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AbstratWe derive the asymptoti behavior of the solution of the problem.w00(t) + �t w0(t) +B2�(t)2w(t) = 0; t > 0;w(0) = 1; w0(0) = 0;as B !1. Here � > 0 and �(t) > 0. We also disuss the asymptotis ofthe nonlinear Shr�odinger-type problemu00 + �t u0 + u2p+1 = 0; t > 0;u(0) = ; u0(0) = 0;as  !1.Key words and phrases. Equations ontaining a large parameter,WKB, asymptoti mathing.2000 AMS subjet lassi�ation. 34E05, 34E10.
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1 INTRODUCTIONConsider the initial value problemw00(t) + �t w0(t) +B2�(t)2w(t) = 0; t > 0; (1)w(0) = 1; w0(0) = 0; (2)where �(t) is twie ontinuously di�erentiable and stritly positive on a giveninterval [0; b℄, � is a �xed stritly positive real number, and B is a large param-eter.Suh problems arise, e.g., when we are interested in the behavior of theradially symmetri and bounded solution of the multidimensional equation�w +B2�(r)2w = 0(where r =px21 + � � �+ x2n), as B !1.In Setion 2 of this note we ompute the asymptotis of w(t), as B !1, using speial Liouville-type transformations, asymptoti mathing, and theWKB approximation.In Setion 3 we disuss the asymptotis of the solution u(t) of the nonlinearproblem u00 + �t u0 + u2p+1 = 0; t > 0;u(0) = ; u0(0) = 0;as  ! 1. In the ase where � is a positive integer, the above equation isequivalent to a multidimensional nonlinear Shr�odinger equation with radialsymmetry. Using the results of Setion 2 we derive heuristially the behavior ofthe amplitude of the solution, as  !1.The ase � = 2 whih is speial and somehow easier to handle has beenanalyzed in [3℄.2 THE LINEAR PROBLEMLet b > 0 be a �xed number and onsider the problem (1){(2), where �(t)is a stritly positive funtion in C2[0; b℄. We are interested in the asymptotibehavior of the solution w(t), t 2 [0; b℄, as B !1.2.1 The Case 0 < � < 1In this ase we introdue the hange of variablest = z�; where � = 11� � > 1; (3)3



and to make things lear we set v(z) = w(t): (4)In view of the above transformation, a straightforward alulation yields that(1){(2) is equivalent tov00(z) + �2B2z2��2�(z�)2v(z) = 0; z > 0; (5)v(0) = 1; v0(0) = 0: (6)The WKB theory together with asymptoti mathing (see, e.g., [1℄) impliesthat in some region I of the formz � (1=B)� ; � > 0 (7)the so-alled physial optis approximation to v(z) isvI(z) � [Q(z)℄�1=4 fC1 os[BS0(z)℄ + C2 sin[BS0(z)℄g ; as B !1; (8)where Q(z) = �2z2��2�(z�)2; (9)S0(z) = Z z0 pQ(�) d� = Z z0 ����1�(��) d� = Z z�0 �(�) d� (10)and C1; C2 are onstants (to be determined). It will be onvenient for thesequel to rewrite the approximate formula (8) as follows:vI(z) � C�1p�z��1�(z�) os"B Z z�0 �(�) d� + �4� � �4# ++ C�2p�z��1�(z�) sin"B Z z�0 �(�) d� + �4� � �4 # ; (11)where z is in region I and C�1 ; C�2 are onstants. The fat that �(t) > 0, fort > 0, guarantees that, for z bounded away from zero, the di�erene betweenthe exat solution v(z) of (1){(2) and vI(z) is of order 1=B, as B !1.In order to determine region I (i.e. to estimate � of (7)), we have to hek(see [1℄) the validity of the following two riteriaBS0 � S1 � S2=B; S2=B � 1; as B !1; (12)whereS1(z) = �14 ln[Q(z)℄; S2(z) = � Z z � Q00(�)8(Q(�))3=2 � 5(Q0(�))232(Q(�))5=2 � d�: (13)4



