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Abstract

We derive the asymptotic behavior of the solution of the problem.
" a 2 2
w' (t) + Y (t)+ B p(t)w(t) =0, t>0,

w(0) =1, w'(0) =0,
as B — co. Here a > 0 and p(t) > 0. We also discuss the asymptotics of
the nonlinear Schrédinger-type problem

u"+%u'+u2p+1:0, t>0,

u(0) = v, W'(0) = 0,

as y — 0o.
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1 INTRODUCTION

Consider the initial value problem

w" (t) + %w'(t) + B2 p(t)?w(t) =0, t>0, (1)

w(0) =1,  w'(0)=0, (2)

where p(t) is twice continuously differentiable and strictly positive on a given
interval [0, ], a is a fixed strictly positive real number, and B is a large param-
eter.

Such problems arise, e.g., when we are interested in the behavior of the
radially symmetric and bounded solution of the multidimensional equation

Aw + B?*p(r)?w = 0

(where r = /a3 + - -+ 22), as B — .

In Section 2 of this note we compute the asymptotics of w(t), as B —
00, using special Liouville-type transformations, asymptotic matching, and the
WKB approximation.

In Section 3 we discuss the asymptotics of the solution u(¢) of the nonlinear
problem

u' + %u' +u?Pt =0, t>0,
u(0) =1, u'(0) =0,

as v — oo. In the case where a is a positive integer, the above equation is

equivalent to a multidimensional nonlinear Schrédinger equation with radial
symmetry. Using the results of Section 2 we derive heuristically the behavior of
the amplitude of the solution, as vy — oo.

The case o = 2 which is special and somehow easier to handle has been
analyzed in [3].

2 THE LINEAR PROBLEM

Let b > 0 be a fixed number and consider the problem (1)-(2), where p(t)
is a strictly positive function in C?[0,b]. We are interested in the asymptotic
behavior of the solution w(t), ¢t € [0,b], as B — 0.

2.1 The Case(O<ax<l

In this case we introduce the change of variables

1
t= 2", where A\ =

1
T b (3)



and to make things clear we set

v(z) = w(t). (4)

In view of the above transformation, a straightforward calculation yields that
(1)—(2) is equivalent to

v"(2) + N2B%222p(2M)%(2) =0, 2> 0, (5)

v(0) =1,  v'(0)=0. (6)

The WKB theory together with asymptotic matching (see, e.g., [1]) implies
that in some region I of the form

z> (1/B)7, >0 (7)
the so-called physical optics approximation to v(z) is
vy(2) ~ [Q(2)]7Y* {C) cos[BSy(2)] + Cysin[BSy(2)]}, asB o0, (8)

where
Q(z) = X222 p(21)?, 9)

A

so(z):/ozmch:/: AP () dT:/OZ p(r)dr  (10)

and Cy, Cy are constants (to be determined). It will be convenient for the
sequel to rewrite the approximate formula (8) as follows:

A
Cy z T
~ B L _z
vy(2) ey cos /0 p(T) d7'+4/\ 1 +
A
cs . /Z T
+—=—5in |B T)dr + — — |, 11
e [ o+ 5 4] (11)

where z is in region I and Cf,C5 are constants. The fact that p(t) > 0, for
t > 0, guarantees that, for z bounded away from zero, the difference between
the exact solution v(z) of (1)-(2) and vy(z) is of order 1/B, as B — oc.

In order to determine region I (i.e. to estimate o of (7)), we have to check
(see [1]) the validity of the following two criteria

BS()>>S1>>SQ/B, SQ/B<<1, as B — oo, (12)

where

_ 1 _. [ @' 5(Q' (7))
S1(z) = _ZIH[Q(Z)L Sa(2) = i/ { 8(Q(7))3/2 N 32(Q(r))5/2 dr.

