic spectral
theory are, e.g., [3], [4], [8], Sec. XIII.7, [9], [11], [12], [13], [22]).

The problem (1) is self-adjoint (with no boundary conditions at ±∞).
The underlying operator L (the “Euler-Bernoulli operator” or “beam oper-
ator”) is given by

Lu = ρ−1 (au′′)′′ .

The corresponding Hilbert space is the ρ-weighted space L2
ρ (R). Notice that

L is a product of two second order differential operators, namely

L = L2L1, where L1u = −au′′, L2u = −ρ−1u′′.

If a(x)ρ(x) ≡ const., the beam operator becomes the square of a second-order
operator.

2.1 Floquet Multipliers and Floquet Solutions

Let uj(x) = uj(x; ξ; λ), j = 1, 2, 3, 4, be the fundamental solutions of (1)
with respect to the reference point ξ, namely the solutions such that (primes
refer to derivatives with respect to the first variable, namely x; δjk is the
Kronecker delta)

u
(k−1)
j (ξ; ξ; λ) = δjk, k = 1, 2, a(ξ)u′′j (ξ; ξ; λ) = δj3,

[
au′′j

]′
(ξ; ξ; λ) = δj4.

(3)

Each uj(x; ξ; λ) is entire in λ of order 1/4. Here ξ is a given real. If ξ = 0,
we write

uj(x; λ)
def
= uj(x; 0; λ).

The corresponding Floquet matrix T = T (ξ; λ) is

T =




u1(ξ + b) u2(ξ + b) u3(ξ + b) u4(ξ + b)
u′1(ξ + b) u′2(ξ + b) u′3(ξ + b) u′4(ξ + b)

a(ξ)u′′1(ξ + b) a(ξ)u′′2(ξ + b) a(ξ)u′′3(ξ + b) a(ξ)u′′4(ξ + b)
[au′′1]

′ (ξ + b) [au′′2]
′ (ξ + b) [au′′3]

′ (ξ + b) [au′′4]
′ (ξ + b)


 ,

where the dependence in ξ and λ is suppressed for typographical convenience.
In [19] it was shown that the eigenvalues r1,r2,r3,r4 of T (called Floquet
multipliers) appear in pairs of inverses, namely

r1r4 = r2r3 = 1 (4)
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(in fact this is true for any self-adjoint ordinary differential operator with
real, periodic coefficients). It follows that the characteristic equation of T
has the (equivalent) forms

r4 − A(λ)r3 + [B(λ) + 2] r2 − A(λ)r + 1 = 0,

(r + r−1)
2 − A(λ) (r + r−1) + B(λ) = 0

(5)

(notice that the coefficients A(λ) and B(λ) do not depend on ξ). Hence,
it is more appropriate to view the rj’s as the branches of the multivalued
analytic function r(λ), “living” (defined) on a four-sheeted Riemann surface
which we denote by Γ. If we set

r = eikb, (6)

then the characteristic equation of T becomes

F (λ; k)
def
= B(λ)− 2A(λ) cos (kb) + 4 cos2 (kb) = 0. (7)

The function F (λ; k) is entire in λ, k (it could be called the Akhiezer func-
tion). It is the analog of ∆(λ) − 2 cos(kb) of the Hill theory (where ∆(λ)
is the discriminant). Equation (7), which sometimes is called the dispersion
relation, defines a transcendental variety, called the Bloch-Floquet variety.
A detailed study of the zeros of F (λ; k), for any given k ∈ C, can be found
in [20].

The Floquet multipliers, being the roots of (5), satisfy

r1 + r4 =
A(λ) +

√
E(λ)

2
def
= ∆+(λ), r2 + r3 =

A(λ)−
√

E(λ)

2
def
= ∆−(λ),

(8)

where
√· is the principal branch of the square root function and

E(λ)
def
= A(λ)2 − 4B(λ). (9)

Therefore

r1 =
∆+ +

√
∆+

2 − 4

2
, r4 =

∆+ −
√

∆+
2 − 4

2
,

r2 =
∆− +

√
∆−2 − 4

2
, r3 =

∆− −
√

∆−2 − 4

2

(notice that, by analytic continuation (4) holds for all λ, i.e. without per-
muting the indices of the r’s).
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Except for a discrete set of λ’s, T = T (ξ; λ) is similar to a diagonal
matrix and its eigenvectors correspond to the (proper) Floquet solutions,
namely to the solutions fj(x; λ), j = 1, 2, 3, 4, of (1) such that

fj(x + b; λ) = rjfj(x; λ). (10)

Thus, there are four linearly independent Floquet solutions if and only if T is
similar to a diagonal matrix. These solutions are defined modulo a constant
factor (i.e. a factor which is independent of x). To fix this ambiguity, for
a given real number ξ, one introduces (see [6], [18]) the normalized Floquet
solutions φj(x) = φj(x; ξ; λ), j = 1, 2, 3, 4, for which

φj(ξ; ξ; λ) = 1. (11)

In case where ξ = 0, we write

φj(x; λ)
def
= φj(x; 0; λ),

and, hence, φj(0; λ) = 1. In fact we have

φj(x; ξ; λ) =
fj(x; λ)

fj(ξ; λ)
=

φj(x; 0; λ)

φj(ξ; 0; λ)
=

φj(x; λ)

φj(ξ; λ)
(12)

(thus φj(x; ξ; λ) is proportional to φj(x; λ) by a factor which is independent
of x).