For typographial onveniene let us set�0 = �(0) > 0:Then, as z ! 0+, i.e. when z � 1 (see (9), (10), and (13)), we haveQ(z) � �2�20z2��2; S0(z) � �0z�; S1(z) � �12 ln (��0)� �� 12 ln zand S2(z) � 1z�� + 2;where 1 and 2 are onstants. Taking into aount the above approximations,we infer that the riteria (12) are satis�ed forz(ln z)1=� � (1=B)1=� ; as B !1:It follows from the above that the region I an be taken as in (7) where � is anynumber satisfying � < 1�: (14)Next, we turn to the analysis of the problem (1){(2) in region II, i.e. forz > 0; z � 1. In this region, the WKB approximation is not valid beause Qhas a (multiple) zero at 0. Nevertheless, we may solve the approximate problemv00(z) + B2�2�20z2��2v(z) = 0; (15)v(0) = 1; v0(0) = 0; (16)in terms of Bessel funtions. Indeed, the general solution of (15) is (see, e.g.,[1℄) v(z) = pz �CJ1=(2�)(�0Bz�) +DJ�1=(2�)(�0Bz�)� ; z > 0;where C; D are onstants.The series expansions of Bessel funtions imply thatfor z > 0,J1=(2�)(�0Bz�) = (�0B=2)1=(2�) z1=2F (z); J�1=(2�)(�0Bz�) = (�0B=2)�1=(2�) z�1=2G(z);where F (z) = 1Xn=0 �� 14�20B2z2��n� �n+ 12� + 1� ; F (0) = 1� �1 + 12�� ;�(�) being the Gamma funtion, andG(z) = 1Xn=0 �� 14�20B2z2��n� �n� 12� + 1� ; G(0) = 1� �1� 12�� ; G0(0) = 0:Then v(z) = ��0B2 �1=(2�) CzF (z) + (�0B=2)�1=(2�)DG(z); z � 0;5



and, hene, by using the initial ondition (16) we getC = 0; D = ��0B2 �1=(2�) ��1� 12�� :Consequently,vII(z) = ��0B2 �1=(2�) ��1� 12��pzJ�1=(2�)(�0Bz�); z > 0; z � 1:(17)It is lear from the above mentioned work that vI; vII given by (11), (17)respetively, have a ommon region of validity (overlap region), namely,(1=B)1=� � z � 1; B !1:In order to to math these two approximate solutions, we must further approx-imate them in the overlap region.First, we onsider vI(z). For (1=B)1=� � z � 1 (B !1), z is \small", sowe have �(t) � �0t; as t! 0+;and thus (see (11)),vI(z) � 1p�0�z��1 hC�1 os��0Bz� + �4� � �4� + C�2 sin��0Bz� + �4� � �4�i(18)Next, we onsider vII(z). In the overlap region we have Bz� ! 1, asB ! 1, so it is neessary to approximate the Bessel funtion J�1=(2�)(�) byits leading asymptoti behavior for \large" positive argument. The appropriateformula is (see, e.g., [1℄)J�1=(2�)(x) �r 2�x os�x+ �4� � �4� ; as x!1; (19)whih impliesJ�1=(2�)(�0Bz�) �r 2��0Bz� os��0Bz� + �4� � �4� ; z � (1=B)1=� ; B !1:Now (17) ombined with the above asymptotis givesvII(z) � ��0B2 �1=(2�) ��1� 12��r 2��0Bz��1 os��0Bz� + �4� � �4� ;(20)for 1� z � (1=B)1=�.Requiring that (18), (20) math on the overlap region we obtainC�2 = 0; C�1 = B 12�� 12r2�� ��02 �1=���1� 12�� :6



In summary, the approximations to v(z) in eah of the regions I, II are thefollowing:vI(z) � B 12�� 12r 2� ��02 �1=���1� 12�� 1pz��1�(z�) os B Z z�0 �(�) d� + �4� � �4! ;for z � (1=B)1=�, B !1,andvII(z) � ��0B2 �1=(2�) ��1� 12��pzJ�1=(2�)(�0Bz�); z > 0; z � 1; B !1:Aordingly, in the ase 0 < � < 1 the approximations to the solution w(t)of the original problem (1), (2) are the following:wI(t) � B 12�� 12r 2� ��02 �1=���1� 12�� t1=(2�)pt�(t) os�B Z t0 �(�) d� + �4� � �4� ;(21)for t� 1=B, B !1,andwII(t) � ��0B2 �1=(2�) ��1� 12�� t1=(2�)J�1=(2�)(�0Bt); t > 0; t� 1; B !1;(22)where � is given by (3).2.2 The Case � > 1If � > 1, we use the transformationw(t) = z�1v(z); t = z�;where � = 1�� 1 > 1: (23)A straightforward alulation yields that (1){(2) is equivalent tov00(z) + �2B2z2��2�(z�)2v(z) = 0; z > 0; (24)v(0) = 0; v0(0) = 1: (25)By using similar arguments as in the ase � < 1 we getvI(z) � B� 12�� 12r 2� ��02 ��1=���1 + 12�� 1pz��1�(z�) os B Z z�0 �(�) d� � �4� � �4! ;7