(13)



For typographical convenience let us set
po = p(0) > 0.
Then, as z — 01, i.e. when z < 1 (see (9), (10), and (13)), we have
-1

In 2

1 A
Q(2) ~ N3z 72, So(2) ~ poz®,  Si(z) ~ -3 In (Apo) —

and

Sa(z) ~ 127 + ¢a,
where ¢; and ¢ are constants. Taking into account the above approximations,
we infer that the criteria (12) are satisfied for

z

W>>(1/B)l//\, as B — oc.
nz

It follows from the above that the region I can be taken as in (7) where ¢ is any
number satisfying

1
o< X (14)

Next, we turn to the analysis of the problem (1)—(2) in region II, i.e. for
z >0, z < 1. In this region, the WKB approximation is not valid because @
has a (multiple) zero at 0. Nevertheless, we may solve the approximate problem

v"(2) + B2N?p22**2u(z) =0, (15)

v(0) =1, v'(0) =0, (16)
in terms of Bessel functions. Indeed, the general solution of (15) is (see, e.g.,
[1])
v(2) = Vz [CJiyen (poB2Y) + DJ_1 /25 (po B2Y)] z>0,
where C, D are constants.The series expansions of Bessel functions imply that
for z > 0,

Jion(poB2Y) = (p0B/2) /Y 212 F(2), T4 n(pB2Y) = (poB/2)" /N 712G (),
where ( o 2)‘)71
= (—1p2B?z 1
F(Z):ZFM)—11= F(O):Flilz
(n+35 +1) (1+35)

n=0
I'(-) being the Gamma function, and
= (g !
G)=) 71 GO0)=—cF—7,
D Fi- )

Then

1/(23)
v(z) = <%) CzF(z) + (poB/2) "/*M DG(z), z>0,



and, hence, by using the initial condition (16) we get

1/(2X)
_ _ (PoB _ 1
R (e ()

Consequently,

poB\ /Y 1 .
’UII(Z) = <T> r (1 - —> \/EJ_l/(Q)\) (poBZ ), z > 0, z K 1.

2\
(17)
It is clear from the above mentioned work that vy, vy given by (11), (17)
respectively, have a common region of validity (overlap region), namely,

(1/B)'* <« 2«1, B— .

In order to to match these two approximate solutions, we must further approx-
imate them in the overlap region.
First, we consider v(z). For (I/B)l/)‘ K 2z<K1(B— ),z is “small”, so
we have
p(t) ~ pot, as t— 0T,
and thus (see (11)),

L 41/\—%) + CJ sin (poBz)‘-l-%—g)]

v(2) ~ W
(18)

Next, we consider vyy(z). In the overlap region we have Bz — oo, as
B — oc, so it is necessary to approximate the Bessel function J_;,2)(-) by
its leading asymptotic behavior for “large” positive argument. The appropriate
formula is (see, e.g., [1])

2 T s
J_1/2x) () N\/Ecos (z+ﬁ_1)’ as & — 0o, (19)

which implies

2 r o
L) ~ [ —scos (mB + =) 2> /) B

Now (17) combined with the above asymptotics gives

1/(2X)
poB ANz AL T T
) ( 2 ) F<1 2/\> Tpo B ("OBZ D 4)’

(20)

[Cf cos (prz)‘ +

for1>z> (l/B)l/)‘.

Requiring that (18), (20) match on the overlap region we obtain

* * %7% 2A P[) 1/>‘ ].
Ci=0,  Ci=BF /= (2) r<1_ﬁ>.



In summary, the approximations to v(z) in each of the regions I, II are the

following;:
A
2 /po\ /A 1 1 z T
- (%) F<1‘5>W°°S<B/O P dr+ 3 -1

for z > (l/B)l/’\, B — oo,

)|
>«|"
N

vi(z) ~ B

and

ol M/ )
vpp(2) ~ (T) r <1 - ﬁ) VzJ_1e5) (poBz"), 2>0, z<1, B—oc.