Again it is more appropriate to view the φj’s as the branches of a mul-
tivalued λ-analytic function φ(x; ξ; λ). In fact φ(x; ξ; λ) is a meromorphic
function on Γ (the Riemann surface of r(λ)), whose set of poles is denoted
by {µn(ξ)}. For each µn(ξ) there is a j ∈ {1, 2, 3, 4} such that

fj(ξ; µn(ξ)) = 0

(and, as one can see from (12), the normalization (11) is not possible when
λ = µn(ξ)).

2.2 Spectrum and Pseudospectrum

If {λn}∞n=0 and {λ′n}∞n=1 are respectively the periodic and antiperiodic eigen-
values of (1), then

0 = λ0 < λ′1 ≤ λ′2 < λ1 ≤ λ2 < λ′3 ≤ λ′4 < · · ·.
The L2

ρ (R)-spectrum S1(a, ρ) of (1) is

S1(a, ρ) = {λ ∈ C : |rj(λ)| = 1, for some j} =
∞⋃

n=1

Bn,
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where B2m+1 =
[
λ2m, λ′2m+1

]
, B2m+2 =

[
λ′2m+2, λ2m+1

]
, m = 0, 1, 2, ... , are

the bands. Hence the gaps of the spectrum are

I2m−1 =
(
λ′2m−1, λ

′
2m

)
, I2m = (λ2m−1, λ2m) , m = 1, 2, 3, ... ,

and empty gaps are traditionally called “closed” or degenerate. In the sequel
the term “gap” will sometimes mean the closure of a gap, or a point, in case
the gap is degenerate.

In [21] we proved that the zeros of E(λ) of (9) are all real, negative, and
simple or double; we denote them by

0 = ν0 > ν ′1 ≥ ν ′2 > ν1 ≥ ν2 > ν ′3 ≥ ν ′4 > · · ·.
The pseudospectrum or ψ-spectrum S2(a, ρ) of (1) is

S2(a, ρ) =
{

λ ∈ C : rj(λ) = rl(λ), |rj(λ)| 6= 1, for some j 6= l
}

=
∞⋃

n=1

Ψn,

where Ψ2m+1 =
[
ν ′2m+1, ν2m

]
, Ψ2m+2 =

[
ν2m+1, ν

′
2m+2

]
, m = 0, 1, 2, ... , are

the ψ-bands.

If a(x)ρ(x) ≡ const. (the “perfect square” case), then all the nonzero
zeros of E(λ) are double, i.e. E(λ)λ−1 is the square of an entire function
(equivalently, all ψ-gaps are closed, i.e. empty). It follows that (see (8), (6),
and (7)), if L is the square of a second-order operator, the Bloch-Floquet
variety is reducible in the sense

F (λ; k) = [∆+(λ)− 2 cos(kb)] [∆−(λ)− 2 cos(kb)] ,

where

∆±(λ) =
A(λ)±

√
E(λ)

2

are entire function with respect to the variable z =
√

λ. Of course, in this
case ∆+(λ), as a function of

√
λ, is the discriminant of the Hill-type operator

L1/2.

2.3 A Multipoint Eigenvalue Problem

In [20] we introduced the following multipoint problem as the analog of Hill’s
Dirichlet problem for the Euler-Bernoulli case:

[a(x)u′′(x)]
′′

= λρ(x)u(x), u(ξ) = u(ξ + b) = u(ξ + 2b) = u(ξ + 3b) = 0,
(13)

where ξ ∈ R is a given point. An eigenvalue of (13) is any value of λ for which
(13) has a nontrivial solution. We call such a solution an eigenfunction of
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(13). Physically the above problem describes the vibration of a beam fixed
at the four points ξ, ξ + b, ξ + 2b, ξ + 3b.

Let uj(x; ξ; λ), j = 1, 2, 3, 4, be the fundamental solutions of (1) with
respect to ξ. Since every solution of (1) is a linear combination of the
fundamental solutions, it follows that λ is an eigenvalue of (13) if and only
if λ is a zero of the function

H(ξ; λ) =

∣∣∣∣∣∣

u2(ξ + b; ξ; λ) u3(ξ + b; ξ; λ) u4(ξ + b; ξ; λ)
u2(ξ + 2b; ξ; λ) u3(ξ + 2b; ξ; λ) u4(ξ + 2b; ξ; λ)
u2(ξ + 3b; ξ; λ) u3(ξ + 3b; ξ; λ) u4(ξ + 3b; ξ; λ)

∣∣∣∣∣∣ (14)

(of course H(ξ; λ) is entire in λ of order 1/4). We can, thus, say that the
spectrum of (13) is the set of zeros of H(ξ; λ). A simple calculation gives

H(ξ; 0) = b4

(∫ b

0

dx

a(x)

)2

> 0,

thus 0 is not an eigenvalue of (13) and

H(ξ; λ) = b4

(∫ b

0

dx

a(x)

)2 ∏
m

[
1− λ

ωm(ξ)

]
, (15)

where {ωm(ξ)}m is the spectrum of (13).
The theorem below should be compared with the property of the Hill

operator stating that the Dirichlet eigenvalues are simple and their corre-
sponding eigenfunctions are Floquet solutions.