for z � (1=B)1=�, B !1,andvII(z) � ��0B2 ��1=(2�) ��1 + 12��pzJ1=(2�)(�0Bz�); z > 0; z � 1; B !1:Thus,wI(t) � B� 12�� 12r 2� ��02 ��1=���1 + 12�� t�1=(2�)pt�(t) os�B Z t0 �(�) d� � �4� � �4� ;t > 0, t� 1=B, B !1,wII(t) � ��0B2 ��1=(2�) ��1 + 12�� t�1=(2�)J1=(2�)(�0Bt); t > 0; t� 1; B !1;where � is given by (23).Sine (3) and (23) give� 12� = �� 12 (when 0 < � < 1) and 12� = �� 12 (when � > 1);we observe that the last two approximations and (21),(22) have exatly the sameform. Consequently, (21), (22) are valid for every � 6= 1. We summarize ourresults in the following theorem.Theorem. Let w(t) be the solution of the problem (1){(2), where t 2 [0; b℄and � 6= 1. Then, in region I, i.e. when t� 1=B, as B !1,wI(t) � 1B�=2r 2� ��02 �(1��)=2 ���+ 12 � 1t�=2p�(t) os�B Z t0 �(�) d� � ��4 � ;(26)while in region II, i.e. when t > 0, t� 1, as B !1,wII(t) � ��0B2 �(1��)=2 ���+ 12 � t(1��)=2J(��1)=2(�0Bt): (27)Remarks. (i) We believe that the above formulas are valid even for � = 1.(ii) Sine J1=2(x) = p2p� sinxpx ;if we set � = 2 in (26) and (27), the formulas redue tow(t) � sin hB R t0 �(�)d�iB�1=20 �(t)1=2t ;8



valid for all t 2 [0; b℄. This agrees with the formula given in [3℄.(iii) It would be nie to have a Langer-type formula for w(t), namely anasymptoti formula whih is uniformly valid for all t 2 [0; b℄, as B ! 1. Infat, if �0(0) = 0;one an hek that the solution w(t) of (1){(2) satis�esw(t) � ��0B2 �(1��)=2 ���+ 12 � t(1��)=2s S(t)t�(t)J(��1)=2 [BS(t)℄ ; for all t 2 [0; b℄;(28)where S(t) = Z t0 �(�) d�:Unless � = 2, one needs the ondition �0(0) = 0 in order for the expressionshown in (28) to satisfy the initial ondition w0(0) = 0.3 THE NONLINEAR PROBLEMLet us now onsider the nonlinear initial value problemu00 + �t u0 + u2p+1 = 0; t > 0; (29)u(0) = ; u0(0) = 0; (30)where p � 1 is a positive integer and � > 0 (notie that, if � is an integer,then u00+(�=t)u0 is the (�+1)-dimensional radial Laplaian of u, hene (29) isa radially symmetri multidimensional nonlinear Shr�odinger equation). Againthe boundary onditions must be interpreted in the right way, i.e. as limitswhen t! 0+.Proposition. The problem (29){(30) has a unique solution for all t > 0.Proof. We �rst notie that (29){(30) are equivalent to the integral equationu(t) =  � Z t0 t1���� � �1� � u(�)2p+1d�; (31)where the integrand makes sense even for � = 1, sine in this ase it beomesu(t) =  � Z t0 � (ln t� ln �) u(�)2p+1d�:We must, therefore, look at the mapF [u℄(t) =  � Z t0 t1���� � �1� � u(�)2p+1d�;9