Accordingly, in the case 0 < a < 1 the approximations to the solution w(¢)
of the original problem (1), (2) are the following;:

1 _1 2 Po 1/’\ 1 tl/(2>‘) t ™ ™
~ Ba2xT324 [ — [ = rft1—- — | ——— B R
wr(t) - ( 5 ) ( 2)\> D) cos /0 p(T) dr + o 1)

(21)
fort > 1/B, B — o,

and

poB\ Y 1= L) ey
wH(t) ~ | — - — J,l/(2,\) (poBt), t>0, t<K1, B— oo,

2 2\
(22)
where A is given by (3).
2.2 The Case a > 1
If @ > 1, we use the transformation
w(t) = 2z (), t = 2",
where 1
= 1. 23
p=——> (23)
A straightforward calculation yields that (1)—(2) is equivalent to
V" (2) + P B2 2 p(2")?u(2) =0, 2z >0, (24)
v(0) =0, v'(0) = 1. (25)

By using similar arguments as in the case a < 1 we get

_1_1 [2 fpo\ /K 1 1 T o
~ Bz 2 (0 r(1+—)—— cos|B _r.Tr
vy(2) Vo= ( 5 ) ( + 2H> o0 cos < /0 p(t) dr m 4> ;



for z > (1/B)'*, B — oo,

and

poBY /1 1
vyp(2) ~ (T) r (1 + E) V2J1 2) (poB2"), 2>0, z<K1, B— .

Thus,

_1_1 [2 fpo\~/k 1\ ¢~ 1/ /t x -
w[(t)NB 22 ;(?) F<1+ﬂ> 00 cos | B ; p(7) dr 1)

t>0,t>1/B, B — o0,

poB —1/(2p) 1
wH(t) ~ <T> r <1 + E) t_l/(2u)<]1/(2u) (poBt), t>0, t<K1, B — o0,
where p is given by (23).
Since (3) and (23) give
1 a-—1 1 a-—1

3T 3 (when 0 < a < 1) and E: 5 (when a > 1),

we observe that the last two approximations and (21),(22) have exactly the same
form. Consequently, (21), (22) are valid for every a # 1. We summarize our
results in the following theorem.

Theorem. Let w(t) be the solution of the problem (1)—(2), where ¢ € [0, b]
and a # 1. Then, in region I, i.e. when ¢t > 1/B, as B — oo,

1 2 /po\(1—)/2 a+1 1 ¢ T
wilt) ~ Bars \/; (?) ' ta/ﬂ//ﬁcos B/o p(r) dr =7 )

(26)
while in region IT, i.e. whent > 0,t < 1, as B — o0,
B\ (1—)/2 a+1 .

Remarks. (i) We believe that the above formulas are valid even for a = 1.

(ii) Since
_ V2 sinz
RV RV

if we set & = 2 in (26) and (27), the formulas reduce to

Jl/g(ill‘)

sin [B fot p(T)dT]

Bpy/*p(t)1/2t

w(t) ~



valid for all ¢ € [0,b]. This agrees with the formula given in [3].

(iii) It would be nice to have a Langer-type formula for w(t), namely an
asymptotic formula which is uniformly valid for all ¢t € [0,b], as B — occo. In
fact, if

one can check that the solution w(t) of (1)—(2) satisfies

Y

(1-a)/2
poB a+1\ 140 [SE)
w(t) <2> F( 5 )t —tp(t)J(a_l)/g[BS(t)], for all ¢ € [0, b]

(28)
where

S(t) = /0 o(7) dr.

Unless a@ = 2, one needs the condition p'(0) =
shown in (28) to satisfy the initial condition w'(0

0 in order for the expression
)=0.

3 THE NONLINEAR PROBLEM

Let us now consider the nonlinear initial value problem
" a , 2p+1 _
u +?u +u =0, t>0, (29)

u(0) = 7, u'(0) =0, (30)

where p > 1 is a positive integer and « > 0 (notice that, if « is an integer,
then u' + (a/t)u’ is the (a4 1)-dimensional radial Laplacian of u, hence (29) is
a radially symmetric multidimensional nonlinear Schrodinger equation). Again
the boundary conditions must be interpreted in the right way, i.e. as limits
when t — 07.

Proposition. The problem (29)—(30) has a unique solution for all ¢ > 0.

Proof. We first notice that (29)—(30) are equivalent to the integral equation

t tl—a _
u) =7~ [ Tt (31)
0 [0

where the integrand makes sense even for a = 1, since in this case it becomes

u(t) :7—/0 7(Int —In7)u(r)**tdr.