Theorem A. Let ω be an eigenvalue of (13) and V (ω) the corresponding
eigenspace, namely the vector space of all eigenfunctions of (13) associated
to ω. Then dimV (ω) = 1 or 2. If dimV (ω) = 1, then V (ω) is spanned
by a (proper) Floquet solution; if dimV (ω) = 2, then V (ω) is spanned by
two (proper) Floquet solutions, one belonging to L2(−∞, 0) and the other
belonging to L2(0,∞).

The main result regarding the spectrum of (14), i.e. the zeros of H(ξ; λ),
is the following:

Theorem B. All zeros of H(ξ; λ), of (14), are real and they are located
as follows: (a) H(ξ; λ) has exactly one (simple) zero in the closure of each
gap of the spectrum S1(a, ρ) (with the understanding that, if the gap is
closed, i.e. collapses to a double periodic or antiperiodic eigenvalue, say λ∗,
then the simple zero of H(ξ; λ) is λ∗, and it is, of course, independent of ξ);
(b) H(ξ; λ) has exactly two zeros (counting multiplicities) in the closure of
each ψ-gap of the pseudospectrum. In case (b), if the ψ-gap is closed, i.e.
collapses to a point ν∗, where ν∗ = ν2n−1 = ν2n, or ν∗ = ν ′2n−1 = ν ′2n, for
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some n = 1, 2, 3, ..., then ν∗ is a double zero of H(ξ; λ), for any ξ. There are
no other zeros of H(ξ; λ).

The proofs of the above theorems can be found in [20].

Remark. A natural way to label the ωm(ξ)’s is the following. We take

m ∈ Z′ def
= Z \ {0}. If m > 0, then ωm(ξ) is in the (closure of the) m-th

spectral gap. If m < 0, then ωm(ξ) is in the (closure of the) b(1−m) /2c-
th ψ-gap, where bxc denotes the greatest integer ≤ x. It follows from the
analysis presented in [20] that each ωm(ξ) changes continuously with ξ and:

(i) if m > 0, then ωm(ξ) stays always in the (closure of the) m-th spectral
gap, as ξ is moving;

(ii) if m < 0, then ω2m+1(ξ) and ω2m(ξ) stay always in the (closure of
the) m-th ψ-gap.

In case (ii), given ξ, there is an index j = j(ξ) ∈ {1, 2, 3, 4}, and an
index l = l(ξ) ∈ {1, 2, 3, 4}, such that the Floquet solutions fj(x; ξ; λ) and
fl(x; ξ; λ) satisfy

fj(ξ; ξ; ω2m+1(ξ)) = 0, fl(ξ; ξ; ω2m(ξ)) = 0.

If, for the given ξ, fj(x; ξ; ω2m+1(ξ)) belongs to L2(−∞, 0) (resp. to L2(0,∞)),
as a function of x, then fj(x; ξ; ω2m+1(ξ)) belongs to L2(−∞, 0) (resp. to
L2(0,∞)), for all ξ ∈ R, and fl(x; ξ; ω2m(ξ)) belongs to L2(0,∞) (resp. to
L2(−∞, 0)), as a function of x, for all ξ ∈ R. In particular {j(ξ) : ξ ∈
R} ∩ {l(ξ) : ξ ∈ R} = ∅.

2.4 Branch Points of r(λ) and Poles of φ(x; ξ; λ)

The value λ = λ0 = 0 is very special. The Floquet multiplier r(λ) has a
fourth root branch point there and there is only one proper Floquet solution,
namely φj(x) = 1, j = 1, 2, 3, 4.

The nonzero branch points of r(λ) are of two types:
Type I branch points. These are the simple periodic and antiperiodic

eigenvalues λn and λ′n, n = 1, 2, 3, ... . The Type I branch points of r(λ) are
the endpoints of the nondegenerate gaps of the L2

ρ (R)-spectrum, exactly as
in the Hill case.

Type II branch points. These are the simple (nonzero) zeros νn and
ν ′n, n = 1, 2, 3, ... , of E(λ) of (9). The Type II branch points of r(λ) are the
endpoints of the nondegenerate ψ-gaps of the pseudospectrum.

As function of λ, φ(x; ξ; λ) is meromorphic on Γ (see Subsection 2.1).
Theorems A and B imply that each pole µn(ξ) of φ(x; ξ; λ) is simple and its
projection on C (since µn(ξ) lives on Γ) must be a zero of H(ξ; λ). In fact,
each zero of H(ξ; λ) in a nondegenerate gap or ψ-gap is the projection of a
µn(ξ). However, a zero ω of H(ξ; λ) which is in a degenerate gap or ψ-gap
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is not the projection of a pole of φ(x; ξ; λ): If ω is such a zero, then ω is
not a branch point of r(λ) and there are four linearly independent Floquet
solutions fj(x; ω), j = 1, 2, 3, 4, which can be chosen so that fj(ξ; ω) 6= 0,
for all j.