mapping C[0; "℄ into itself, for any given " > 0. It is easy to see that, if " ishosen suÆiently small, then F is a ontration, namelykF [u℄�F [v℄k1 �  ku� vk1 ;where  < 1. Hene F has a unique �xed point u in C[0; "℄ whih is the uniquesolution of (31) in [0; "℄ (and it is automatially smooth). Then the globalexistene and uniqueness follows by the fat that the energyE(t) = u(t)2p+2 + (p+ 1)u0(t)2 (32)is dereasing. �The solution u(t) of (29){(30) is highly osillatory, due to the term u2p+1, butwith a dereasing amplitude of osillation, due to the dissipative term (�=t)u0.Using the expression (32) for the energy, we an de�ne the amplitude of osil-lation as (the same de�nition was used in [3℄)A(t) = E(t)1=(2p+2): (33)Let 0 = t00 < t01 < t02 < � � � be the (positive) zeros of u0(t). ThenA(t0j) = ��u(t0j)�� = (�1)ju(t0j): (34)In [2℄, it was shown that for a �xed j � 0,t0j+1 � t0j = p2p +O ��2p� ; as  !1; (35)where the onstant p is given byp = 4pp+ 1 Z 10 dxp1� x2p+2 = 2p�p(p+ 1) �� 12p+2��� p+22p+2�The problem we want to disuss here is: For a given b > 0 determine the(leading) asymptoti behavior of A(b), as  !1.As it was shown in [3℄, for any  > 0 there is an n = n() � 0 suh thatt02n � b < t02n+2:We set b� = t02n (36)(b� depends on  and b; in partiular b� � b). Thus u(b�) is a loal maximumof u(t) and u(b�) = A (b�) : (37)10



Notie that (35) implies that, as  !1,b� b� = O ��p� ;whih, in turn gives (see (33))A(b)�A (b�) = O �1�p� ; (38)hene, in order to estimate A(b), it suÆes, thanks to (37) and (38), to estimateu(b�).By setting u(t) = u1(t); (39)(29){(30) an be written asu001 + �t u01 + 2pu2p+11 = 0; t > 0; (40)u1(0) = 1; u0(0) = 0: (41)We propose the following heuristi way to estimate u1(b�) as  ! 1. Ap-plying (26) to (40), (41) for �(t) = ju1(t)jp (hene �0 = 1), B = p, we obtainthat for t > 0, t� 1=p,u1(t) � 1p�=2r 2� �12�(1��)=2 ���+ 12 � 1t�=2ju1(t)jp=2 os�p Z t0 ju1(�)jp d� � ��4 � ;as  !1, or, due to (39),u(t) � 1+[p(1��)=2℄r 2� �12�(1��)=2 ���+ 12 � 1t�=2ju(t)jp=2 os�Z t0 ju(�)jp d� � ��4 � :(42)It should be kept in mind that (42) is valid as long asA(t)!1; as  !1: (43)Formula (42) implies that, under (43),ju(t)j(p+2)=2 � 1+[p(1��)=2℄r 2� �12�(1��)=2 ���+ 12 � 1t�=2 ����os�Z t0 ju(�)jp d� � ��4 ����� ;orju(t)j � (p+2�p�)=(p+2)� 1��1=(p+2) 2�=(p+2)���+ 12 �2=(p+2) 1t�=(p+2) ����os�Z t0 ju(�)jp d� � ��4 �����2=(p+2) ;as  !1.Therefore, as  !1,A(b) � (p+2�p�)=(p+2)� 1��1=(p+2) 2�=(p+2)���+ 12 �2=(p+2) 1b�=(p+2) ;11



as long as A(b)!1, as  !1, i.e. whenp(�� 1) < 2:If, on the other hand, p(�� 1) � 2, thenA(b) = O(1); as  !1:The ase � = 2 redues to the statement appeared in [3℄.Referenes[1℄ C. M. Bender and S. A. Orszag, Advaned Mathematial Methods for Sien-tists and Engineers, MGraw-Hill Book Company, New York, 1978.[2℄ P. K. Newton and V. G. Papaniolaou, Power law asymptotis for nonlin-ear eigenvalue problems, in Springer Applied Mathematial Sienes Series,Celebratory Volume for the Oasion of the 70th birthday of Larry Sirovih( E. Kaplan, J. Marsden and K.R. Sreenivasan, eds.), Marh 2003.[3℄ P. K. Newton and V. G. Papaniolaou, Nonlinear Dissipative Problems withLarge Initial Conditions, Journal of Mathematial Physis (to appear).
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