We must, therefore, look at the map

Flu)(t) = v — /t poere s

2p+1d
T,



mapping C|0, €] into itself, for any given £ > 0. It is easy to see that, if ¢ is
chosen sufficiently small, then F is a contraction, namely

[Flu] = Flolllo < ellu=vlly

where ¢ < 1. Hence F has a unique fixed point u in C[0, €] which is the unique
solution of (31) in [0,e] (and it is automatically smooth). Then the global
existence and uniqueness follows by the fact that the energy

E(t) = u(t)’"* + (p + D)u'(t)? (32)

is decreasing. |

The solution u(t) of (29)—(30) is highly oscillatory, due to the term u??*!, but
with a decreasing amplitude of oscillation, due to the dissipative term (a/t)u’.
Using the expression (32) for the energy, we can define the amplitude of oscil-
lation as (the same definition was used in [3])

A(t) = E(t)Y/r+2), (33)
Let 0 =t) <t} <th <---be the (positive) zeros of u'(t). Then
A(t)) = [u(ty)] = (1) u(t)). (34)

In [2], it was shown that for a fixed j > 0,
c _
=t =55 +0 07 ™),  asy o0, (35)

where the constant ¢, is given by

_ U a7 T(ah)
Cp—4\/p+1/0 \/1_x2p+2_\/(p+1)1—1(p:—2)

2p+2

The problem we want to discuss here is: For a given b > 0 determine the
(leading) asymptotic behavior of A(b), as v — oc.
As it was shown in [3], for any v > 0 there is an n = n(y) > 0 such that

thy < b <th, o

We set
b =t, (36)

(b* depends on 7 and b; in particular b* < b). Thus u(b*) is a local maximum
of u(t) and
u(b*) = A(b"). (37)

10



Notice that (35) implies that, as v — oc,
b—b"=0(y77),

which, in turn gives (see (33))

AB) - A®) =0 (y'77), (38)
hence, in order to estimate A(b), it suffices, thanks to (37) and (38), to estimate
u(b*).

By setting
u(t) = yus(t), (39)
(29)—(30) can be written as
W+ Sl =0, 1>, (40)
u1(0) = 1, u'(0) = 0. (41)

We propose the following heuristic way to estimate u (b*) as v — co. Ap-
plying (26) to (40), (41) for p(t) = |u1(¢)|? (hence po = 1), B = vP, we obtain
that for ¢t > 0, ¢t > 1/47,

(1—a)/2 ¢
1 2 /1 a+1 1 » » TQ
“l(t)”vpa/Q\g(i) F( 2 >ta/2|u1<t>|p/2 (7 / ()l ‘”‘T>’

as v — oo, or, due to (39),

(1—a)/2 ¢
2 /1 a+1 1 T
~ Al HP(I=) /2] 2 2 r Pgr_ =
uld) ~7 vr<2> < 2 )ta/2|u<t>p/2 cos (fo u(r)l” dr 4)‘
(42)

It should be kept in mind that (42) is valid as long as
A(t) — oo, as y — oo. (43)

Formula (42) implies that, under (43),

(1—a)/2 ¢
2 (1 a+1 1 Ta

(r+2)/2 . JA+[p(1—a)/2], [ 2 [ = p _ e
u(t), y W<2> r( ! )tm cos (/0 u(r)? dr 4>‘
or

1\ Y/ (+2) a+1 2/(p+2) 1 ¢ o 2/(p+2)

~ ~(PF2=pa)/(p+2) [ = a/(p+2) p _ 2=
Ju(t)) ~ <W> 2 r( : ) e (/0 u(r)P dr 4)
as y — oc.

Therefore, as v — oo,

1/(p+2) 2/(p+2)
A(B) ~ lrrz=pe)/+2) (L ga/p2)p (21 _
" - 2 bl (p12)

11



as long as A(b) — oo, as v — o0, i.e. when
pla—1) < 2.
If, on the other hand, p(a — 1) > 2, then
A(b) = 0(1), as y — oo.

The case a = 2 reduces to the statement appeared in [3].
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