Thus each nondegenerate gap contains (the projection of) exactly one
µn(ξ), while each nondegenerate ψ-gap contains (the projection of) exactly
two µn(ξ)’s. There is no other possibility for the poles of φ(x; ξ; λ). If we
introduce the entire function

P (ξ; λ) =
∏
n

[
1− λ

µn(ξ)

]
, (16)

then, the above discussion yields that

H(ξ; λ) = c (λ) P (ξ; λ), (17)

where c (λ) is the entire function (see (15))

c (λ) = b4

(∫ b

0

dx

a(x)

)2 ∏

λ∗∈Scl

[
1− λ

λ∗

] ∏
ν∗∈Ψcl

[
1− λ

ν∗

]2

, (18)

Scl being the set of closed (i.e. degenerate) gaps (if any), and Ψcl the set of
closed (i.e. degenerate) ψ-gaps (if any). The sets Scl and Ψcl are, of course,
independent of ξ, hence so is c (λ).

In [6] it is suggested that the (periodic) inverse spectral data for L is
the Riemann surface Γ (which is determined by the branch points of r(λ))
together with the set of poles {µn = µn(0)} of φ(x; λ) (notice that each µn

is a point on Γ, i.e. µn is not just a complex number, since it also contains
the information: on which sheet of Γ does it lie). This is, of course, inspired
by the inverse theory of the Hill’s operator (see, e.g., [5], [6], [7], [14], [15],
[26]).

For the Euler-Bernoulli operator, we need both the L2
ρ(R)-spectrum and

the pseudospectrum in order to determine the Riemann surface Γ and, hence,
the intervals in which the µn’s are confined. This is why the pseudospectrum
plays an essential role in the Euler-Bernoulli inverse spectral theory. How-
ever, we notice that, if we know the periodic and antiperiodic eigenvalues
{λn}n≥1 and {λ′n}n≥1, then we can determine the entire functions F (λ; 0)
(whose zeros are the λn’s) and F (λ; π/b) (whose zeros are the λ′n’s). Since
(see (7))

F (λ; 0) = B(λ)− 2A(λ) + 4 and F (λ; π/b) = B(λ) + 2A(λ) + 4,

it follows A(λ) and B(λ), and therefore E(λ) can be determined. Thus, if the
spectrum has no degenerate gaps, then it determines the pseudospectrum. If
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there are degenerate gaps though, the spectrum (as a subset of R) may not
be enough to determine the pseudospectrum. If for example the spectrum
is [0,∞), we believe that a(x) and ρ(x) are not necessarily constant and,
hence, the pseudospectrum is not uniquely determined.

2.5 Asymptotics as |λ|→ ∞
We divide the complex λ-plane into 8 closed sectors Sl, l = 0, 1, ..., 7, defined
by

lπ

4
≤ arg (λ) ≤ (l + 1) π

4
.

Then, for each Sl (see [17], Part I, Chap. II), there are four linearly
independent solutions vjl(x; λ), j = 1, 2, 3, 4, of (1), analytic for λ ∈ Sl ,
such that, given M > 0,

∣∣∣∣∣vjl(x; λ)− eεjλ1/4S(x,0)

ρ(x)3/8a(x)1/8

∣∣∣∣∣ ≤ K

∣∣∣eεjλ1/4S(x,0)
∣∣∣

|λ|1/4
, 0 ≤ x ≤ M,

(19)

where

S(x; ξ) =

∫ x

ξ

[
ρ(y)

a(y)

]1/4

dy (20)

(in particular, due to normalization (2), S(nb, 0) = nb, if n ∈ Z). Here,
λ1/4 stands for the principal branch of the fourth root (so that <{λ1/4} ≥ 0,
={λ1/4} ≥ 0), {ε1, ε2, ε3, ε4} = {i,−1,−i, 1}, and the (positive) constant K
depends on a(x), ρ(x), and M . Similar formulas hold for the x-derivatives
of vjl(x; λ).

We now present some consequences of the above formulas. If rj (λ),
j = 1, 2, 3, 4, are the Floquet multipliers of (1), then

∣∣∣∣
rj (λ)

eεjλ1/4b
− 1

∣∣∣∣ ≤
K

|λ|1/4
, j = 1, 2, 3, 4, (21)

where λ1/4 is the principal branch of the fourth root, ε1 = 1, ε2 = i, ε3 − i,
ε4 = −1, and the constant K > 0 depends on a(x), ρ(x).

If φj(x; λ), j = 1, 2, 3, 4, are the normalized Floquet solutions introduced
in Section 2.1, then

∣∣∣∣φj(x; λ)− ρ(0)3/8a(0)1/8

ρ(x)3/8a(x)1/8
eεjλ1/4S(x,0)

∣∣∣∣ ≤ K

∣∣∣eεjλ1/4S(x,0)
∣∣∣

|λ|1/4
, 0 ≤ x ≤ M,

(22)
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where ε1 = 1, ε2 = i, ε3 − i, and ε4 = −1. However here

δ ≤ arg λ ≤ π − δ or π + δ ≤ arg λ ≤ 2π − δ, (23)

where δ > 0 is any given constant. The quantities S(x, 0), K, and M are
as before, but K and M depend on δ. Under (23) similar formulas exist for
the derivatives of φj(x; λ). Furthermore, under (23) we have

φ′j(x; λ)

φj(x; λ)
= εj

ρ(x)1/4

a(x)1/4
λ1/4 + l.o.t., (24)

where “l.o.t.” stands for “lower order terms” and means terms whose mag-
nitude is less than the magnitude of the leading term by a factor of (at least)
λ−1/4.

If u1(x; ξ; λ)is the first fundamental solution of (1) with respect to ξ, then

u1(x; ξ; λ) =
a(ξ)1/8ρ(ξ)3/8

2a(x)1/8ρ(x)3/8
·{cosh

[
λ1/4S(x; ξ)

]
+ cos

[
λ1/4S(x; ξ)

]}
+l.o.t.,

u′1(x; ξ; λ) =
λ1/4a(ξ)1/8ρ(ξ)3/8

2a(x)3/8ρ(x)1/8
·{sinh

[
λ1/4S(x; ξ)

]− sin
[
λ1/4S(x; ξ)

]}
+l.o.t.,

u′′1(x; ξ; λ) =
λ1/2a(ξ)1/8ρ(ξ)3/8

2a(x)5/8ρ(x)−1/8
·{cosh

[
λ1/4S(x; ξ)

]− cos
[
λ1/4S(x; ξ)

]}
+l.o.t.,

a(x)u′′′1 (x; ξ; λ) =
λ3/4a(ξ)1/8ρ(ξ)3/8

2a(x)−1/8ρ(x)−3/8
·{sinh

[
λ1/4S(x; ξ)

]
+ sin

[
λ1/4S(x; ξ)

]}
+l.o.t.,

as |λ| → ∞, where primes denote derivatives with respect to x, as usual; x
and ξ are in a bounded interval and S(x; ξ) is given by (20). Furthermore λ
satisfies

π + δ ≤ arg λ ≤ 2π − δ,

which is a little weaker condition than (23). Similar relations hold for the
other fundamental solutions.

From the above it follows that, if E (λ) and H(ξ; λ) are the functions
defined by (9) and (14) respectively, then, under (23),

E (λ) = 4
[
cosh

(
λ1/4b

)− cos
(
λ1/4b

)]2
+ l.o.t. (25)

and

H(ξ; λ) =
sinh

(
λ1/4b

)
sin

(
λ1/4b

)

λ3/2a(ξ)1/2ρ(ξ)3/2
· {cosh

(
λ1/4b

)− cos
(
λ1/4b

)}2
+ l.o.t.,

(26)

where, as usual “l.o.t.” stands for “lower order terms” as explained above.
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3 A Deeper Study of the Floquet Solutions φj(x; ξ; λ)

The analysis presented here is expected to play an important role in the
investigation of the periodic inverse spectral problem. The first application
will be found in the next section.

Let φj(x; ξ; λ), j = 1, 2, 3, 4, be the normalized Floquet solutions (see
Subsection 2.1) and uj(x; ξ; λ), j = 1, 2, 3, 4, the fundamental solutions of
(1) with respect to ξ. Then

φj(x; ξ; λ) = u1(x; ξ; λ) + c2j(ξ; λ)u2(x; ξ; λ) + c3j(ξ; λ)u3(x; ξ; λ) + c4j(ξ; λ)u4(x; ξ; λ),
(27)

or, due to (12),

φj(x; λ)

φj(ξ; λ)
= u1(x; ξ; λ)+c2j(ξ; λ)u2(x; ξ; λ)+c3j(ξ; λ)u3(x; ξ; λ)+c4j(ξ; λ)u4(x; ξ; λ).

The coefficients c2j(ξ; λ), c3j(ξ; λ), and c4j(ξ; λ) are the Weyl-Kodaira m-
functions. They, too, are branches of meromorphic functions living on Γ.
Differentiating with respect to x yields

φ′j(x; λ)

φj(ξ; λ)
= u′1(x; ξ; λ) + c2j(ξ; λ)u′2(x; ξ; λ) + c3j(ξ; λ)u′3(x; ξ; λ) + c4j(ξ; λ)u′4(x; ξ; λ).

(28)

By setting x = ξ in the above formula one obtains

φj(x; ξ; λ) =
φj(x; λ)

φj(ξ; λ)
= e

R x
ξ c2j(η;λ)dη. (29)

Since [1, c2j(ξ; λ), c3j(ξ; λ), c4j(ξ; λ)]> is the eigenvector of T (ξ; λ) corre-
sponding to the eigenvalue rj(λ), we must have

c2j(ξ; λ) =

∣∣∣∣∣∣

−u′1(ξ + b) u′3(ξ + b) u′4(ξ + b)
−a(ξ)u′′1(ξ + b) a(ξ)u′′3(ξ + b)− rj(λ) a(ξ)u′′4(ξ + b)
− [au′′1]

′ (ξ + b) [au′′3]
′ (ξ + b) [au′′4]

′ (ξ + b)− rj(λ)

∣∣∣∣∣∣
∣∣∣∣∣∣

u′2(ξ + b)− rj(λ) u′3(ξ + b) u′4(ξ + b)
a(ξ)u′′2(ξ + b) a(ξ)u′′3(ξ + b)− rj(λ) a(ξ)u′′4(ξ + b)
[au′′2]

′ (ξ + b) [au′′3]
′ (ξ + b) [au′′4]

′ (ξ + b)− rj(λ)

∣∣∣∣∣∣

,

where the dependence of u
(l)
j in ξ and λ is suppressed for typographical

convenience. If λ is in a degenerate gap or ψ-gap, then this formula gives
0/0 and c2j(ξ; λ) has a removable singularity.

Starting from (27), there are many other ways to express c2j(ξ; λ). We
mention one:

12



If n is an integer, then, of course,

φj(ξ + nb; ξ; λ) = rj (λ)n ,

thus we can set x = ξ + nb in (27) and get

rj
n = u1(ξ+nb; ξ)+c2j(ξ)u2(ξ+nb; ξ)+c3j(ξ)u3(ξ+nb; ξ)+c4j(ξ)u4(ξ+nb; ξ)

(here the dependence in λ is suppressed for typographical convenience).
Writing this formula for n = 1, 2, 3 and then solving for c2j(ξ; λ) yields

c2j(ξ; λ) =

∣∣∣∣∣∣

rj (λ)− u1(ξ + b; ξ; λ) u3(ξ + b; ξ; λ) u4(ξ + b; ξ; λ)

rj (λ)2 − u1(ξ + 2b; ξ; λ) u3(ξ + 2b; ξ; λ) u4(ξ + 2b; ξ; λ)

rj (λ)3 − u1(ξ + 3b; ξ; λ) u3(ξ + 3b; ξ; λ) u4(ξ + 3b; ξ; λ)

∣∣∣∣∣∣
∣∣∣∣∣∣

u2(ξ + b; ξ; λ) u3(ξ + b; ξ; λ) u4(ξ + b; ξ; λ)
u2(ξ + 2b; ξ; λ) u3(ξ + 2b; ξ; λ) u4(ξ + 2b; ξ; λ)
u2(ξ + 3b; ξ; λ) u3(ξ + 3b; ξ; λ) u4(ξ + 3b; ξ; λ)

∣∣∣∣∣∣

,

where the denominator is H(ξ; λ) of (14) (which is entire in λ). Thus the
above formula can be written (see (29)) as

c2j(ξ; λ) =
φ′j(ξ; λ)

φj(ξ; λ)
=

γ0 (ξ; λ) + γ1 (ξ; λ) rj (λ) + γ2 (ξ; λ) rj (λ)2 + γ3 (ξ; λ) rj (λ)3

H(ξ; λ)
,

(30)

where γj (ξ; λ), j = 0, 1, 2, 3, are entire in λ.
We continue with the observation that (see (16) and (17))

φ1(x; λ)φ2(x; λ)φ3(x; λ)φ4(x; λ) =
P (x; λ)

P (0; λ)
=

H(x; λ)

H(0; λ)
. (31)

Hence (primes denote derivatives with respect to x)

[φ1(x; λ)φ2(x; λ)φ3(x; λ)φ4(x; λ)]′

φ1(x; λ)φ2(x; λ)φ3(x; λ)φ4(x; λ)
=

P ′(x; λ)

P (x; λ)
=

H ′(x; λ)

H(x; λ)

or

φ′1(x; λ)

φ1(x; λ)
+

φ′2(x; λ)

φ2(x; λ)
+

φ′3(x; λ)

φ3(x; λ)
+

φ′4(x; λ)

φ4(x; λ)
=

P ′(x; λ)

P (x; λ)
=

H ′(x; λ)

H(x; λ)
.

(32)

Next we use (30), (4), and (8) to obtain

φ′1(x; λ)

φ1(x; λ)
+

φ′4(x; λ)

φ4(x; λ)
=

α0 (x; λ) + α1 (x; λ)
√

E(λ)

H(x; λ)
, (33)

13



where α0 (x; λ) and α1 (x; λ) are entire in λ. Likewise

φ′2(x; λ)

φ2(x; λ)
+

φ′3(x; λ)

φ3(x; λ)
=

α0 (x; λ)− α1 (x; λ)
√

E(λ)

H(x; λ)
. (34)

Adding up the last two equalities and then invoking (32) yields

2α0 (x; λ) = H ′(x; λ).

Finally using again (30), (4), and (8) one gets

φ′3(x; λ)

φ3(x; λ)
− φ′2(x; λ)

φ2(x; λ)
=

[r3 (λ)− r2 (λ)]
[
β0 (x; λ)− β1 (x; λ)

√
E(λ)

]

H(x; λ)
(35)

and

φ′4(x; λ)

φ4(x; λ)
− φ′1(x; λ)

φ1(x; λ)
=

[r4 (λ)− r1 (λ)]
[
β0 (x; λ) + β1 (x; λ)

√
E(λ)

]

H(x; λ)
(36)

where β0 (x; λ) and β1 (x; λ) are entire in λ.

4 The Absence of Nondegenerate Pseudogaps

We consider the following inverse periodic spectral problem: If there are no
open ψ-gaps, i.e. if the pseudospectrum is (−∞, 0], what can we say about
the operator L? The assumption of the nonexistence of open ψ-gaps has
some equivalent versions. We mention few of them:

(i) The Floquet multiplier r(λ) has no Type II branch points (see Sub-
section 2.4);

(ii) The entire function E(λ) of (9) has the form

E(λ) = λE1(λ)2, (37)

where E1(λ) is entire;
(iii) The function F (λ; k) of (7) can be factored as

F (λ; k) = [∆+(λ)− 2 cos(kb)] [∆−(λ)− 2 cos(kb)] ,

where ∆±(λ) are entire functions with respect to the variable z =
√

λ. Thus,
the Bloch-Floquet variety is reducible in this sense.

Version (iii) can be also expressed by saying that the function

F̃ (λ; ζ) = B(λ)− 2A(λ)ζ + 4ζ2,
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can be factored in a nontrivial way as

F̃ (λ; ζ) = F1(λ; ζ)F2(λ; ζ),

where F1(λ; ζ) and F2(λ; ζ) are entire functions with respect to the variables
z =

√
λ and ζ. Here “nontrivial” means that none of the above factors is

constant nor it has the form eg(
√

λ,ζ), with g(z, ζ) entire in z and ζ.
We believe that (iii) is equivalent to the statement: The function F (λ; k)

of (7) can be factored in a nontrivial way as

F (λ; k) = F1(λ; k)F2(λ; k),

where F1(λ; k) and F2(λ; k) are entire functions with respect to the variables
z =

√
λ and k.

In this section we will prove the following theorem that had appeared as
a conjecture in our earlier works:

Theorem. If all pseudogaps of (1) are degenerate, i.e. if (37) holds,
then the Euler-Bernoulli operator L is a perfect square of a second-order
Hill-type operator, namely the product a(x)ρ(x) is constant.

We first give two lemmas.

Lemma 1. Let g (z) be entire of order ≤ 1/2. If there are two angles
θ1 and θ2, 0 ≤ θ1 < θ2 < 2π, such that g (z) is bounded on the half-lines
arg z = θ1 and arg z = θ2, then g (z) is constant.

Proof. The statement is an immediate consequence of the Phragmén-
Lindelöf Theorem(s) for sectors (see, e.g. [25]). ¥

If the function g (z) above is bounded on the half-lines by a power of z,
then it must be a polynomial. Also a statement similar to Lemma 1 holds
for an entire function g (z) whose order is bounded by some number M ,
but, in general the function must be bounded on more than two half-lines
(the number of the half-lines and the maximum angle that two consecutive
half-lines can have depend on M), in order to conclude that g (z) is constant.

Lemma 2. If (37) holds, then

∣∣∣∣
φ2(x; λ) φ3(x; λ)
φ′2(x; λ) φ′3(x; λ)

∣∣∣∣
∣∣∣∣

φ1(x; λ) φ4(x; λ)
φ′1(x; λ) φ′4(x; λ)

∣∣∣∣ =
w (λ)

a(x)ρ(x)
, (38)

where w (λ) is (of course independent of x and) meromorphic on Γ.

Proof. Under the assumption (37), (35) becomes

φ′3(x; λ)

φ3(x; λ)
− φ′2(x; λ)

φ2(x; λ)
=

[r3 (λ)− r2 (λ)]
[
β0 (x; λ)− β̂1 (x; λ)

√
λ
]

H(x; λ)
,

(39)
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where β̂1 (x; λ) = β1 (x; λ) E1(λ) is entire in λ.
Let

H̃(x; λ) =
∏
m≥1

[
1− λ

ωm(x)

]
,

which means that H̃(x; λ) is entire in λ (of order 1/4) whose zeros are the
positive zeros of H(x; λ). Then (37) and Theorem B imply that

H(x; λ) = c0λ
−1E(λ)H̃(x; λ),

where c0 is a constant. Hence (39) becomes

φ′3(x; λ)

φ3(x; λ)
− φ′2(x; λ)

φ2(x; λ)
=

[r3 (λ)− r2 (λ)]
[
β0 (x; λ)− β̂1 (x; λ)

√
λ
]

c0λ−1E(λ)H̃(x; λ) (40)

and in the same way (35) becomes

φ′4(x; λ)

φ4(x; λ)
− φ′1(x; λ)

φ1(x; λ)
=

[r4 (λ)− r1 (λ)]
[
β0 (x; λ) + β̂1 (x; λ)

√
λ
]

c0λ−1E(λ)H̃(x; λ)
.

(41)

Now let ν 6= 0 be a zero of E(λ). Then (37) implies (see Subsec-
tion 2.4) that φ′j(x; ν)/φj(x; ν) is finite for all j = 1, 2, 3, 4 (the poles of

φ′j(x; λ)/φj(x; λ) are included in the zeros of H̃(x; λ)). Also r3 (ν)−r2 (ν) 6= 0
and r4 (ν)− r1 (ν) 6= 0. Thus (40) and (41) imply that

β0 (x; λ)− β̂1 (x; λ)
√

λ

λ−1E(λ)
and

β0 (x; λ) + β̂1 (x; λ)
√

λ

λ−1E(λ)

are finite for all λ ∈ C. Therefore

β̃0 (x; λ) =
β0 (x; λ)

λ−1E(λ)
and β̃1 (x; λ) =

β̂1 (x; λ)

λ−1E(λ)

are entire in λ (whose order has to be at most 1/4) and (40) and (41) can
be written as

φ′3(x; λ)

φ3(x; λ)
− φ′2(x; λ)

φ2(x; λ)
=

[r3 (λ)− r2 (λ)] E(λ)
[
β̃0 (x; λ)− β̃1 (x; λ)

√
λ
]

λH(x; λ)
(42)

and

φ′4(x; λ)

φ4(x; λ)
− φ′1(x; λ)

φ1(x; λ)
=

[r4 (λ)− r1 (λ)] E(λ)
[
β̃0 (x; λ) + β̃1 (x; λ)

√
λ
]

λH(x; λ)
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respectively. Multiplying these formulas one gets
[
φ′3(x; λ)

φ3(x; λ)
− φ′2(x; λ)

φ2(x; λ)

] [
φ′4(x; λ)

φ4(x; λ)
− φ′1(x; λ)

φ1(x; λ)

]
=

[r3 (λ)− r2 (λ)] [r4 (λ)− r1 (λ)] E(λ)

λH(x; λ)
·
E(λ)

[
β̃0 (x; λ)2 − β̃1 (x; λ)2 λ

]

λH(x; λ)
.
(43)

Now (24) gives
[
φ′3(x; λ)

φ3(x; λ)
− φ′2(x; λ)

φ2(x; λ)

] [
φ′4(x; λ)

φ4(x; λ)
− φ′1(x; λ)

φ1(x; λ)

]
= 4i

ρ(x)1/2

a(x)1/2
λ1/2 + l.o.t.,

(44)

while (21), (25), and (26) yield

[r3 (λ)− r2 (λ)] [r4 (λ)− r1 (λ)] E(λ)

λH(x; λ)
= 16iλ1/2a(x)1/2ρ(x)3/2 + l.o.t.,

(45)

where in both cases λ must obey the condition (23).
Next we notice that (31) implies that the functions

[
φ′3(x; λ)

φ3(x; λ)
− φ′2(x; λ)

φ2(x; λ)

] [
φ′4(x; λ)

φ4(x; λ)
− φ′1(x; λ)

φ1(x; λ)

]

and
[r3 (λ)− r2 (λ)] [r4 (λ)− r1 (λ)] E(λ)

λH(x; λ)

have the same poles (viewed as meromorphic functions of λ, living on Γ).
Using this observation in (43) we get the important conclusion that

E(λ)
[
β̃0 (x; λ)2 − β̃1 (x; λ)2 λ

]

λH(x; λ)

must be entire in λ(!). Furthermore, if we use the asymptotic formulas (44)
and (45) in (43) we get (under (23)) that

E(λ)
[
β̃0 (x; λ)2 − β̃1 (x; λ)2 λ

]

λH(x; λ)
=

1

4a(x)ρ(x)
+ l.o.t.,

but, then by Lemma 1 this entire function must be constant (with respect
to λ), thus

E(λ)
[
β̃0 (x; λ)2 − β̃1 (x; λ)2 λ

]

λH(x; λ)
=

1

4a(x)ρ(x)
.
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It follows that (43) becomes
[
φ′3(x; λ)

φ3(x; λ)
− φ′2(x; λ)

φ2(x; λ)

] [
φ′4(x; λ)

φ4(x; λ)
− φ′1(x; λ)

φ1(x; λ)

]
=

(r3 − r2) (r4 − r1) E (λ)

λH(x; λ)
· 1

4a(x)ρ(x)
,

where the dependence of rj in λ is suppressed for typographical economy.
Finally we invoke again (31) and get
∣∣∣∣

φ2(x; λ) φ3(x; λ)
φ′2(x; λ) φ′3(x; λ)

∣∣∣∣
∣∣∣∣

φ1(x; λ) φ4(x; λ)
φ′1(x; λ) φ′4(x; λ)

∣∣∣∣ =
(r3 − r2) (r4 − r1) H(0; λ)λ−1E (λ)

4a(x)ρ(x)
,

which is (38). ¥
Proof of the Theorem. Having established (38), to finish the proof of the

theorem we can just look at the behavior of the left hand side of (38) near
λ = 0. We have

rj (λ) = 1 + εja0bλ
1/4 + O

(
λ1/2

)
, j = 1, 2, 3, 4,

where ε1 = 1, ε2 = i, ε3 − i, ε4 = −1 and a0 is a positive constant (b is the
period of a(x) and ρ(x), as usual). Also

φj (x; λ) = 1 + εja0λ
1/4x + O

(
λ1/2

)
, j = 1, 2, 3, 4,

and
φ′j (x; λ) = εja0λ

1/4 + O
(
λ1/2

)
, j = 1, 2, 3, 4.

Therefore, as λ → 0,
∣∣∣∣

φ2(x; λ) φ3(x; λ)
φ′2(x; λ) φ′3(x; λ)

∣∣∣∣
∣∣∣∣

φ1(x; λ) φ4(x; λ)
φ′1(x; λ) φ′4(x; λ)

∣∣∣∣ = 4ia2
0λ

1/2 + o
(
λ1/2

)
,

and hence, by comparing with (38) we conclude that a(x)ρ(x) must be a
constant. ¥

Final Remarks. As we have already mentioned, it is straightforward to
see that the converse of this theorem is true. Notice that the theorem implies
that if the (periodic) inverse spectral data for L is given (see Subsection 2.4)
and from this data it follows that the Riemann surface Γ has no Type II
branch points, then L1/2 can be recovered (being a Hill-type operator) and
hence the inverse problem for L can be solved.
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